Spelling suggestions: "subject:"bethe"" "subject:"sethe""
91 |
Excitations et ergodicité des chaînes de spins quantiques critiques à partir de la dynamique classique hors d’équilibreVinet, Stéphane 10 1900 (has links)
Ce mémoire étudie le modèle quantique d’Ising-Kawasaki en une dimension. Cette chaîne quantique de spin-1/2 décrit la dynamique de Kawasaki hors d’équilibre d’une chaîne d’Ising classique couplée à un bain thermique. L’Hamiltonien est obtenu pour le cas général désor- donné avec des couplages d’Ising et champs magnétiques non-uniformes. Quand les champs magnétiques sont nuls, la chaîne de spin quantique est stochastique, et dépend des couplages d’Ising normalisés par la température du bain de chaleur. Dans le cas de couplages uniformes, nous donnons les états fondamentaux exacts de la chaîne de spin, ainsi que ses excitations à 1-magnon. Les solutions pour les spectres à deux magnons sont dérivées via une variante de l’Ansatz de Bethe. Dans le régime antiferromagnétique, les états de branche à deux magnons présentent un comportement complexe, notamment en ce qui concerne l’hybridation avec le continuum. L’analyse faite dans ce mémoire, combinée aux études précédentes, suggère que le système manifeste des dynamiques multiples à basse énergie, comme le montre la présence de plusieurs exposants critiques dynamiques. La distribution de l’espacement de l’ensemble des niveaux d’énergie est évaluée en fonction du couplage d’Ising. On conclut que le sys- tème est non-intégrable pour des paramètres génériques, ou de manière équivalente, que la dynamique classique hors équilibre correspondante est ergodique. / We study a quantum spin-1/2 chain that is dual to the non-equilibrium Kawasaki dynamics
of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained
for the general disordered case with non-uniform Ising couplings. The quantum spin chain
is stoquastic, and depends on the Ising couplings normalized by the bath’s temperature.
Proceeding with uniform couplings, we give the exact groundstates of the gapless spin chain,
as well as its single-magnon excitations. Solutions for the two-magnon spectra are derived
via a Bethe Ansatz scheme. In the antiferromagnetic regime, the two-magnon branch states
show intricate behavior, especially regarding hybridization with the continuum. Our analysis,
when combined with previous studies, suggests that the system hosts multiple dynamics
at low energy as seen via the presence of multiple dynamical critical exponents. Finally, we
analyze the full energy level spacing distribution as a function of the Ising coupling. We
conclude that the system is non-integrable for generic parameters, or equivalently, that the
corresponding non-equilibrium classical dynamics are ergodic.
|
92 |
Opérateurs de Heun, ansatz de Bethe et représentations de \(su(3)\)Shaaban Kabakibo, Dounia 12 1900 (has links)
Le présent mémoire contient deux articles reliés par le formalisme de l'ansatz de Bethe. Dans le premier article, l'opérateur de Heun de type Lie est identifié comme une spécialisation de la matrice de transfert d'un modèle de \(BC\)-Gaudin à un site dans un champ magnétique. Ceci permet de le diagonaliser à l'aide de l'ansatz de Bethe algébrique modifié. La complétude du spectre est démontrée en reliant les racines de Bethe aux zéros des solutions polynomiales d'une équation différentielle de Heun inhomogène. Le deuxième article aborde le sujet des représentations irréductibles de l'algèbre de Lie \(su(3)\) dans la réduction \(su(3) \supset so(3) \supset so(2)\). Cette manière de construire les représentations irréductibles de \(su(3)\) porte une ambiguïté qui empêche de distinguer totalement les vecteurs de base, ce qui mène à un problème d'étiquette manquante. Dans cet esprit, l'algèbre des deux opérateurs fournissant cette étiquette est examinée. L'opérateur de degré 4 dans les générateurs de \(su(3)\) est diagonalisé en se servant des techniques de l'ansatz de Bethe analytique. / This Master’s thesis contains two articles linked by the formalism of the Bethe ansatz. In the first article, the Lie-type Heun operator is identified as a specialization of the transfer matrix of a one-site BC-Gaudin model in a magnetic field. This allows its diagonalization by means of the modified algebraic Bethe ansatz. The completeness of the spectrum is proven by relating the Bethe roots to the zeros of the polynomial solutions of an inhomogeneous differential Heun equation. The second article deals with the subject of irreducible representations of the Lie algebra su(3) in the reduction su(3) ⊃ so(3) ⊃ so(2). This way of constructing the irreducible representations of su(3) carries an ambiguity in distinguishing the basis vectors, also known as a missing label problem. In this spirit, the algebra of the two operators providing the missing label is examined. The operator of degree 4 in the generators of su(3) is diagonalized using the techniques of the analytical Bethe ansatz.
|
93 |
Espectro de energia-momento para a cromodinâmica quântica na rede / Energy-momentum spectrum for lattice quantum chromodynamicsFrancisco Neto, Antônio 14 October 2005 (has links)
Consideramos aqui a obtenção da parte inferior do espectro de energia-momento para modelos de Cromodinâmica Quântica (QCD) na rede, na formulação usando integral funcional com tempo imaginário e no regime de acoplamento forte, isto é, com o parâmetro de \"hopping\'\' κ > 0 satisfazendo 1 >> κ >> β > 0, onde β ≡ g-20 é o parâmetro de acoplamento da interação dos campos de calibre entre si, aqui definidos na álgebra de Lie $SU(3)$. Consideramos modelos de QCD com campos fermiônicos de quarks com um ou dois sabores (isospin) e em $2+1$ e $3+1$ dimensões, com diferentes dimensionalidades para matrizes de spin. Analisamos o setor mesônico: o espectro de uma e duas partículas. Detectamos estados de um méson e obtivemos suas aberturas de massa. Detectamos também, dependendo do modelo tratado, estados ligados de dois mésons. A existência de estados ligados de um méson e um bárion foi também analisada / We consider the energy-momentum spectrum of lattice quantum chromodynamics (QCD) models, using the functional integral formulation, with imaginary time and in the strong coupling regime. This regime corresponds to taking the hopping parameter $\\kappa>0$ satisfying $1>>\\kappa>>\\beta>0$, where $\\beta\\equiv g_0^$ is the coupling parameter among the gauge fields, here defined in the $SU(3)$ Lie algebra. We consider QCD models with fermionic quark fields with one and two flavors (isospin) and in $2+1$ and $3+1$ dimensions, and different types of spin matrices. We analyzed the mesonic sector: one and two-particle spectra. We detected one-meson states and obtained their mass splittings. Depending on the model, two-meson states were also obtained. The existence of bound states of one baryon and one meson was also analyzed
|
94 |
Combinatorics of Gaudin systems : cactus groups and the RSK algorithmWhite, Noah Alexander Matthias January 2016 (has links)
This thesis explores connections between the Gaudin Hamiltonians in type A and the combinatorics of tableaux. The cactus group acts on standard tableaux via the Schützenberger involution. We show in this thesis that the action of the cactus group on standard tableaux can be recovered as a monodromy action of the cactus group on the simultaneous spectrum of the Gaudin Hamiltonians. More precisely, we consider the action of the Bethe algebra, which contains the Gaudin Hamiltonians, on the multiplicity space of a tensor product of irreducible glr-modules. The spectrum of this algebra forms a flat and finite family over M0,n+1(C). We use work of Mukhin, Tarasov and Varchenko, who link this spectrum to certain Schubert intersections, and work of Speyer, who extends these Schubert intersections to a flat and finite map over the entire moduli space of stable curves M0,n+1(C). We show the monodromy over the real points M0,n+1(R) can be identified with the action of the cactus group on a tensor product of irreducible glr-crystals. Furthermore we show this identification is canonical with respect to natural labelling sets on both sides.
|
95 |
Espectro de energia-momento para a cromodinâmica quântica na rede / Energy-momentum spectrum for lattice quantum chromodynamicsAntônio Francisco Neto 14 October 2005 (has links)
Consideramos aqui a obtenção da parte inferior do espectro de energia-momento para modelos de Cromodinâmica Quântica (QCD) na rede, na formulação usando integral funcional com tempo imaginário e no regime de acoplamento forte, isto é, com o parâmetro de \"hopping\'\' κ > 0 satisfazendo 1 >> κ >> β > 0, onde β ≡ g-20 é o parâmetro de acoplamento da interação dos campos de calibre entre si, aqui definidos na álgebra de Lie $SU(3)$. Consideramos modelos de QCD com campos fermiônicos de quarks com um ou dois sabores (isospin) e em $2+1$ e $3+1$ dimensões, com diferentes dimensionalidades para matrizes de spin. Analisamos o setor mesônico: o espectro de uma e duas partículas. Detectamos estados de um méson e obtivemos suas aberturas de massa. Detectamos também, dependendo do modelo tratado, estados ligados de dois mésons. A existência de estados ligados de um méson e um bárion foi também analisada / We consider the energy-momentum spectrum of lattice quantum chromodynamics (QCD) models, using the functional integral formulation, with imaginary time and in the strong coupling regime. This regime corresponds to taking the hopping parameter $\\kappa>0$ satisfying $1>>\\kappa>>\\beta>0$, where $\\beta\\equiv g_0^$ is the coupling parameter among the gauge fields, here defined in the $SU(3)$ Lie algebra. We consider QCD models with fermionic quark fields with one and two flavors (isospin) and in $2+1$ and $3+1$ dimensions, and different types of spin matrices. We analyzed the mesonic sector: one and two-particle spectra. We detected one-meson states and obtained their mass splittings. Depending on the model, two-meson states were also obtained. The existence of bound states of one baryon and one meson was also analyzed
|
96 |
Estudo do modelo Blume-Capel através da teoria de campo médio /Godoi, Marcos Roberto de January 2019 (has links)
Orientador: Makoto Yoshida / Resumo: Apresenta-se um estudo das transições de fase de um material ferromagnético representado pelo modelo Blume-Capel. A investigação é realizada através da teoria de campo médio implementada através da aproximação de Bethe-Peierls. Como tarefa preliminar é proposta uma revisão detalhada da aproximação de Weiss para investigação dos fenômenos críticos de sistemas magnéticos. Nesta etapa, tanto o modelo de Ising quanto o modelo Blume-Capel são considerados. Em seguida, uma revisão do modelo de Ising através da aproximação de Bethe-Peierls, tida como mais precisa, também é realizada e de posse da experiência adquirida, o modelo Blume-Capel é detalhadamente investigado. / Abstract: The study of the phase transition of Blume-Capel ferromagnet is carried out by means of Bethe-Peierls approximation. A detailed review of 2D Ising model and the Weiss/Bethe-Peierls mean field theory is presented as the preliminar task. This is followed by a review of Blume-Capel model and finally by the investigations of its critical phenomena in the Bethe-Peierls approximation. / Mestre
|
97 |
Méthodes exactes pour le modèle d'exclusion asymétriqueProlhac, Sylvain 23 September 2009 (has links) (PDF)
Cette thèse est consacrée à l'étude de quelques propriétés du modèle d'exclusion asymétrique unidimensionnel, un modèle exactement soluble de particules en interaction présentant un état stationnaire hors d'équilibre.<br />Dans une première partie, nous expliquons les liens que le modèle d'exclusion asymétrique entretient avec d'autres modèles de la physique statistique, en particulier des modèles de croissance, de polymère dirigé en milieu aléatoire, ou encore des modèles de vertex. Après avoir récapitulé quelques résultats connus, nous expliquons comment le modèle d'exclusion peut être étudié en utilisant l'Ansatz de Bethe.<br />La deuxième partie est consacrée au calcul par Ansatz de Bethe des fluctuations du courant dans le modèle d'exclusion partiellement asymétrique avec des conditions aux bords périodiques. Utilisant une formulation fonctionnelle des équations de Bethe, nous obtenons des expressions exactes pour les trois premiers cumulants du courant. À partir de ces expressions exactes et de calculs effectués pour de petits systèmes, nous conjecturons ensuite une expression combinatoire explicite pour tous les cumulants du courant.<br />Dans la troisième partie, nous présentons le modèle d'exclusion à plusieurs classes de particules, qui généralise le modèle étudié dans les deux premières parties. Nous montrons que ses probabilités stationnaire peuvent s'écrire sous la forme de traces de produits de matrices. Nous expliquons ensuite la formulation algébrique de l'Ansatz de Bethe pour ce modèle.
|
98 |
ON THE GAUDIN AND XXX MODELS ASSOCIATED TO LIE SUPERALGEBRASChenliang Huang (9115211) 28 July 2020 (has links)
We describe a reproduction procedure which, given a solution of the gl(m|n) Gaudin Bethe ansatz equation associated to a tensor product of polynomial modules, produces a family P of other solutions called the population. <br>To a population we associate a rational pseudodifferential operator R and a superspace W of rational functions. <br><br>We show that if at least one module is typical then the population P is canonically identified with the set of minimal factorizations of R and with the space of full superflags in W. We conjecture that the singular eigenvectors (up to rescaling) of all gl(m|n) Gaudin Hamiltonians are in a bijective correspondence with certain superspaces of rational functions.<br><br>We establish a duality of the non-periodic Gaudin model associated with superalgebra gl(m|n) and the non-periodic Gaudin model associated with algebra gl(k).<br><br>The Hamiltonians of the Gaudin models are given by expansions of a Berezinian of an (m+n) by (m+n) matrix in the case of gl(m|n) <br>and of a column determinant of a k by k matrix in the case of gl(k). We obtain our results by proving Capelli type identities for both cases and comparing the results.<br><br>We study solutions of the Bethe ansatz equations of the non-homogeneous periodic XXX model associated to super Yangian Y(gl(m|n)).<br>To a solution we associate a rational difference operator D and a superspace of rational functions W. We show that the set of complete factorizations of D is in canonical bijection with the variety of superflags in W and that each generic superflag defines a solution of the Bethe ansatz equation. We also give the analogous statements for the quasi-periodic supersymmetric spin chains.<br>
|
99 |
Aspects of Non-Perturbative QCD for Hadron PhysicsBhagwat, Mandar S. 18 April 2005 (has links)
No description available.
|
100 |
Résultats exacts sur les modèles de boucles en deux dimensionsIkhlef, Yacine 27 September 2007 (has links) (PDF)
En utilisant les méthodes analytiques et numériques de la Physique Statistique bidimensionnelle (matrice de transfert, invariance conforme, gaz de Coulomb, équations de Yang-Baxter, Ansatz de Bethe, Monte-Carlo), nous abordons des problèmes qui n'entrent pas dans le cadre du modèle gaussien compact : modèle de Potts antiferromagnétique critique, modèle de boucles de Brauer. Ces modèles présentent des propriétés critiques originales, comme l'apparition de degrés de liberté non-compacts. Ces propriétés apparaissent quand on introduit, dans le modèle de boucles sur réseau, des intersections entre les boucles ou une alternance des poids de Boltzmann entre les sous-réseaux. Dans le cas du modèle de Potts antiferromagnétique, nous développons l'étude de la structure issue des équations de Yang-Baxter, et nous identifions une famille d'états de Bethe associés aux degrés de liberté non-compacts. Les calculs numériques sur de grandes tailles de système permettent de conjecturer la loi d'échelle du rayon de compactification effectif. Dans le cas du modèle de Brauer avec une fugacité de boucles n = 0, nous proposons un modèle de chemin d'échappement invariant d'échelle, et nous déterminons ses propriétés critiques par des méthodes numériques. En tant qu'observable (non-locale), le chemin d'échappement caractérise les points communs et différences avec les marches aléatoires.
|
Page generated in 0.0319 seconds