• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 446
  • 236
  • 142
  • Tagged with
  • 961
  • 961
  • 796
  • 793
  • 695
  • 695
  • 132
  • 127
  • 117
  • 88
  • 84
  • 76
  • 73
  • 70
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Un rôle pour les protéines de la famille Whirly dans le maintien de la stabilité du génome des organelles chez Arabidopsis thaliana

Maréchal, Alexandre 07 1900 (has links)
Le maintien de la stabilité du génome est essentiel pour la propagation de l’information génétique et pour la croissance et la survie des cellules. Tous les organismes possèdent des systèmes de prévention des dommages et des réarrangements de l’ADN et nos connaissances sur ces processus découlent principalement de l’étude des génomes bactériens et nucléaires. Comparativement peu de choses sont connues sur les systèmes de protection des génomes d’organelles. Cette étude révèle l’importance des protéines liant l’ADN simple-brin de la famille Whirly dans le maintien de la stabilité du génome des organelles de plantes. Nous rapportons que les Whirlies sont requis pour la stabilité du génome plastidique chez Arabidopsis thaliana et Zea mays. L’absence des Whirlies plastidiques favorise une accumulation de molécules rearrangées produites par recombinaison non-homologue médiée par des régions de microhomologie. Ce mécanisme est similaire au “microhomology-mediated break-induced replication” (MMBIR) retrouvé chez les bactéries, la levure et l’humain. Nous montrons également que les organelles de plantes peuvent réparer les bris double-brin en utilisant une voie semblable au MMBIR. La délétion de différents membres de la famille Whirly entraîne une accumulation importante de réarrangements dans le génome des organelles suite à l’induction de bris double-brin. Ces résultats indiquent que les Whirlies sont aussi importants pour la réparation fidèle des génomes d’organelles. En se basant sur des données biologiques et structurales, nous proposons un modèle où les Whirlies modulent la disponibilité de l’ADN simple-brin, régulant ainsi le choix des voies de réparation et permettant le maintien de la stabilité du génome des organelles. Les divers aspects de ce modèle seront testés au cours d’expériences futures ce qui mènera à une meilleure compréhension du maintien de la stabilité du génome des organelles. / Maintenance of genome stability is essential for the accurate propagation of genetic information and for cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively little is known about how organelle genomes maintain a stable structure. This study implicates the single-stranded nucleic acid-binding proteins of the Whirly family in the maintenance of plant organelle genome stability. Here we report that the plastid-localized single-stranded DNA binding proteins of the Whirly family are required for plastid genome stability in Arabidopsis thaliana and Zea mays. Absence of plastidial Whirlies favors the accumulation of rearranged molecules that arise through a non-homologous recombination mechanism mediated by regions of microhomology. This mechanism is similar to the microhomology-mediated break-induced replication (MMBIR) described in bacteria, yeast and humans. Additionally we show that plant organelles can repair double-strand breaks using a MMBIR-like pathway. Plants lacking Whirly proteins accumulate elevated levels of microhomology-mediated DNA rearrangements upon double-strand break induction, indicating that Whirlies also contribute to the accurate repair of plant organelle genomes. Using biological and structural data, we propose a working model in which Whirlies modulate the access of repair proteins and complementary DNA to single-stranded regions, thereby regulating the choice of repair pathways and maintaining plant organelle genome stability. The various aspects of this model will be tested in future experiments which should allow a better understanding of the mechanisms underlying genome stability in plant organelles.
612

Identification des réseaux transcriptionnnels de résistance aux antifongiques chez Candida albicans

Znaidi, Sadri 10 1900 (has links)
Plusieurs souches cliniques de Candida albicans résistantes aux médicaments antifongiques azolés surexpriment des gènes encodant des effecteurs de la résistance appartenant à deux classes fonctionnelles : i) des transporteurs expulsant les azoles, CDR1, CDR2 et MDR1 et ii) la cible des azoles 14-lanostérol déméthylase encodée par ERG11. La surexpression de ces gènes est due à la sélection de mutations activatrices dans des facteurs de transcription à doigts de zinc de la famille zinc cluster (Zn2Cys6) qui contrôlent leur expression : Tac1p (Transcriptional activator of CDR genes 1) contrôlant l’expression de CDR1 et CDR2, Mrr1p (Multidrug resistance regulator 1), régulant celle de MDR1 et Upc2p (Uptake control 2), contrôlant celle d’ERG11. Un autre effecteur de la résistance clinique aux azoles est PDR16, encodant une transférase de phospholipides, dont la surexpression accompagne souvent celle de CDR1 et CDR2, suggérant que les trois gènes appartiennent au même régulon, potentiellement celui de Tac1p. De plus, la régulation transcriptionnelle du gène MDR1 ne dépend pas seulement de Mrr1p, mais aussi du facteur de transcription de la famille basic-leucine zipper Cap1p (Candida activator protein 1), un régulateur majeur de la réponse au stress oxydatif chez C. albicans qui, lorsque muté, induit une surexpression constitutive de MDR1 conférant la résistance aux azoles. Ces observations suggèrent qu’un réseau de régulation transcriptionnelle complexe contrôle le processus de résistance aux antifongiques azolés chez C. albicans. L’objectif de mon projet au doctorat était d’identifier les cibles transcriptionnelles directes des facteurs de transcription Tac1p, Upc2p et Cap1p, en me servant d’approches génétiques et de génomique fonctionnelle, afin de i) caractériser leur réseau transcriptionnel et les modules transcriptionnels qui sont sous leur contrôle direct, et ii) d’inférer leurs fonctions biologiques et ainsi mieux comprendre leur rôle dans la résistance aux azoles. Dans un premier volet, j’ai démontré, par des expériences de génétique, que Tac1p contrôle non seulement la surexpression de CDR1 et CDR2 mais aussi celle de PDR16. Mes résultats ont identifié une nouvelle mutation activatrice de Tac1p (N972D) et ont révélé la participation d’un autre régulateur dans le contrôle transcriptionnel de CDR1 et PDR16 dont l’identité est encore inconnue. Une combinaison d’expériences de transcriptomique et d’immunoprécipitation de la chromatine couplée à l’hybridation sur des biopuces à ADN (ChIP-chip) m’a permis d’identifier plusieurs gènes dont l’expression est contrôlée in vivo et directement par Tac1p (PDR16, CDR1, CDR2, ERG2, autres), Upc2p (ERG11, ERG2, MDR1, CDR1, autres) et Cap1p (MDR1, GCY1, GLR1, autres). Ces expériences ont révélé qu’Upc2p ne contrôle pas seulement l’expression d’ERG11, mais aussi celle de MDR1 et CDR1. Plusieurs nouvelles propriétés fonctionnelles de ces régulateurs ont été caractérisées, notamment la liaison in vivo de Tac1p aux promoteurs de ses cibles de façon constitutive et indépendamment de son état d’activation, et la liaison de Cap1p non seulement à la région du promoteur de ses cibles, mais aussi celle couvrant le cadre de lecture ouvert et le terminateur transcriptionnel putatif, suggérant une interaction physique avec la machinerie de la transcription. La caractérisation du réseau transcriptionnel a révélé une interaction fonctionnnelle entre ces différents facteurs, notamment Cap1p et Mrr1p, et a permis d’inférer des fonctions biologiques potentielles pour Tac1p (trafic et la mobilisation des lipides, réponse au stress oxydatif et osmotique) et confirmer ou proposer d’autres fonctions pour Upc2p (métabolisme des stérols) et Cap1p (réponse au stress oxydatif, métabolisme des sources d’azote, transport des phospholipides). Mes études suggèrent que la résistance aux antifongiques azolés chez C. albicans est intimement liée au métabolisme des lipides membranaires et à la réponse au stress oxydatif. / Many azole resistant Candida albicans clinical isolates overexpress genes encoding azole resistance effectors that belong to two functional categories: i) CDR1, CDR2 and MDR1, encoding azole-efflux transporters and ii) ERG11, encoding the target of azoles 14-lanosterol demethylase. The constitutive overexpression of these genes is due to activating mutations in transcription factors of the zinc cluster family (Zn2Cys6) which control their expression. Tac1p (Transcriptional activator of CDR genes 1), controlling the expression of CDR1 and CDR2, Mrr1p (Multidrug resistance regulator 1), regulating MDR1 expression and Upc2p (Uptake control 2), controlling the expression of ERG11. Another determinant of clinical azole resistance is PDR16, encoding a phospholipid transferase, whose overexpression often accompanies that of CDR1 and CDR2 in clinical isolates, suggesting that the three genes belong to the same regulon, potentially that of Tac1p. Further, MDR1 expression is not only regulated by Mrr1p, but also by the basic-leucine zipper transcription factor Cap1p (Candida activator protein 1), which controls the oxidative stress response in C. albicans and whose mutation confers azole resistance via MDR1 overexpression. These observations suggest that a complex transcriptional regulatory network controls azole resistance in C. albicans. My Ph.D. studies are aimed at identifying the direct transcriptional targets of Tac1p, Upc2p and Cap1p using genetics and functional genomics approches in order to i) characterize their regulatory network and the transcriptional modules under their direct control and ii) infer their biological functions and better understand their roles in azole resistance. In the first part of my studies, I showed that Tac1p does not only control the expression of CDR1 and CDR2, but also that of PDR16. My results also identified a new activating mutation in Tac1p (N972D) and revealed that the expression of CDR1 and PDR16 is under the control of another yet unknown regulator. The combination of transcriptomics and genome-wide location (ChIP-chip) approaches allowed me to identify the in vivo direct targets of Tac1p (PDR16, CDR1, CDR2, ERG2, others), Upc2p (ERG11, ERG2, MDR1, CDR1, others) and Cap1p (MDR1, GCY1, GLR1, others). These results also revealed that Upc2p does not only control the expression of ERG11 but also that of MDR1 and CDR1. Many new functional features of these transcription factors were found, including the constitutive binding of Tac1p to its targets under both activating and non-activating conditions, and the binding of Cap1p which extends beyond the promoter region of its target genes, to cover the open reading frame and the putative transcription termination regions, suggesting a physical interaction with the transcriptional machinery. The characterization of the transcriptional regulatory network revealed a functional interaction between these factors, notably between Cap1p and Mrr1p, and inferred potential biological functions for Tac1p (lipid mobilization and traffic, response to oxidative and osmotic stress) and confirmed or suggested other functions for Upc2p (sterol metabolism) and Cap1p (oxidative stress response, regulation of nitrogen utilization and phospholipids transport). Taken together, my results suggest that azole resistance in C. albicans is tightly linked to membrane lipid metabolism and oxidative stress response.
613

Mécanisme de leucémogénèse par les oncogènes SCL et LMO1

Tremblay, Mathieu 05 1900 (has links)
La leucémie lymphoïde représente 30% de tous les cancers chez l’enfant. SCL (« Stem cell leukemia ») et LMO1/2 (« LIM only protein ») sont les oncogènes les plus fréquemment activés dans les leucémies aiguës des cellules T chez l'enfant (T-ALL). L’expression ectopique de ces deux oncoprotéines dans le thymus de souris transgéniques induit un blocage de la différenciation des cellules T suivie d’une leucémie agressive qui reproduit la maladie humaine. Afin de définir les voies génétiques qui collaborent avec ces oncogènes pour induire des leucémies T-ALL, nous avons utilisé plusieurs approches. Par une approche de gène candidat, nous avons premièrement identifié le pTalpha, un gène crucial pour la différenciation des cellules T, comme cible directe des hétérodimères E2AHEB dans les thymocytes immatures. De plus, nous avons montré que pendant la différenciation normale des thymocytes, SCL inhibe la fonction E2A et HEB et qu’un dosage entre les protéines E2A, HEB et SCL détermine l’expression du pTalpha. Deuxièmement, par l’utilisation d’une approche globale et fonctionnelle, nous avons identifié de nouveaux gènes cibles des facteurs de transcription E2A et HEB et montré que SCL et LMO1 affectent la différenciation thymocytaire au stade préleucémique en inhibant globalement l’activité transcriptionnelle des protéines E par un mécanisme dépendant de la liaison à l’ADN. De plus, nous avons découvert que les oncogènes SCL et LMO1 sont soit incapables d’inhiber totalement l’activité suppresseur de tumeur des protéines E ou agissent par une voie d’induction de la leucémie différente de la perte de fonction des protéines E. Troisièmement, nous avons trouvé que Notch1, un gène retrouvé activé dans la majorité des leucémies T-ALL chez l’enfant, opère dans la même voie génétique que le pré-TCR pour collaborer avec les oncogènes SCL et LMO1 lors du processus de leucémogénèse. De plus, cette collaboration entre des facteurs de transcription oncogéniques et des voies de signalisation normales et importantes pour la détermination de la destinée cellulaire pourraient expliquer la transformation spécifique à un type cellulaire. Quatrièmement, nous avons trouvé que les oncogènes SCL et LMO1 sont des inducteurs de sénescence au stade préleucémique. De plus, la délétion du locus INK4A/ARF, un évènement retrouvé dans la majorité des leucémies pédiatriques T-ALL associées avec une activation de SCL, collabore aves les oncogènes SCL et LMO1 dans l’induction de la leucémie. Cette collaboration entre la perte de régulateurs de la sénescence suggère qu’un contournement de la réponse de sénescence pourrait être nécessaire à la transformation. Finalement, nous avons aussi montré que l’interaction directe entre les protéines SCL et LMO1 est critique pour l’induction de la leucémie. Ces études ont donc permis d’identifier des évènements collaborateurs, ainsi que des propriétés cellulaires affectées par les oncogènes associés avec la leucémie et de façon plus générale dans le développement du cancer. / Lymphoid leukemia represents 30% of all cancers in children. SCL (Stem cell leukemia) and LMO1/2 (LIM only protein) are the most frequently activated oncogenes in children T cell acute lymphoblastic leukemia (T-ALL). Ectopic expression of the SCL and LMO1 oncogenes in the thymus of transgenic mice causes T cell differentiation arrest during the preleukemic stage followed by development of aggressive leukemia that reproduce human disease. We therefore took several approaches to decipher the genetic pathway collaborating with these oncogenes in T-ALL induction. Using a candidate approach, we first identified the pTalpha, a gene crucial for T cell differentiation, as a direct target of E2A and HEB heterodimers in immature thymocytes. Moreover, we showed that during normal thymocyte differentiation, SCL inhibits E2A and HEB function and that a dosage between E2A, HEB and SCL normally determines pTalpha gene expression. Second, using both global and functional approaches, we identified novel target genes of E2A and HEB transcription factors and showed that SCL and LMO1 impairs thymocyte differentiation at the preleukemic stage by globally inhibiting E proteins transcriptional activity through a DNA binding mechanism. Moreover, we found that SCL and LMO1 oncogenes are either not totally able to inhibit E protein tumor suppressor activity or act in a different leukemic inducing pathway than E protein loss of function. Third, we found that Notch1, a gene found activated in almost all cases of pediatric T-ALL, operate in the same genetic pathway as the pre-TCR to collaborate with the SCL and LMO1 oncogenes in leukemogenesis. Moreover, this collaboration between oncogenic transcription factors and normal signalling pathways important for cell fate determination might explain cell-type specific transformation. Fourth, we found that the SCL and LMO1 oncogenes are inducers of senescence at the preleukemic stage. Moreover, deletion of INK4A/ARF, an event found in almost all cases of SCL associated pediatric T-ALL, collaborate with SCL and LMO1 oncogenes in leukemogenesis. This collaboration with loss of senescence regulators suggests that a bypass of senescence response would be necessary for transformation. Finally, we also showed that SCL and LMO1 direct interaction is critical for leukemia induction. These studies permitted the identification of collaborating events and cellular properties affected by oncogenes associated with leukemia and more generally in cancer development.
614

Régulation dépendante du cycle cellulaire de la réparation par excision de nucléotides

Auclair, Yannick 11 1900 (has links)
La réparation par excision de nucléotides (NER) est une voie critique chez l'homme pour enlever des lésions qui déforment l’hélice d'ADN et qui bloquent à la fois la réplication et la transcription. Parmi ces lésions, il y a les dimères cyclobutyliques de pyrimidines (CPDs) et les adduits pyrimidine (6-4) pyrimidone (6-4PPs) induient par les rayons ultraviolets. L'importance physiologique de la NER est mise en évidence par l’existence de la maladie Xeroderma pigmentosum (XP), causée par des mutations affectant des gènes impliqués dans cette voie de réparation. Les personnes atteintes sont caractérisées par une photosensibilité extrême et une forte prédisposition à développer des tumeurs cutanées (plus de 1000 fois). Les patients atteints du type variant de la maladie Xeroderma pigmentosum (XPV), apparemment compétents en réparation, portent plutôt des mutations dans le gène codant pour l'ADN polymérase η (polη). Polη est une ADN polymérase translésionnelle capable de contourner avec une grande fidélité certaines lésions telles que les CPDs, qui autrement bloquent les polymérases réplicatives. Ainsi, la polη prévient la formation de mutations et permet la reprise de la synthèse d'ADN. L'objectif principal de cette thèse est d'évaluer le rôle potentiel de voies de signalisation majeures dans la régulation de la NER, dont celles régulées par la kinase ATR (Ataxia Télangiectasia and Rad3-related kinase). Suite à l'irradiation UV, ATR est rapidement activée et phosphoryle des centaines de protéines qui régulent les points de contrôle du cycle cellulaire et joue un rôle notoire dans le maintient de la stabilité génomique. Nous avons postulé qu’ATR puisse réguler la NER de manière dépendante du cycle cellulaire. Cependant, tester cette hypothèse représente un grand défi car, pour des raisons techniques, les méthodes conventionnelles n’ont pas à ce jour été adaptées pour l'évaluation de la cinétique de réparation au cours des différentes phases du cycle cellulaire. Nous avons donc développé une méthode novatrice basée sur la cytométrie en flux permettant de quantifier avec grande précision la cinétique de réparation des 6-4PPs et CPDs dans chacune des phases G0/G1, S et G2/M. Avec cette nouvelle méthode, nous avons pu démontrer que l'inhibition d'ATR ou polη résulte en une très forte inhibition de la NER exclusivement durant la phase S du cycle cellulaire. Ces études ont révélé, pour la première fois, une fonction critique pour ces protéines dans le retrait des lésions qui bloquent la réplication. En outre, nous avons démontré que la synthèse d'ADN est indispensable pour l’inhibition de la réparation en phase-S, reflétant un lien potentiel entre la NER et la réplication. Curieusement, nous avons également montré que parmi six lignées cellulaires tumorales choisies aléatoirement, trois présentent une abrogation totale de la NER uniquement pendant la phase S, ce qui indique que de nombreux cancers humains pourraient être caractérisés par un tel défaut. Nos observations pourraient avoir d'importantes implications pour le traitement du cancer. En effet, le statut de la NER semble constituer un déterminant majeur dans la réponse clinique aux médicaments chimiothérapeutiques tels que le cisplatine, qui inhibent la croissance des cellules cancéreuses via l'induction de lésions à l’ADN. / Nucleotide excision repair (NER) is a critical pathway in humans for repairing highly genotoxic helix-distorting DNA lesions that strongly block both replication and transcription. Among these lesions are ultraviolet-induced 6-4 photoproducts (6-4PPs) and cyclobutane pyrimidine dimers (CPDs). The physiological importance of NER is highlighted by individuals afflicted with Xeroderma pigmentosum (XP), who carry mutations in NER pathway genes and as such exhibit extreme photosensitivity and remarkable predisposition to cutaneous tumorigenesis (1000-fold increase). On the other hand patients with the variant form of Xeroderma pigmentosum (XPV) are considered proficient in NER, and rather carry germline mutations in the gene encoding DNA polymerase η (polη). Polη is a specialized translesion DNA polymerase able to accurately bypass certain lesions including CPDs which otherwise completely inhibit the progression of normal replicative polymerases, thereby preventing mutations and allowing the resumption of DNA synthesis. The main goal of this thesis was to elucidate the potential role in NER of major DNA damage signalling cascades, including that regulated by the ataxia telangiectasia and rad 3-related kinase (ATR). Following UV irradiation, ATR is rapidly activated and phosphorylates hundreds of proteins that regulate cell cycle checkpoints and maintain genomic stability. We postulated that ATR might regulate NER in a cell cycle-specific manner. However testing this presented a great challenge, as (for technical reasons) traditional NER assays have to date not been adapted for evaluation of repair kinetics during individual phases of the cell cycle. We therefore developed a novel flow cytometry-based assay for sensitive quantification of 6-4PPs and CPDs repair efficiency during each of G0/G1, S, and G2/M. With this new assay, we were able to show that inhibition of either ATR or polη results in strong inhibition of NER capacity exclusively during S phase of the cell cycle. This revealed, for the first time, a critical function for these proteins in removal of replication-blocking DNA adducts. In addition, we demonstrated that active DNA synthesis is required for S phase-specific repair inhibition, reflecting a potential relationship between NER and replication. Intriguingly, we also showed that among six tumor cell lines, three exhibit total abrogation of NER uniquely during S phase, indicating that many human cancers may be characterized by such a defect. Our findings therefore could harbour important implications for cancer treatment. Indeed, NER status of tumors clearly appears to constitute a major determinant in the clinical response to chemotherapeutic drugs such as cisplatin, which inhibit the growth of rapidly proliferating cancer cells through induction of replication-blocking DNA lesions.
615

Caractérisation de Cks1, régulateur du cycle cellulaire, dans le cancer épithélial de l'ovaire

Desgagnés, Julie 12 1900 (has links)
Le cancer épithélial de l’ovaire est le cancer gynécologique le plus létal. La survie à 5 ans est de 30-40% chez les patientes atteintes d’une tumeur invasive(TOV), comparativement à 95% chez les patientes diagnostiquées pour une tumeur à faible potentiel de malignité (LMP). Au laboratoire, l’analyse de l’expression des gènes de la micropuce à ADN HuFL d’Affymetrix a révélé que Cks1 est un gène dont l’expression varie entre les tumeurs LMP et TOV. En effet, ce régulateur du cycle cellulaire est surexprimé dans les tumeurs TOV par rapport aux tumeurs LMP. Nous avons donc déplété Cks1 dans des lignées cellulaires tumorales invasives du cancer de l’ovaire dérivées au laboratoire, soit la TOV112D et la TOV1946, en utilisant des shRNAs sous le contrôle d’un répresseur inductible à la tétracycline. Puis, nous avons dérivé des clones stables inductibles à la tétracycline. Les résultats obtenus nous indiquent que la déplétion de Cks1 n’a pas d’effet sur la prolifération et la migration cellulaires, ni sur la formation de structures tridimensionnelles in vitro. Ainsi, nous pouvons conclure que Cks1 ne joue pas un rôle clé dans la progression tumorale par rapport aux paramètres testés. Or, des études supplémentaires seraient nécessaires pour expliquer les différences biologiques observées entre les deux types de tumeurs étudiées, et justifier cette variation observée de l’expression de Cks1. / Epithelial ovarian cancer is the most lethal gynecologic cancer with a five-year survival rate of only 30-40% in patients diagnosed with high-grade invasive disease (TOV). This contrasts with the 95% five-year survival in patients diagnosed with the low malignant potential (LMP)disease. Previously, we have identified differential expression of Cks1 between serous LMP and TOV tumors through gene expression analysis using Affymetrix HuFL DNA microarrays. Overexpression of this cell cycle regulator was observed in the TOV tumors, but not in the LMP samples. To study its role on the invasive potential of ovarian cancer cell lines, Cks1 was depleted in two tumoral invasive ovarian cancer cell lines established in our laboratory, TOV112D and TOV1946, using an inducible shRNA strategy. Then, tetracycline-inducible stable clones were derived and studied further. Comparisons between clones and controls have shown no Cks1-dependent effect on cellular growth, neither in migration capacity nor spheroid formation. Thus, we can conclude that Cks1 does not play a crucial role in the tested parameters for cancer progression, but further experiments could elucidate the biological differences observed between the two kinds of tumors studied.
616

Caractérisation fonctionnelle de la GTPase Ran dans le cancer épithélial de l'ovaire

Barrès, Véronique 04 1900 (has links)
Le cancer épithélial de l’ovaire est le plus létal des cancers gynécologiques. Les tumeurs de l’ovaire se divisent en différentes classes reflétant l’étendue de la maladie. Les tumeurs à faible potentiel de malignité présentent une survie relative à 5 ans de 90%, alors que pour les tumeurs invasives, la survie à 5 ans chute drastiquement à 35-40%. Au laboratoire, nous avons précédemment identifié la protéine Ran, un membre de la superfamille des GTPases Ras, comme marqueur fortement exprimé dans les cancers épithéliaux de l’ovaire de haut grade et de haut stade dont la surexpression est associée à un mauvais pronostic. Ran est déjà connue pour contribuer au transport nucléocytoplasmique et à la progression du cycle cellulaire, mais son rôle dans le cancer ovarien n’est pas bien défini. En utilisant une approche de shRNA inductibles à la tétracycline basée sur les lentivirus, nous avons montré que la diminution de l’expression de Ran dans des lignées cellulaires agressives du cancer de l’ovaire affecte drastiquement la prolifération cellulaire par l’induction d’une apoptose caspase-3 dépendante. Par un essai de tumeurs en xénogreffes, nous avons démontré que la déplétion de Ran résulte en une diminution de la tumorigenèse et que la formation éventuelle de tumeurs est associée à une sélection des cellules tumorales ayant la capacité de ré-exprimer la protéine Ran. Ces résultats suggèrent un rôle critique pour Ran dans la survie et la tumorigénicité des cellules du cancer ovarien, indiquant que Ran pourrait être une cible thérapeutique intéressante. / Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. Malignant epithelial tumors can be divided into different classes reflecting the extent of the disease. Low malignant potential (LMP) tumors have a 5 years survival rate of 90-95%. For invasive cancers (TOVs), the survival rate drops dramatically to 35-40%. In the laboratory, we previously identified that Ran protein, a member of the Ras GTPase family, is highly expressed in high grade and high stage serous epithelial ovarian cancers, and that its over-expression is associated with a poor prognosis. Ran is known to contribute to both nucleocytoplasmic transport and cell cycle progression, but its role in ovarian cancer is not well defined. Using a lentivirus-based tetracycline inducible shRNA approach, we show that down-regulation of Ran expression in aggressive ovarian cancer cell lines drastically affects cellular proliferation by inducing a caspase-3 dependent apoptosis. Using a xenograft tumor assay, we demonstrate that depletion of Ran results in decreased tumorigenesis, and eventual tumor formation is associated with the selection of tumor cells able to re-express the Ran protein. These results suggest a critical role for Ran in ovarian cancer cell survival and tumorigenicity and suggest that this critical GTPase may be suitable as a therapeutic target.
617

Rôle de la protéine phosphatase PPM1A dans l'homéostasie hépatique du glucose et des lipides

Ouellet, Lai-Frédéric 12 1900 (has links)
L’insuline est une hormone essentielle qui induit des réponses complexes dans l’organisme pour maintenir l’homéostasie du glucose et des lipides. La résistance à son action est un phénomène pathologique observé dans un large éventail de situations, allant de l’obésité et du syndrome métabolique à la stéatose hépatique et au diabète de type 2, qui aboutissent au développement de l’athérosclérose et de la mortalité. Des avancées remarquables ont été réalisées dans notre compréhension des mécanismes moléculaires responsables du développement de la résistance à l’action de l’insuline. En particulier, l’induction d’un stress cellulaire par des taux élevés d’acides gras libres (AGL) et des cytokines, via l’activation des protéines Ser/Thr kinases, qui augmente la phosphorylation sur des résidus sérine, des molécules critiques impliquées dans la signalisation insulinique (p. ex. IR, IRS et p85) et conduit à la diminution de la réponse cellulaire à l’insuline. Cependant, la plupart des chercheurs ont limité leur travail dans l’investigation du rôle des protéines kinases susceptibles de modifier la réponse cellulaire à l’insuline. Donc, peu de données sont disponibles sur le rôle des Protéines Ser/Thr phosphatases (PS/TPs), même si il est bien établi que la phosphorylation de ces protéines est étroitement régulée par un équilibre entre les activités antagonistes des Ser/Thr kinases et des PS/TPs. Parmi les PS/TPS, PPM1A (également connu sous le nom PP2Cα) est une phosphatase particulièrement intéressante puisqu’il a été suggéré qu’elle pourrait jouer un rôle dans la régulation du métabolisme lipidique et du stress cellulaire. Ainsi, en se basant sur des résultats préliminaires de notre laboratoire et des données de la littérature, nous avons émis l’hypothèse selon laquelle PPM1A pourrait améliorer la sensibilité à l’insuline en diminuant l’activité des protéines kinases qui seraient activées par le stress cellulaire induit par l’augmentation des AGL. Ces effets pourraient finalement améliorer le métabolisme glucidique et lipidique dans l’hépatocyte. Ainsi, pour révéler le rôle physiologique de PPM1A à l’échelle d’un animal entier, nous avons généré un modèle animal qui la surexprime spécifiquement dans le foie. Nous décrivons ici notre travail afin de générer ce modèle animal ainsi que les premières analyses pour caractériser le phénotype de celui-ci. Tout d’abord, nous avons remarqué que la surexpression de PPM1A chez les souris C57BL/6J n’a pas d’effets sur le gain de poids sur une longue période. Deuxièmement, nous avons observé que PPM1A a peu d’effets sur l’homéostasie du glucose. Par contre, nous avons montré que sa surexpression a des effets significatifs sur l’homéostasie du glycogène et des triglycérides. En effet, nous avons observé que le foie des souris transgéniques contient moins de glycogène et de triglycérides que le foie de celles de type sauvage. De plus, nos résultats suggèrent que les effets de la surexpression de PPM1A pourraient refléter son impact sur la synthèse et la sécrétion des lipides hépatiques puisque nous avons observé que sa surexpression conduit à l’augmentation la triglycéridémie chez les souris transgéniques. En conclusion, nos résultats prouvent l’importance de PPM1A comme modulateur de l’homéostasie hépatique du glucose et des lipides. Des analyses supplémentaires restent cependant nécessaires pour confirmer ceux-ci et éclaircir l’impact moléculaire de PPM1A et surtout pour identifier ses substrats. / Insulin is a key hormone that elicits complex responses in the body to maintain glucose and lipid homeostasis. Impaired sensitivity to insulin is present throughout a spectrum of inter-related disorders ranging from obesity and metabolic syndrome to hepatic steatosis and type 2 diabetes, which promotes atherogenesis and mortality. Remarkable strides have been achieved in the molecular mechanisms responsible for the development of insulin resistance that has been associated with a chronic inflammatory state and an activation of cellular stress responses. In particular, the activation of cellular stress by elevated levels of free fatty acids (FFA) and cytokines, via upstream protein Ser/Thr kinases, increase the serine phosphorylation of critical molecules involved in insulin signaling pathway (e.g. IR, IRS and p85) and leads to decreased insulin response. However, most of the investigators have limited their works to stress-activated kinases capable of altering the cellular insulin responsiveness. Conversely, limited data are available on upstream Protein Ser/Thr phosphatases (PS/TPs), even if it is well established that the activity of stress-activated kinases is tightly regulated by a delicate balance between the opposing activities of both Ser/Thr kinases and PS/TPs. Among the PS/TPs associated with insulin resistance conditions, PPM1A (also known as PP2Cα) is of particular interest in the regulation of lipid metabolism and cellular stress. Based on our recent findings and preliminary data, we postulate that PPM1A plays a significant role in insulin resistance via dephosphorylation and lessening of FFA-activated stress kinases, mainly in the liver, an important organ in glucose and lipid metabolism. More specifically, we hypothesize that increasing PPM1A activity might improve the insulin responsiveness by down regulating the activity of stress-activated kinases and by improving lipid metabolism in the hepatocyte. Thus, to reveal the physiological role of PPM1A in whole animal, we generated an animal model that overexpresses PPM1A specifically in the liver. In the present research report, we describe our work to generate this animal model as well as the initial analyses to characterize the phenotype of these mice. Accordingly, we first noticed that overexpression of PPM1A in C57BL/6J mice has no effects on weight gain over a long period. Secondly, we observed that PPM1A has subtle effects on glucose homeostasis. However and more importantly, we showed that overexpression of PPM1A has a significant effect on both glycogen and triglycerides homeostasis. Indeed, we observed that the liver of PPM1A transgenic mice had less glycogen and triglycerides than their littermates’ wild type mice. Our results suggest that these effects might reflect the impact of PPM1A on lipids synthesis and secretion since we observed that overexpression of PPM1A leads to increase the triglyceridemia in the transgenic mice. En conclusion, our results pinpoint PPM1A as an important modulator of hepatic glucose and lipid metabolism. However, further analyses are needed to confirm these results, to decipher the molecular impact of PPM1A and particularity to identify its substrates.
618

Élucidation des mécanismes moléculaires impliqués dans l’expression aberrante du récepteur au peptide insulinotropique glucose-dépendant (GIP) dans les tumeurs du cortex de la glande surrénale

Lampron, Antoine 10 1900 (has links)
Les tumeurs du cortex surrénalien sont variées et fréquentes dans la population. Bien que des mutations aient été identifiées dans certains syndromes familiaux, les causes génétiques menant à la formation de tumeur du cortex surrénalien ne sont encore que peu connues. Un sous-type de ces tumeurs incluent les hyperplasies macronodulaires et sont pressenties comme la voie d’entrée de la tumorigenèse du cortex surrénalien. L’événement génétique le plus fréquemment observé dans ces tumeurs est l’expression aberrante d’un ou plusieurs récepteurs couplés aux protéines G qui contrôle la production de stéroïdes ainsi que la prolifération cellulaire. L’événement génétique menant à l’expression aberrante de ces récepteurs est encore inconnu. En utilisant le récepteur au peptide insulinotropique dépendant du glucose (GIP) comme modèle, cette étude se propose d’identifier les mécanismes moléculaires impliqués dans l’expression aberrante du récepteur au GIP (GIPR) dans les tumeurs du cortex surrénalien. Une partie clinique de cette étude se penchera sur l’identification de nouveaux cas de tumeurs surrénaliennes exprimant le GIPR de façon aberrante. Les patients étudiés seront soumis à un protocole d’investigation in vivo complet et les tumeurs prélevées seront étudiées extensivement in vitro par RT-PCR en temps réel, culture primaire des tumeurs, immunohistochimie et biopuces. Le lien entre le GIP et la physiologie normal sera également étudiée de cette façon. Une autre partie de l’étude utilisera les nouvelles techniques d’investigation à grande échelle en identifiant le transcriptome de différents cas de tumeurs exprimant le GIPR de façon aberrante. L’importance fonctionnelle des gènes identifiée par ces techniques sera confirmée dans des modèles cellulaires. Cette étude présente pour la première des cas de tumeurs productrices d’aldostérone présentant des réponses aberrantes, auparavant confinées aux tumeurs productrice de cortisol ou d’androgènes surrénaliens. Le cas probant présenté avait une production d’aldostérone sensible au GIP, le GIPR était surexprimé au niveau de l’ARNm et un fort marquage a été identifié dans la tumeur spécifiquement. Dans les surrénales normales, cette étude démontre que le GIP est impliqué dans le contrôle de la production d’aldostérone. Ces résultats ont été confirmés in vitro. Finalement, le profilage à grande échelle des niveaux d’expression de tous les gènes du génome a permis d’isoler une liste de gènes spécifiquement liés à la présence du GIPR dans des hyperplasies du cortex surrénalien. Cette liste inclus la périlipine, une protéine de stockage des lipides dans les adipocytes et la glande surrénale, dont l’expression est fortement réprimée dans les cas GIP-dépendant. Des études dans un modèle cellulaire démontrent que la répression de ce gène par siRNA est suffisante pour induire l’expression du récepteur au GIP et que cette protéine est impliquée dans la stimulation de la stéroïdogénèse par le GIP. En alliant des méthodes d’investigation in vivo de pointe à des techniques in vitro avancée, cette étude offre de nouveaux regards sur les liens entre le GIP et la physiologie de la glande surrénale, que ce soit dans des conditions normales ou pathologiques. / Tumors of the adrenal cortex are varied and frequently found in the population. Aside from rare family cases in which mutations have been identified, the genetic events leading to the formation of adrenocortical tumors remain obscure. A subtype of these tumors includes macronodular hyperplasias, now percieved as the entry point of adrenocortical tumorigenesis. The most commonly observed molecular event in these cases is the presence of aberrantly expressed G-protein coupled receptor that drive steroid production and cellular proliferation. The genetic events leading to these aberrant levels of expression are unknown. This study will use the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor as a model to identify the molecular mecanisms leading to the aberrant expression of the GIP receptor (GIPR) in adrenocortical tumors. The first part of the study will be a clinical investigation of new cases of adrenocortical tumors to screen for aberrant responses to GIP in various types of these tumors. The patients will be evaluated by a thorough clinical investigation protocol and the resected tumors will be extensively analysed in vitro, using real-time RT-PCR, immunohistochemistry, microarray and primary cultures of the tumors. The link between GIP and the normal physiology of the adrenal cortex will also be assessed in normal subjects. The second part of the study will use novel large-scale investigation techniques to determine the transcriptome of different cases of adrenocortical tumors expressing aberrant levels of the GIPR. The functional importance of identified genes will be assessed in cellular models. This study presents the first cases of aldosterone-producing tumors with aberrant responses to hormones, previously confined to cortisol- or androgen producing tumors. The case presented showed an aldosterone production sensitive, among others, to GIP. The GIPR’s mRNA was strongly over expressed and a specific staining was observed in immunohistochemistry. The responses were confirmed in primary cultures of the tumor. In normal adrenals, a role for the control of aldosterone by GIP was also demonstrated. Finally, large-scale profiling of the transcriptome led to the identification of a list of genes with expression levels strictly related to the presence of the GIPR in adrenocortical hyperplasias. One of these genes, perilipin, was strongly repressed specifically in GIP-dependent cases. siRNA techniques were used in a cellular model and confirmed that the repression of perilipin is sufficient to induce the expression of GIPR and that this protein is implicated in the GIP induced steroidogenesis. Allying state-of-the-art in vivo investigation methods to advanced in vitro techniques, the present study identifies novel insights on the link between GIP and the normal adrenal physiology, in normal and pathological conditions.
619

Étude moléculaire de la fonction du gène Bmi1 dans le processus de sénescence du système nerveux

Chatoo, Wassim 05 1900 (has links)
Des études présentées dans cette thèse ont permis de démontrer que le gène du groupe Polycomb (PcG) Bmi1 est essentiel à l’auto-renouvellement des progéniteurs rétiniens immatures et pour le développement rétinien après la naissance. Ce travail illustre chez l’embryon que Bmi1 est hautement enrichie dans une sous-population de progéniteurs rétiniens exprimant le marqueur de surface SSEA-1 et différents marqueurs de cellules souches. À tous les stades de développement analysés, l’absence de Bmi1 résulte en une diminution de la prolifération et de l’auto-renouvellement des progéniteurs immatures. Pour mieux comprendre la cascade moléculaire en absence de Bmi1, nous avons inactivé p53 dans les colonies Bmi1-/-. Cette inactivation a permis une restauration partielle du potentiel d’auto-renouvellement. De plus, en absence de Bmi1, la prolifération et la maintenance de la population de progéniteurs rétiniens immatures localisés dans le corps ciliaire sont aussi affectées après la naissance. Bmi1 permet donc de distinguer les progéniteurs immatures de la population principale de progéniteurs, et est requis pour le développement normal de la rétine. Nous avons également démontré que l’oncogène Bmi1 est requis dans les neurones pour empêcher l’apoptose et l’induction d’un programme de vieillissement prématuré, causé par une baisse des défenses anti-oxydantes. Nous avons observé dans les neurones Bmi1-/- une augmentation des niveaux de p53, de la concentration des ROS et de la sensibilité aux agents neurotoxiques. Nous avons démontré ainsi que Bmi1 contrôle les défenses anti-oxydantes dans les neurones en réprimant l’activité pro-oxydante de p53. Dans les neurones Bmi1-/-, p53 provoque la répression des gènes anti-oxydants, induisant une augmentation des niveaux de ROS. Ces résultats démontrent pour la première fois que Bmi1 joue un rôle critique dans la survie et le processus de vieillissement neuronal. / The studies presented in this thesis establish that the Polycomb Group (PcG) gene Bmi1 is required for the self-renewal of immature retinal progenitor cells (RPCs) and for postnatal retinal development. Work performed in mouse embryos reveals that Bmi1 is highly enriched in a RPC subpopulation expressing the cell surface antigen SSEA-1 and different stem cell markers. Furthermore, at all developmental stages analysed, Bmi1 deficiency resulted in reduced proliferation and self-renewal of immature RPCs. To better understand the molecular cascade leading to this phenotype, we inactivated p53 in Bmi1-deficient colonies. p53 inactivation partially restored RPCs self-renewal potential. Moreover, the proliferation and the postnatal maintenance of an immature RPC population located in the ciliary body was also impaired in absence of Bmi1. Thus, Bmi1 distinguishes immature RPCs from the main RPC population and is required for normal retinal development. We have also shown that the oncogene Bmi1 is required in neurons to prevent apoptosis and the induction of a premature aging-like program characterized by reduced antioxidant defenses. We observed in Bmi1-deficient neurons an increased p53 and ROS levels, and a hypersensitivity to neurotoxic agents. We demonstrated that Bmi1 regulate antioxidant defenses in neurons by suppressing p53 pro-oxidant activity. In Bmi1-/- neurons, p53 induces antioxidant genes repression, resulting in increased ROS levels. These findings reveal for the first time the major role of Bmi1 on neuronal survival and aging.
620

Caractérisation de la MAP kinase atypique Erk4 : activation et fonction physiologique

Rousseau, Justine 12 1900 (has links)
Les MAP kinases sont des enzymes essentielles impliquées dans 7 voies de signalisation distinctes qui permettent à la cellule de répondre de manière adéquate aux stimuli extra-cellulaires. Chez les mammifères, les MAP kinases les mieux caractérisées sont Erk1/2, Jnk, p38 et Erk5. Ces enzymes jouent un rôle important dans l’embryogenèse, la prolifération et la différenciation cellulaire ainsi que dans la réponse au stress. Erk4 est un membre atypique de la famille MAP kinase. D’une part, la boucle d’activation de Erk4 possède un motif SEG au lieu du motif TXY, très conservé chez les MAP kinases. D’autre part, Erk4 possède une extension en C-terminal du domaine kinase qui n’est pas présente chez les MAP kinases classiques. Jusqu’à présent aucune fonction n’a été attribuée à Erk4. De plus, la voie de signalisation ainsi que le mode de régulation conduisant à l’activation de Erk4 ne sont pas connus. Le seul substrat de Erk4 identifié jusqu’à maintenant est la MAPKAP kinase MK5. L’impact fonctionnel de cette interaction n’est également pas connu. Afin d’en apprendre davantage sur la MAP kinase atypique Erk4, nous avons étudié le mécanisme d’activation de cette kinase ainsi que sa fonction physiologique par une approche de délétion génique chez la souris. En ce qui concerne l’activation de Erk4, nous avons montré que la boucle d’activation de Erk4 (S186EG) est constitutivement phosphorylée in vivo et que cette phosphorylation n’est pas modulée par les stimuli classiques des MAP kinases dont le sérum et le sorbitol. Cependant, nous avons observé que la phosphorylation de la S186 augmente en présence de MK5 et que cette augmentation est indépendante de l’activité kinase de l’une ou l’autre de ces kinases. De plus, nous avons établi que la phosphorylation de la boucle d’activation de Erk4 est requise pour l’interaction stable entre Erk4 et MK5 ainsi que pour l’activation, et la relocalisation cytoplasmique de MK5. Ainsi, notre étude a permis de révéler que Erk4 est régulée de manière différente des MAP kinases classiques et que la phosphorylation de la boucle d’activation de Erk4 joue un rôle essentiel dans la régulation de l’activité de MK5. Parallèlement, nos résultats mettent en évidence l’existence d’une “Erk4 kinase”, dont le recrutement et/ou l’activation semble être facilité par MK5. Afin identifier la fonction physiologique de Erk4, nous avons généré des souris Erk4-déficientes. L’inactivation génique de Erk4 est viable et les souris ne présentent aucune anomalie apparente. Dans le but d’expliquer l’absence de phénotype, nous avons regardé si l’expression de Erk3, le paralogue de Erk4, pouvait compenser la perte de Erk4. Notre analyse a révélé que l’expression de Erk3 dans les souris Erk4-/- n’augmente pas au cours du développement embryonnaire ou dans les tissus adultes afin de compenser pour la perte de Erk4. Par la suite, nous avons adressé la question de redondance entre Erk4 et Erk3. Dans notre laboratoire, les souris Erk3-déficientes ont également été générées et le phénotype de ces souris a récemment été analysé. Cette étude a révélé que l’inactivation génique de Erk3 entraîne un retard de croissance intra-utérin, un défaut de maturation pulmonaire et la mort néo-natale des souriceaux. Nous avons donc regardé la contribution de Erk4 dans ces phénotypes. L’analyse des souris Erk4-/- a révélé que l’inactivation de Erk4 n’entraîne pas de retard de croissance ou de maturation du poumon. De plus, nous avons montré que l’inactivation additionnelle de Erk4 dans les souris Erk3-/- n’accentue pas le phénotype des souris Erk3-déficientes. Ainsi, notre étude a révélé que contrairement à Erk3, Erk4 n’est pas essentielle au développement murin dans des conditions physiologiques. Parallèlement, nous avons montré que Erk4 et Erk3 possèdent des fonctions non-redondantes in vivo. / MAP kinases are essential enzymes implicated in 7 distinct signaling pathways that allow cells to respond appropriately to extracellular stimuli. In mammals, Erk1/2, Jnk, p38 and Erk5 are the best characterized MAP kinases. These enzymes play important roles in embryogenesis, cell proliferation and differentiation and in response to cellular stresses. Erk4 is an atypical member of the MAP kinase family. First, its activation loop is composed of an SEG motif instead of the well conserved TXY motif found in MAP kinases. Second, Erk4 has a C-terminal extension following the kinase domain that is not present in classical MAP kinases. Despite its identification more than a decade ago, the function of Erk4 remains elusive. Moreover, the signaling pathway as well as the regulatory mechanism leading to Erk4 activation in still uncharacterized. The only identified substrate of Erk4 is the MAPKAP kinase MK5, but the functional relevance of this interaction is still unknown. To gain information about the atypical MAP kinase Erk4, we decided to study the activation mechanism of Erk4 and its physiological function using a gene targeted deletion approach in mice. Regarding the activation of Erk4, we showed that the activation loop of Erk4 (S186EG) is constitutively phosphosphorylated in vivo and that this phosphorylation is not modulated by classical MAP kinase stimuli such as serum and sorbitol. However, we observed that phosphorylation of S186 increases in the presence of MK5 and we showed that this increase is independent of the kinase activity of either kinases. Moreover, we established that phosphorylation of Erk4 activation loop is required for the stable interaction between Erk4 and MK5 as well as for the activation and cytoplasmic relocalisation of MK5. Thus, our study reveals that Erk4 is differently regulated than classical MAP kinases and that Erk4 activation loop phosphorylation is important for its role in the regulation of MK5 activity. In parallel, our results revealed the existence of an “Erk4 kinase” whose recruitment and/or activation seems to be facilitated by MK5. To gain information about the physiological function of Erk4 we generated Erk4 deficient mice. Gene-targeted inactivation of Erk4 is viable and these mice present no gross abnormality. To explain the absence of phenotype, we analyzed the expression of Erk3, the paralog of Erk4, to determine if it could compensate for the loss of Erk4. Our analysis revealed that Erk3 expression in Erk4-/- mice is not up-regulated during embryogenesis nor in adult mice tissues in order to compensate for the loss of Erk4. We next addressed the question of redundancy between Erk4 and Erk3. In our laboratory, Erk3-/- deficient mice were also generated and the phenotype of these mice was recently analyzed. This study revealed that gene inactivation of Erk3 leads to intra-uterine growth retardation, lung maturation defect and neo-natal lethality. We then investigated the contribution of Erk4 in these phenotypes. The analysis of Erk4-/- mice revealed that inactivation of Erk4 did not delay intra-uterine growth nor cause pulmonary maturation defect. Moreover, we showed that additional loss of Erk4 in Erk3-/-mice does not accentuate Erk3-deficient mice phenotype. Thus, this study reveals that, contrary to Erk3, Erk4 is dispensable for mice development under normal condition and that Erk4 and Erk3 have non-redundant functions in vivo.

Page generated in 0.0658 seconds