61 |
Síntese de compostos tipo hidrotalcita Ni/Mg/Al e Co/Mg/Al como precursores na formação de óxidos mistos e suas aplicações na reforma a vapor do acetol / Synthesis of Ni / Mg / Al and Co / Mg / Al hydrotalcite compounds as precursors in the formation of mixed oxides and their applications in the reforming of acetolGeorgetti, Fernando 25 April 2018 (has links)
A utilização de combustíveis fósseis é um problema a ser contornado visto que sua utilização gera problemas ambientais tais como o aumento do efeito estufa. Como combustível alternativo, ganha destaque o hidrogênio, o qual pode ser utilizado em células à combustível, gerando energia e apenas água como sub-produto. Uma forma de produção de hidrogênio é a partir da reforma a vapor do bio-óleo, proveniente da pirólise da biomassa. Devido à complexidade do bio-óleo, compostos modelo, como o ácido acético e acetol, vêm sendo estudados nos sistemas reacionais. Neste trabalho, estudou-se a reação de reforma a vapor do acetol para obtenção de H2 utilizando-se catalisadores baseados em Ni0 e Co0 derivados de hidróxidos duplos lamelares (HDLs), também chamados de compostos do tipo hidrotalcita. Os HDLs foram sintetizados pelo método de coprecipitação. Análise de difração de raios X (DRX) mostraram a formação dos HDLs e os diferentes teores de Al3+ nas lamelas foram observados através da técnica de espectroscopia na região do infravermelho. Espectroscopia por energia dispersiva de raios X (EDX) indicou que os catalisadores derivados de HDLs calcinados a 750°C possuem quantidades reais de metais ativos próximas aos valores nominais e que possuem diferentes teores de Mg2+. As análises de TPR-H2 mostraram a redução das fases óxidas presentes em altas temperaturas, devido a formação de solução sólida MgNiO2, MgCoO2 e fases espinélios. Nos ensaios catalíticos, catalisadores baseados em Ni0 se mostraram mais seletivos para H2 enquanto que os baseados em Co0 foram mais seletivos para o eteno e compostos líquidos. Ainda, observou-se a tendência de maior seletividade para H2 quanto maior o teor de Mg2+ no catalisador. Para os catalisadores derivados de HDL´s calcinados a 600°C, as caracterizações mostraram resultados semelhantes aos calcinados a 750°C, evidenciando a facilidade de formação das soluções sólida para estes compostos do tipo HDL´s. Para estas amostras também ficou evidenciado que maiores teores de Mg2+ nos catalisadores facilitam a conversão em H2 na reforma a vapor do acetol, o que pode estar associado a propriedade basicidade, que foi quantificada através de termo-dessorção programada de CO2 (TPD-CO2). / The use of fossil fuels is a problem to be circumvented, since its use generates environmental problems such as the increase of the greenhouse effect. As an alternative fuel, hydrogen is highlighted, which can be used in fuel cells, generating energy without the emission of polluting gases. One form of hydrogen production is from the steam reforming of the bio-oil, from the pyrolysis of the biomass. Due to the complexity of the bio-oil, model compounds, present in greater quantity, such as acetic acid and acetol have been studied individually. In this work, the reaction of steam reforming of the acetol to obtain H2 was carried out using catalysts based on Ni0 and Co0 derived from lamellar double hydroxides (HDLs), also called hydrotalcite like compounds. HDLs were synthesized by the coprecipitation method. X-ray diffraction (XRD) analysis showed the formation of HDLs and different Al3+ contents in the lamellae, as well as the Fourier transform infrared spectroscopy technique. X-ray dispersive energy spectroscopy (EDS) has indicated that the catalysts derived from HDLs calcined at 750°C have real amounts of active metals close to the nominal values and that have different levels of Mg2 + and Al3+. The TPR-H2 analysis showed that the reduction of Ni2+ and Co2+ occurs at high temperatures due to the formation of solid solutions MgNiO2, MgCoO2, and spinel phases. In the catalytic tests, Ni2+ based catalysts were more selective for H2, while Co0 based catalysts were more selective for liquid compounds such as acetone. Also, the tendency of greater selectivity for H2 was observed when the Mg2+ content in the catalyst was higher. For the catalysts derived from HDL\'s calcined at 600°C, the characterizations showed results similar to those calcined at 750°C, evidencing the difficult reducibility of oxides derived from HDL\'s. For these catalysts, it was also observed that higher Mg2+ contents facilitate the conversion to H2 in the steam reforming of the acetol, which may be associated with the basicity of the material, which was quantified by means of programmed thermodesorption of CO2 (TPD-CO2).
|
62 |
Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy ProductionHa, Mi-Ae 1979- 14 March 2013 (has links)
Rising world petroleum prices and global warming are contributing to interest in renewable energy sources, including energy produced from agricultural crops and waste sources of biomass. A network of small mobile pyrolysis units may be the most cost effective system to convert biomass from agricultural feedstocks to bio-crude oil. Mobile pyrolysis units could be moved to the feedstock production fields thereby greatly simplifying feedstock logistics. In the North Central (NC) region of the U.S., possible feedstocks are corn stover, energy sorghum, and switchgrass. A grid-based Geographic Information System (GIS) program was developed to identify optimum locations for mobile pyrolysis units based on feedstock availability in the NC region. Model builder was used to automate the GIS analysis. Network analysis was used to find the best route to move the mobile pyrolysis units to new locations and to identify the closest refinery to transport the bio-crude oil.
To produce bioenergy from feedstocks, the removal of biomass from agricultural fields will impact the hydrology and sediment transport in rural watersheds. Therefore, the hydrologic effects of removing corn stover from corn production fields in Illinois (IL) were evaluated using the Soil Water Assessment Tool (SWAT). The SWAT model was calibrated and validated for streamflow and sediment yields in the Spoon River basin in IL using observed data from the USGS. The modeling results indicated that as residue removal rates increased, evapotranspiration (ET) and sediment yields increased, while streamflows decreased.
Biochar is a carbon-based byproduct of pyrolysis. To ensure that the mobile pyrolysis system is economically and environmental sustainable, the biochar must be land applied to the feedstock production fields as a soil amendment. An assessment of hydrologic changes due to the land application of biochar was made using the SWAT model in the Spoon River basin and changes in soil properties due to incorporation of biochar into the soil obtained from laboratory experiments by Cook et al. (2012). Model simulations indicated that a biochar application rate of 128 Mg/ha decreased water yield, and sediment yield in surface runoff and increased soil moisture and ET.
|
63 |
Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl BurnerTzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
|
64 |
Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl BurnerTzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
|
65 |
Evaporation Characteristics of a Liquid Bio-Fuel from Chicken LitterTolonen, Erik 06 September 2013 (has links)
Alternative fuels are becoming more important as fossil fuels become more expensive. This thesis describes the production and properties of a bio-oil produced from waste biomass, in this case chicken litter. A higher quality fuel was produced through thermal and chemical upgrading of the raw bio-oil; this fuel is similar in some respects to fossil fuels, as it has a high hydrocarbon content and energy density comparable to gasoline.
Combustion of liquid fuels commonly occurs in clouds of droplets, and studying the evaporation of single liquid drops provides information on the evaporation characteristics of the fuel as a whole. Droplet evaporation tests on the chicken litter fuel were carried out using the suspended droplet/moving furnace technique. For some tests, a fine wire thermocouple was used as the droplet suspension in order to measure the distillation characteristics of the fuel. An existing computational model based on continuous ther- modynamics was used to model the evaporation of the fuel. The modelled composition of the fuel was based on an existing pyrolysis field ionization mass spectrometry (Py-FIMS) analysis and used five major groups of compounds. The properties for these groups re- quired for the model were determined using several prediction methods and the values then used in a numerical model.
Model predictions of droplet temperatures calculated for the fuel showed good agree- ment with the measured temperatures, indicating that the modelled composition gave an accurate picture of the fuel. Droplet evaporation histories also agreed well with mea- surements, but were not capable of reproducing the observed disruption of the droplet produced by internal boiling at higher temperatures, nor the formation of a solid residue at the end of evaporation. Further enhancements to the model should allow the prediction of residue formation.Model predictions of droplet temperatures calculated for the fuel showed good agree- ment with the measured temperatures, indicating that the modelled composition gave an accurate picture of the fuel. Droplet evaporation histories also agreed well with mea- surements, but were not capable of reproducing the observed disruption of the droplet produced by internal boiling at higher temperatures, nor the formation of a solid residue at the end of evaporation. Further enhancements to the model should allow the prediction of residue formation.
|
66 |
Eficiência do uso da terra na associação de culturas para produção de Bio-Óleo / Efficiency of land use in the crop association to produce Bio-OilBasílio, Flávio de Oliveira 31 August 2010 (has links)
Made available in DSpace on 2016-08-31T13:15:09Z (GMT). No. of bitstreams: 1
FlavioOB_DISSERT.pdf: 4739567 bytes, checksum: ea43077658ff7af553d7dc60776ec1e9 (MD5)
Previous issue date: 2010-08-31 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / A field experiment was carried out at Morrinhos, municipality of Nísia Floresta, RN with the
goal of developing a management system aiming to produce oil for biodiesel. In this system,
hybrid coconut (Cocos nucifera L.) is the main crop, and is associated with sunflower, castor
bean, peanut, soybean and jatropha cultivation in fertilized. The experimental design was
randomized blocks with six treatments in a consortium (coconut and sunflower hybrids - C1,
hybrid coconut and castor oil - C2, hybrid coconut and peanuts - C3, hybrid coconut and soy -
C4, hybrid coconut and jatropha - C5 and jatropha and sunflower - C6) and six in monocrop
(S1 hybrid coconut, sunflower - S2, castor - S3, peanuts - S4, soy - and jatropha S5 - S6) with
three replications. Plots of 768 sqm with 12 coconut palm trees spaced 8.0 x 8.0 m square in
the intercropping systems. Sole crops and intercropped with jatropha and sunflower were
planted in an area of 240 m² per plot and the trial had a floor area of 1.602 ha. The variables
were analyzed: grain yield and oil content by the production system, also estimating the
efficiency of land use (EUT), corresponding to the 1st year of conducting the experiment and
the 12 th year of cultivation of coconut, quantifying the production of bio-oil systems studied.
There was no significant difference in total production of bio-oil treatments between the
consortium that promotes the association of oil without causing damage to coconut palms.
There were significant differences in total production of bio-oil systems in monoculture. The
highest yields were given by peanut, rapeseed and sunflower did not differ. The minors were
of jatropha in the first year. The intercropping system with higher efficiency of land use were:
coconut x sunflower and coconut x soybeans emerging as the greatest potential to increase the
production of bio-oil. / Um experimento de campo foi desenvolvido na Fazenda Morrinhos, município de Nísia
Floresta, RN com o objetivo de desenvolver um sistema de manejo para oleaginosas visando a
produção de biodiesel. Neste sistema, o coqueiro híbrido (Cocos nucifera L.) é a cultura
principal, sendo associada com girassol, mamona, amendoim, pinhão manso e soja sob cultivo
fertirrigado. O delineamento experimental foi o de blocos casualizados com seis tratamentos
em consórcio (coqueiro híbrido e girassol C1, coqueiro hibrido e mamona C2, coqueiro
hibrido e amendoim C3, coqueiro hibrido e soja C4, coqueiro hibrido e pinhão manso C5
e pinhão e girassol C6) e seis em cultivo solteiro (coqueiro hibrido S1, girassol S2,
mamona S3, amendoim S4, soja S5 e pinhão manso S6) com três repetições. Foram
utilizadas parcelas de 768 m² com 12 plantas de coqueiros espaçados de 8,0 x 8,0m em
quadrado, nos sistemas consorciados. Os cultivos solteiros e o consorcio com pinhão manso e
girassol foram plantados em uma área de 240 m² por parcela e o ensaio teve uma área útil de
1,602 ha. As variáveis analisadas foram o rendimento de grãos e teor de óleo por sistema de
produção, estimando também a eficiência do uso da terra (EUT), correspondente ao 1° ano de
condução do experimento e ao 12°ano de cultivo do coqueiro, quantificando a produção de
bio-óleo dos sistemas estudados. Não houve diferença significativa na produção total de bioóleo
entre tratamentos consorciados o que favorece a associação das oleaginosas sem causar
prejuízos à cultura do coqueiro. Houve diferenças significativas na produção total de bio-óleo
nos sistemas em mono cultivo. Os maiores rendimentos foram proporcionados pelo
amendoim, mamona e girassol que não diferiram entre si. Os menores foram do pinhão manso
de primeiro ano. Os sistemas de consorcio que apresentaram maior eficiência do uso da terra
foram: coco x girassol e coco x soja despontando como de maior potencial para o incremento
da produção de bio-óleo.
|
67 |
Estudo do processamento termoquímico de biomassas com micro-ondas : pirólise rápida de biomassas residuais e microalgasBorges, Fernanda Cabral January 2014 (has links)
Alguns conceitos de biorrefinarias estão baseados em processos termoquímicos, sendo a pirólise rápida um dos mais promissores desses processos. Os produtos da pirólise rápida são: o bio-óleo, gases combustíveis e carvão, sendo a distribuição típica de 50:30:20 em base mássica. O bio-óleo é o principal produto, e pode ser diretamente usado como combustível, ou pós-processados para a obtenção de químicos de maior valor agregado. O aquecimento com micro-ondas, amplamente empregado na química verde, começa a ser estudado como uma alternativa de aquecimento. Entretanto os rendimentos alcançados em bio-óleo são inferiores aos obtidos pela pirólise rápida convencional, devido essencialmente às suas baixas taxas de aquecimento. Para resolver esse problema esta tese está propondo a utilização de absorvedores de micro-ondas para auxiliar no processo de aquecimento, e também permitir a alimentação semi-contínua e contínua de biomassa ao processo. O uso de leito fluidizado e catalisadores pode ser integrado a esse conceito. As condições de pirólise-rápida são alcançadas devido ao aumento da taxa de aquecimento da biomassa, que passa a ser aquecida de forma híbrida pelo mecanismo de condução de calor através das partículas de absorvedores de micro-ondas aquecidos, e diretamente através do aquecimento dielétrico por micro-ondas. O aumento das taxas de aquecimento resulta em maiores velocidades de reação, possibilitando um aumento de rendimento em bio-óleo. Esse conceito foi testado experimentalmente em uma unidade em escala de bancada para o processamento de biomassas residuais e microalgas, usando carbeto de silício (SiC) como absorvedor de micro-ondas. Foram verificadas elevadas taxas de aquecimento, sendo a biomassa aquecida e os voláteis removidos do reator quase instantaneamente. Foram obtidos 65% e 64% em rendimentos de bio-óleo para a serragem de madeira e farelo de sabugo de milho, respectivamente. O mesmo sistema foi utilizado para testar a pirólise rápida catalítica. Microalgas foram processadas com e sem a presença de HZSM-5. Rendimentos de 57% e 59% em bio-óleo foram alcançados para Chlorella sp. e Nannochloropsis, respectivamente. Verificaram-se maiores rendimentos comparados com a literatura. Esses resultados indicam que o conceito de pirólise rápida com aquecimento por micro-ondas é tecnicamente viável, necessitando de estudos complementares para evidenciar a sua viabilidade econômica. / Some concepts of biorefineries are based on thermochemical processes and fast pyrolysis is one of the most promising of these processes. The fast pyrolysis products are biooil, fuel gas and char, with typical distribution of 50:30:20 in weight basis. The bio-oil is the main product, and it can be directly used as fuel, or post-processed in order to obtain higher value added chemicals. The microwave heating, widely used in green chemistry, begins to be studied as an alternative heating. However the yields achieved in bio-oil are lower than those obtained by the conventional fast pyrolysis, mainly due to its low heating rates. To solve this problem this thesis is proposing the use of microwave absorbers to improve the heating process, and that also allow semi-continuous and continuous feeding of biomass to the process. The use of fluidized bed and catalysts can be integrated into this concept. The fast pyrolysis conditions are achieved due to increased heating rate of biomass, which becomes heated in a hybrid way by heat conduction mechanism from heated microwave absorbers, and directly through the dielectric heating from microwaves. The increase in heating rates results in higher reaction rates, allowing higher yields of bio-oil. This concept has been experimentally tested in a bench scale unit for processing waste biomass and microalgae using silicon carbide (SiC) as a microwave absorber. High heating rates were observed, the heated biomass and the volatiles were removed from the reactor almost instantaneously. A maximum bio-oil yield of 65% and 64% was obtained for wood sawdust and corn stover, respectively. The same system was used to test the catalytic fast pyrolysis. Microalgae were processed with and without the presence of HZSM-5. Yields of 57% and 59% of bio-oil were achieved for Chlorella sp. and Nannochloropsis, respectively. Higher yields of bio-oil were observed compared to the literature. These results suggest that the concept of fast microwave-assisted pyrolysis is technically feasible, requiring further studies to demonstrate its economic viability.
|
68 |
Desenvolvimento de catalisadores a base de HZSM-5 modificada por metais para o processo de pirólise rápidaEspindola, Juliana da Silveira January 2014 (has links)
A pirólise rápida é uma tecnologia promissora para a conversão de biomassa. O principal produto desse processo é o bio-óleo, um líquido com elevada densidade energética, com potencialidades para a aplicação na produção de combustíveis e compostos renováveis. No entanto, existem ainda algumas barreiras para a sua utilização direta e um pós-processamento pode ser necessário. O uso de catalisadores no pós-processamento de bio-óleo, ou durante o processo de pirólise rápida, configura-se como alternativa para a produção direta de combustíveis e de produtos químicos com valor agregado, pois o processamento catalítico, além de elevar o rendimento, melhora a qualidade do bio-óleo produzido. O presente trabalho apresenta uma contribuição para o desenvolvimento do processo de pirólise rápida como uma rota viável de processamento de biomassas residuais, visando a obtenção de bio-óleo com propriedades adequadas a sua aplicação direta como combustível ou ainda para o fracionamento em produtos de interesse na indústria química. Este estudo compreende a síntese e avaliação do desempenho de diferentes catalisadores para o processo de pirólise rápida, bem como o projeto de uma unidade flexível para o processamento de biomassas através do processo de pirólise rápida catalítica. Catalisadores foram sintetizados através de diferentes metodologias e a sua atividade para a pirólise rápida foi avaliada através de ensaios utilizando moléculas representativas dos produtos da pirólise. O emprego de catalisadores a base de HZSM-5 modificada por metais permitiu, em alguns casos, o aumento na eficiência da reação de pirólise. A incorporação de zinco, gálio e nióbio resultou em aumento da atividade, elevando a produção de compostos aromáticos a partir da conversão catalítica de furanos. Os catalisadores de zinco apresentaram melhores resultados, possivelmente devido à maior incorporação do zinco nos sítios ácidos da zeólita, produzindo novos sítios capazes de elevar a taxa da reação de aromatização. Uma avaliação das alterações superficiais dos catalisadores permitiu correlacionar algumas propriedades do catalisador com sua atividade para a pirólise rápida e distribuição de produtos, permitindo também, em alguns casos, a identificação de possíveis rotas reacionais. As variáveis de processo, tais como temperatura de reação, velocidade espacial e presença de diferentes teores de água, simulando teores de água presentes em biomassas típicas, foram avaliadas. Verificou-se a importância da co-alimentação de água nos ensaios padrão para verificação da atividade de catalisadores para aplicação em pirólise rápida de biomassa. A água produz uma nova rota reacional na presença de HZSM-5 (reação de hidrólise), o que altera significativamente a distribuição de produtos da pirólise. / Fast pyrolysis is a promising technology for converting biomass into liquid fuels and chemicals. The main product of this process is bio-oil, a liquid with high energy density, which enables its use as a renewable source for the production of energy, fuels and chemicals. However, there are some barriers to its direct use as a fuel, and a post-processing may be needed. The use of catalysts for bio-oil upgrading or combined with the fast pyrolysis process is an alternative to the direct production of fuels, since the catalyst improves the quality and stability of bio-oil, as well as improving the pyrolysis yield. This work presents a contribution to the development of the fast pyrolysis process as a viable processing route for biomass conversion into fuels and chemicals. This study involves the synthesis and evaluation of different catalysts for the fast pyrolysis process, as well as the design of a flexible unit for the processing of biomass by catalytic fast pyrolysis. Catalysts were synthesized using different methods and their activity was evaluated by using furans as representative compounds of pyrolysis-derived products. Studies were conducted to identify catalysts with desirable properties for biofuel production. The incorporation of metals on HZSM-5 resulted in a promoting effect on catalytic conversion of furans. Zinc, niobium and gallium showed better activity than unmodified HZSM-5, increasing the aromatics production. Zinc catalysts presented the best result among samples, possibly due to a greater incorporation of zinc in the zeolite acid sites, producing new sites that are capable of increasing the rate of the aromatization reaction. An evaluation of the catalyst surface changes allowed the determination of the correlation between certain catalyst properties and their activity. It also allowed the identification of possible reaction pathways. Process variables such as reaction temperature, space velocity and water vapour pressure were also evaluated. The importance of water co-feeding in standard tests for catalysts activity evaluation was studied. Water produces a new reaction pathway in the presence of HZSM-5 (hydrolysis reaction), which significantly changes the distribution of pyrolysis products.
|
69 |
Estudo de pirólise catalítica de biomassa em escala piloto para melhoramento da qualidade do bio-óleo / Estudo de pirólise catalítica de biomassa em escala piloto para melhoramento da qualidade do bio-óleo / Study on catalytic pyrolysis of biomass in a pilot scale to improve the quality of bio-oil / Study on catalytic pyrolysis of biomass in a pilot scale to improve the quality of bio-oilFabio Leal Mendes 29 September 2011 (has links)
A pirólise rápida é um processo para conversão térmica de uma biomassa sólida em altos rendimentos de um produto líquido chamado de bio-óleo. Uma das alternativas para geração de um bio-óleo com menor teor de oxigênio é uso de catalisadores nos reatores de pirólise, ao invés de um inerte, num processo chamado de pirólise catalítica. O objetivo deste trabalho foi testar catalisadores comerciais, um ácido e outro básico, em uma unidade piloto de leito fluidizado circulante. O catalisador ácido utilizado foi o Ecat, proveniente de uma unidade industrial de craqueamento catalítico fluido (FCC), e como catalisador básico foi utilizado uma hidrotalcita. Os resultados foram comparados com testes utilizando um material inerte, no caso uma sílica. Uma unidade piloto de FCC do CENPES foi adaptada para realizar os testes de pirólise catalítica. Após fase de modificação e testes de condicionamento, foi comprovada a viabilidade na utilização da unidade piloto adaptada. Contudo, devido a limitações operacionais, maiores tempos de residência tiveram que ser aplicados no reator, configurando o processo como pirólise intermediária. Foram então realizados testes com os três materiais nas temperaturas de 450C e 550C. Os resultados mostraram que o aumento do tempo de residência dos vapores de pirólise teve um impacto significativo nos rendimentos dos produtos quando comparada com o perfil encontrado na literatura para pirólise rápida, pois devido ao incremento das reações secundárias, produziu maiores rendimentos de coque e água, e menores rendimentos de bio-óleo. O Ecat e a hidrotalcita se apresentaram mais efetivos em termos de desoxigenação. O primeiro apresentou maiores taxas de desoxigenação via desidratação e a hidrotalcita apresentou maior capacidade para descarboxilação. Contudo, o uso de Ecat e hidrotalcita não se mostrou adequado para uso em reatores de pirólise intermediária, pois acentuou ainda mais as reações secundárias, gerando um produto com alto teor de água e baixo teor de compostos orgânicos no bio-óleo, além de produzirem mais coque. À temperatura de 450C estes efeitos foram mais pronunciados. Em termos de caracterização química, a condição de pirólise intermediária apontou para a produção de bio-óleos com perfil fenólico, sendo a sílica o que proporcionou os melhores rendimentos, principalmente a temperatura de 550C, sendo superiores aos encontrados na literatura. Analisando as composições dos bio-óleos sob a ótica da produção de biocombustíveis, nenhum dos materiais testados apresentou rendimentos consideráveis em hidrocarbonetos. De maneira geral, a sílica foi o que proporcionou os melhores resultados em termos de rendimento e qualidade do bio-óleo. Sua menor área superficial e sua característica de inerte se mostraram mais adequados para o processo de pirólise intermediária, onde a contribuição das reações secundárias em fase gasosa é elevada em função do tempo de residência no reator / The fast pyrolysis is a thermal process that converts, at high yield, solid biomass into a liquid product called bio-oil. One alternative for the generation of bio oil with lower oxygen content is the use of catalysts in the pyrolysis reactor, rather than an inert, a process called catalytic pyrolysis. The objective of this study was to test two such commercial catalysts, one acid and the other basic, in a pilot plant with a circulating fluidized bed reactor. The acid catalyst used was the Ecat, which is a catalyst from an industrial fluid catalytic cracking plant (FCC), and the base catalyst used was hydrotalcite. The results were compared with tests using an inert material, a type of silica. A FCC pilot plant at CENPES was chosen and adapted to perform the catalytic pyrolysis tests. After the modification phase, the feasibility of using the adapted pilot unit was verified. However, due to operational limitations, higher reactor residence times had to be adopted in the reactor, leading to the re-classification of the pyrolysis process as intermediate in terms of this parameter. Tests were then conducted with the three materials at temperatures of 450C and 550C. The results showed that increasing the residence time of pyrolysis vapors had a significant impact on products yields, when compared with the profile found in the literature for fast pyrolysis, since the increase in secondary reactions produced higher yields of coke and water, and lower yields of bio-oil. The Ecat and hydrotalcite showed to be more effective in terms of deoxygenation. The Ecat presented higher deoxygenation rates by dehydration and the hydrotalcite showed greater capacity for decarboxylation. However, the use of Ecat and hydrotalcite was not suitable for intermediate pyrolysis reactors, since both materials increase secondary reactions, generating a product with high water content and low content of organic compounds in bio-oil and produce more coke. These results were more pronounced at the lower temperature tested (450C). In terms of chemical characterization, the intermediate pyrolysis conditions produced bio-oils with phenolic profile. Among the tested materials, silica presented better phenolic yields, especially at higher temperatures (550C). These results are also superior to those found in current literature. Analyzing the composition of bio-oils from the standpoint of biofuel production, none of the materials tested showed considerable hydrocarbons yields. In general, silica had the best results in terms of yield and quality of bio-oil. Being an inert material, silica was more suitable for intermediate pyrolysis process, where the contribution of secondary reactions in the gas phase is high due to the residence time in reactor
|
70 |
Estudo de pirólise catalítica de biomassa em escala piloto para melhoramento da qualidade do bio-óleo / Estudo de pirólise catalítica de biomassa em escala piloto para melhoramento da qualidade do bio-óleo / Study on catalytic pyrolysis of biomass in a pilot scale to improve the quality of bio-oil / Study on catalytic pyrolysis of biomass in a pilot scale to improve the quality of bio-oilFabio Leal Mendes 29 September 2011 (has links)
A pirólise rápida é um processo para conversão térmica de uma biomassa sólida em altos rendimentos de um produto líquido chamado de bio-óleo. Uma das alternativas para geração de um bio-óleo com menor teor de oxigênio é uso de catalisadores nos reatores de pirólise, ao invés de um inerte, num processo chamado de pirólise catalítica. O objetivo deste trabalho foi testar catalisadores comerciais, um ácido e outro básico, em uma unidade piloto de leito fluidizado circulante. O catalisador ácido utilizado foi o Ecat, proveniente de uma unidade industrial de craqueamento catalítico fluido (FCC), e como catalisador básico foi utilizado uma hidrotalcita. Os resultados foram comparados com testes utilizando um material inerte, no caso uma sílica. Uma unidade piloto de FCC do CENPES foi adaptada para realizar os testes de pirólise catalítica. Após fase de modificação e testes de condicionamento, foi comprovada a viabilidade na utilização da unidade piloto adaptada. Contudo, devido a limitações operacionais, maiores tempos de residência tiveram que ser aplicados no reator, configurando o processo como pirólise intermediária. Foram então realizados testes com os três materiais nas temperaturas de 450C e 550C. Os resultados mostraram que o aumento do tempo de residência dos vapores de pirólise teve um impacto significativo nos rendimentos dos produtos quando comparada com o perfil encontrado na literatura para pirólise rápida, pois devido ao incremento das reações secundárias, produziu maiores rendimentos de coque e água, e menores rendimentos de bio-óleo. O Ecat e a hidrotalcita se apresentaram mais efetivos em termos de desoxigenação. O primeiro apresentou maiores taxas de desoxigenação via desidratação e a hidrotalcita apresentou maior capacidade para descarboxilação. Contudo, o uso de Ecat e hidrotalcita não se mostrou adequado para uso em reatores de pirólise intermediária, pois acentuou ainda mais as reações secundárias, gerando um produto com alto teor de água e baixo teor de compostos orgânicos no bio-óleo, além de produzirem mais coque. À temperatura de 450C estes efeitos foram mais pronunciados. Em termos de caracterização química, a condição de pirólise intermediária apontou para a produção de bio-óleos com perfil fenólico, sendo a sílica o que proporcionou os melhores rendimentos, principalmente a temperatura de 550C, sendo superiores aos encontrados na literatura. Analisando as composições dos bio-óleos sob a ótica da produção de biocombustíveis, nenhum dos materiais testados apresentou rendimentos consideráveis em hidrocarbonetos. De maneira geral, a sílica foi o que proporcionou os melhores resultados em termos de rendimento e qualidade do bio-óleo. Sua menor área superficial e sua característica de inerte se mostraram mais adequados para o processo de pirólise intermediária, onde a contribuição das reações secundárias em fase gasosa é elevada em função do tempo de residência no reator / The fast pyrolysis is a thermal process that converts, at high yield, solid biomass into a liquid product called bio-oil. One alternative for the generation of bio oil with lower oxygen content is the use of catalysts in the pyrolysis reactor, rather than an inert, a process called catalytic pyrolysis. The objective of this study was to test two such commercial catalysts, one acid and the other basic, in a pilot plant with a circulating fluidized bed reactor. The acid catalyst used was the Ecat, which is a catalyst from an industrial fluid catalytic cracking plant (FCC), and the base catalyst used was hydrotalcite. The results were compared with tests using an inert material, a type of silica. A FCC pilot plant at CENPES was chosen and adapted to perform the catalytic pyrolysis tests. After the modification phase, the feasibility of using the adapted pilot unit was verified. However, due to operational limitations, higher reactor residence times had to be adopted in the reactor, leading to the re-classification of the pyrolysis process as intermediate in terms of this parameter. Tests were then conducted with the three materials at temperatures of 450C and 550C. The results showed that increasing the residence time of pyrolysis vapors had a significant impact on products yields, when compared with the profile found in the literature for fast pyrolysis, since the increase in secondary reactions produced higher yields of coke and water, and lower yields of bio-oil. The Ecat and hydrotalcite showed to be more effective in terms of deoxygenation. The Ecat presented higher deoxygenation rates by dehydration and the hydrotalcite showed greater capacity for decarboxylation. However, the use of Ecat and hydrotalcite was not suitable for intermediate pyrolysis reactors, since both materials increase secondary reactions, generating a product with high water content and low content of organic compounds in bio-oil and produce more coke. These results were more pronounced at the lower temperature tested (450C). In terms of chemical characterization, the intermediate pyrolysis conditions produced bio-oils with phenolic profile. Among the tested materials, silica presented better phenolic yields, especially at higher temperatures (550C). These results are also superior to those found in current literature. Analyzing the composition of bio-oils from the standpoint of biofuel production, none of the materials tested showed considerable hydrocarbons yields. In general, silica had the best results in terms of yield and quality of bio-oil. Being an inert material, silica was more suitable for intermediate pyrolysis process, where the contribution of secondary reactions in the gas phase is high due to the residence time in reactor
|
Page generated in 0.0312 seconds