• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 30
  • 7
  • Tagged with
  • 66
  • 66
  • 56
  • 42
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Dissection de TFIID, un facteur de transcription général humain : Études structurales etfonctionnelles des sous-ensembles du TFIID human / Dissecting General Transcription Factor TFIID : structural and functional studies of human TFIID subassemblies

Gupta, Kapil 24 September 2015 (has links)
Les génomes eucaryotes sont très complexes et peuvent être très grands. Par exemple, le génome humain contient environ de 20 000 à 25 000 gènes codant pour des protéines. L'expression de ces gènes doit être strictement régulée à de nombreux niveaux (tels que l'organisation de la chromatine, la transcription des gènes, le traitement et l'exportation de l'ARN messager ainsi que la traduction) pour le bon fonctionnement de la machinerie cellulaire. De nombreuses protéines et complexes protéiques sont impliqués dans ces processus essentiels de régulation, tels que les remodeleurs de la chromatine, les activateurs, co-activateurs et répresseurs de la transcription et particulièrement la machinerie générale de transcription. Chez les eucaryotes, la transcription de gènes codant pour des protéines est appelée transcription génique de classe II, elle est catalysée par l'ARN polymérase II (Pol II). La transcription des gènes par la polymérase II nécessite l'interaction coopérative de plusieurs protéines et complexes protéiques afin de faciliter l'assemblage d'un complexe de pré-initiation (PIC) au promoteur de base. Le complexe de pré-initiation comprend l'ARN polymérase II et les facteurs de transcription généraux (GTFs) - TFIIA, TFIIB, TFIID, TFIIE, TFIIF et TFIIH ainsi que le complexe de Médiateur et une grande variété de co-activateurs transcriptionnels.Une étape fondamentale dans l'assemblage d'un complexe de pré-initiation est la reconnaissance du promoteur de base par le facteur de transcription général TFIID. TFIID est un complexe multi protéique d'environ 1,6 MDa. Chez l'homme, il comprend une vingtaine de sous-unités constituées de 14 protéines différentes - la protéine de liaison à la boite tata (TBP) et ses facteurs associés (TAFs 1 à 13). Une série d'études sur la TFIID humaine et ses sous-ensembles ont été réalisés depuis sa découverte il y a plus de 20 ans, cherchant à comprendre la structure et le mécanisme de ces facteurs de transcription général essentiel, cependant l'architecture de TFIID, ses activités, ses fonctions, ses rouages et ses mécanismes d'assemblage cellulaire reste largement incompris à ce jour.Cette thèse décrit les études biochimiques que nous avons effectuées sur trois sous-ensembles distincts de TFIID humain. Nous avons utilisé un certain nombre de techniques de biologie structurale : la cristallographie, la spectroscopie à résonance magnétique nucléaire (RMN) et la diffusion des rayons X aux petits angles (SAXs), pour étudier le complexe formé par les facteurs humains, associés à la protéine de liaison à la boite tata, TAF1 et TAF7. Ces études structurelles fournissent un aperçu détaillé sur l'interface d'interaction complexe de TAF1/TAF7, misent de concert avec des données disponibles dans la littérature, elles mettent en évidence la nature dynamique de l'interaction TAF1/TAF7 dans le complexe de TFIID humain.Dans une deuxième étude, nous avons analysé un complexe formé par TAF11, TAF13 et TBP en utilisant un panel de méthodes biophysiques et biochimiques : l'analyse électrophorétique de retard sur gel (EMSA), l'ultracentrifugation analytique (AUC), la chromatographie d'exclusion stérique (SEC) analyse, le pull-down, la spectrométrie de masse native et la spectrométrie de masse chimique à réticulation (CLMS). Ce complexe fait penser au complexe TAF1/TBP qui imite la boite tata.De plus, dans le cadre des efforts en cours au sein du laboratoire du Pr Imre Berger afin de déterminer la structure de l'holo-TFIID humaine, nous avons reconstitué un grand sous-ensemble de TFIID (900 KDa) appelé 9TAF, qui est composé de neuf différents facteurs associés de TBP. Nous avons effectué des études d'électro-microscopie par coloration négative sur le complexe 9TAF qui nous ont fourni des informations à faible résolution. Ces études ouvrent la voie à de futures études de cryo-EM sur le complexe 9TAF pour obtenir un modèle de plus haute resolution. / Eukaryotic genomes are highly complex and can be very large. For example, the human genome contains approximately 20,000-25,000 protein coding genes. Expression of these genes needs to be tightly regulated at many levels, including chromatin organization, gene transcription, mRNA processing and export and translation, for proper functioning of cellular machinery. Many proteins and protein complexes are involved in these essential regulatory processes, examples include chromatin remodelers, transcriptional activators and coactivators, transcriptional repressors and notably the general transcription machinery. Transcription of protein coding genes in eukaryotes is called Class II gene transcription, and is catalyzed by RNA polymerase II (Pol II). Gene transcription by Pol II requires the cooperative interaction of multiple proteins and protein complexes to facilitate the assembly of a preinitiation complex (PIC) at the core promoter. The PIC comprises Pol II and the General Transcription Factors (GTFs)- TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, together with the Mediator complex and a large variety of transcriptional coactivators.A fundamental step in PIC assembly is recognition of the core promoter by GTF TFIID, a magdalton sized multiprotein complex. In humans, TFIID comprises about twenty subunits made up of 14 different proteins – the TATA box binding protein (TBP) and its associated factors (TAFs, numbered 1 to 13). A range of studies on human TFIID and its subassemblies have been carried out since its discovery more than two decades ago, to understand the structure and mechanism of this essential GTF, but the architecture of TFIID, its activities, its functions, its inner workings and the mechanisms of its cellular assembly have eluded detailed understanding to date.This thesis describes biochemical, biophysical, structural and functional studies carried out on three distinct human TFIID subassemblies. We used a number of structural biology techniques, including crystallization, nuclear magnetic resonance (NMR) spectroscopy and small angle X-ray scattering (SAXS) to analyse a complex formed by the human TBP associated factors TAF1 and TAF7. These structural studies provide detailed insights into the intricate interaction interface formed by TAF1 and TAF7, and, together with other data available from the literature, highlight the dynamic nature of the TAF1/TAF7 interaction in the human TFIID complex.In a second study, we analyzed a novel complex formed by TAF11, TAF13 and TBP using a range of biophysical and biochemical methods including electrophoretic mobility shift assay (EMSA), analytical ultracentrifugation (AUC), size exclusion chromatography (SEC) analysis, pull-down assay, native mass-spectroscopy and chemical cross-linking mass spectroscopy (CLMS). This complex is reminiscent of a so-called TATA-box mimicry discovered previously in a TAF1/TBP complex.As part of the ongoing efforts in the Berger laboratory to determine the structure of human holo-TFIID, we furthermore produced and purified a large (~900 kDa) TFIID subassembly called 9TAF, which is composed of nine different TBP associated factors. We carried out negative stain EM studies and random conical tilt (RCT) analysis on 9TAF to obtain low resolution structural information. These studies set the stage for future cryo-EM studies of this 9TAF complex to obtain a high(er) resolution model to decipher the inner workings of human TFIID.
62

Analyse mixte de protéines basée sur la séquence et la structure - applications à l'annotation fonctionnelle / Mixed sequence-structure based analysis of proteins, with applications to functional annotations

Tetley, Romain 21 November 2018 (has links)
Dans cette thèse, l'emphase est mise sur la réconciliation de l'analyse de structure et de séquence pour les protéines. L'analyse de séquence brille lorsqu'il s'agit de comparer des protéines présentant une forte identité de séquence (≤ 30\%) mais laisse à désirer pour identifier des homologues lointains. L'analyse de structure est une alternative intéressante. Cependant, les méthodes de résolution de structures sont coûteuses et complexes - lorsque toutefois elles produisent des résultats. Ces observations rendent évident la nécessité de développer des méthodes hybrides, exploitant l'information extraite des structures disponibles pour l'injecter dans des modèles de séquence. Cette thèse produit quatre contributions principales dans ce domaine. Premièrement, nous présentons une nouvelle distance structurale, le RMSDcomb, basée sur des patterns de conservation structurale locale, les motifs structuraux. Deuxièmement, nous avons développé une méthode pour identifier des motifs structuraux entre deux structures exploitant un bootstrap dépendant de filtrations. Notre approche n'est pas un compétiteur direct des aligneurs flexibles mais permet plutôt de produire des analyses multi-échelles de similarités structurales. Troisièmement, nous exploitons les méthodes suscitées pour construire des modèles de Markov cachés hybrides biaisés vers des régions mieux conservées structurellement. Nous utilisons un tel modèle pour caractériser les protéines de fusion virales de classe II, une tâche particulièrement ardue du fait de leur faible identité de séquence et leur conservation structurale moyenne. Ce faisant, nous parvenons à trouver un certain nombre d'homologues distants connues des protéines virales, notamment chez la Drosophile. Enfin, en formalisant un sous-problème rencontré lors de la comparaison de filtrations, nous présentons un nouveau problème théorique - le D-family matching - sur lequel nous démontrons des résultats algorithmiques variés. Nous montrons - d'une façon analogue à la comparaison de régions de deux conformations d'une protéine - comment exploiter ce modèle théorique pour comparer deux clusterings d'un même jeu de données. / In this thesis, the focus is set on reconciling the realms of structure and sequence for protein analysis. Sequence analysis tools shine when faced with proteins presenting high sequence identity (≤ 30\%), but are lack - luster when it comes to remote homolog detection. Structural analysis tools present an interesting alternative, but solving structures - when at all possible- is a tedious and expensive process. These observations make the need for hybrid methods - which inject information obtained from available structures in a sequence model - quite clear. This thesis makes four main contributions toward this goal. First we present a novel structural measure, the RMSDcomb, based on local structural conservation patterns - the so called structural motifs. Second, we developed a method to identify structural motifs between two structures using a bootstrap method which relies on filtrations. Our approach is not a direct competitor to flexible aligners but can provide useful to perform a multiscale analysis of structural similarities. Third, we build upon the previous methods to design hybrid Hidden Markov Models which are biased towards regions of increased structural conservation between sets of proteins. We test this tool on the class II fusion viral proteins - particularly challenging because of their low sequence identity and mild structural homology. We find that we are able to recover known remote homologs of the viral proteins in the Drosophila and other organisms. Finally, formalizing a sub - problem encountered when comparing filtrations, we present a new theoretical problem - the D-family matching - on which we present various algorithmic results. We show - in a manner that is analogous to comparing parts of two protein conformations - how it is possible to compare two clusterings of the same data set using such a theoretical model.
63

Etude structurale des protéines et des acides nucléiques par RMN. Etude de la répression du gène de la beta-lactamase chez B. licheniformis 749/I. Augmentation de la résolution des spectres RMN multidimensionnels par filtrage Hadamard.

Van Melckebeke, Hélène 29 September 2005 (has links) (PDF)
La RMN est une méthode de choix pour la détermination de la structure tridimensionnelle des protéines et des acides nucléiques en solution. Cependant, la taille des systèmes que l'on peut étudier actuellement par RMN est limitée. Dans la première partie de ce travail, la structure du répresseur BlaI de la beta-lactamase de B. licheniformis 749/I et son interaction avec l'ADN ont été étudiées par RMN avec des méthodes classiques. Ces résultats ont permis de mieux caractériser la répression des gènes de plusieurs mécanismes de résistance aux antibiotiques, incluant la résistance à la méthicilline de la souche pathogène S. aureus. Le deuxième volet de ce travail concerne l'implémentation de filtres Hadamard qui augmentent la résolution des spectres dans certaines expériences de RMN multidimensionnelle. Ces filtres permettent de séparer les pics de corrélation des protéines et des acides nucléiques selon le type d'acide aminé et le type de base, respectivement. Ces développements ouvrent de nouveaux horizons vers l'étude de macromolécules biologiques de plus grosse taille par RMN.
64

Caractérisation des protéines intrinsèquement désordonnées par résonance magnétique nucléaire

Ozenne, Valéry 28 November 2012 (has links) (PDF)
Près de 40% des protéines présentes dans les cellules sont prédites partiellement ou complètement désordonnées. Ces protéines dépourvues de structure tridimensionnelle à l'état natif sont impliquées dans de nombreux mécanismes biologiques, la flexibilité jouant un rôle moteur dans les mécanismes de reconnaissance moléculaire. La prise en considération de l'existence de flexibilité au sein des protéines et des interactions protéines-protéines a nécessité le renouvellement de nos connaissances, de notre appréhension des fonctions biologiques ainsi que des approches pour étudier et interpréter ces phénomènes. La méthode retenue pour étudier ces transitions conformationnelles est la spectroscopie par résonance magnétique nucléaire. Elle dispose d'une sensibilité unique, d'une résolution à l'échelle atomique et permet par diverses expériences d'accéder à l'ensemble des échelles de temps définissant les mouvements de ces protéines. Nous combinons ces mesures expérimentales à un modèle statistique représentant l'ensemble du paysage énergétique des protéines désordonnées : la description par ensemble explicite de structures. Ce modèle est une représentation discrète des différents états échantillonnés par ces protéines. Il permet, combinant les déplacements chimiques, les couplages dipolaires et la relaxation paramagnétique, de développer une description moléculaire de l'état déplié en caractérisant à la fois l'information locale et l'information à longue portée présente dans les protéines intrinsèquement désordonnées.
65

Etude structurale de biomarqueurs de neuropathologies : Cas particulier de la protéine CRYM, une Cytosolic-3,3',5-triiodo-L-thyronine(T3)-Binding Protein

Hachi, Isma 29 September 2010 (has links) (PDF)
Mon projet de thèse s'inscrit dans un vaste projet de caractérisation de protéines nouvellement identifiées dont l'expression est sélective à certaines régions du cerveau. Cette expression sélective pouvant être liée aux phénomènes de dégénérescence neuronale qui caractérisent les maladies neurodégénératives, ces protéines constituent donc des biomarqueurs potentiels. Une étude structurale et physico-chimique a été effectuée sur une dizaine de protéines, dont la protéine CRYM murine (mCRYM) qui fait parti de la famille des Cytosolic- 3,3',5-triiodo-L-thyronine(T3)-Binding Protein car elle régule la concentration en hormone thyroïdienne T3 libre dans la cellule. mCRYM appartient également à la famille des µ-crystallines et à la superfamille des µ-crystallines/Ornithines Cyclodésaminases. Les protéines présentant des homologies pour ces trois familles sont la plupart différentes par leur fonction (enzymatique ou structurale), leur localisation tissulaire et leurs caractéristiques physico-chimiques. Cette diversité est due au recrutement de gènes de la superfamille des crystallines pour diverses fonctions métaboliques tout en conservant le taxon spécifique des crystallines. Je suis parvenue à résoudre sa structure cristallographique complexée au NADP(H) et à l'hormone thyroïdienne T3 à une résolution de 1,75 Å. La protéine mCRYM est un exemple intéressant d'évolution par son appartenance à différentes familles de protéines et, à ce jour, aucune activité enzymatique n'a été identifiée. Sa caractérisation structurale et thermodynamique a donc permis de mettre en évidence les différences et les similitudes avec ses homologues enzymatiques et d'émettre des hypothèses quant à son évolution moléculaire. Ces résultats soulèvent de nouvelles questions concernant son rôle physiologique : mCRYM est-elle une enzyme ou une protéine structurale ? Comment intervient le couple redox NADPH/NADP+ pour réguler l'action génomique et/ou non génomique de l'hormone T3 ? L'hormone T3 est-il le seul ligand physiologique de CRYM dans le cerveau ?
66

Structure-function studies of class I aldolases - exploring novel activities : mechanism, moonlighting, and inhibition

Heron, Paul 12 1900 (has links)
La fructose-1,6-bisphosphate aldolase de classe I est une enzyme glycolytique (EC 4.1.2.13) qui catalyse le clivage réversible du fructose-1,6-bisphosphate (FBP) en dihydroxyacétone phosphate (DHAP) et glycéraldéhyde-3-phosphate (G3P). Des années de recherche sur FBP aldolase ont permis d’identifier les résidus impliqués dans son mécanisme réactionnel, ont tracé en grande partie les coordonnées de la réaction, ont révélé de nouvelles fonctions dites « moonlighting », et ont validé l’aldolase comme une cible attrayante pour des applications anti-glycolytiques tel que le cancer. Il existe néanmoins des questions en suspens relatives à ces activités que nous avons étudiées. Tout d'abord, la trajectoire détaillée de l'aldéhyde relatif à sa liaison au site actif allant jusqu’à la formation du lien carbone-carbone par condensation aldolique est indéfini. Pour élucider les détails moléculaires liés à ces événements, nous avons déterminé des structures cristallographiques à hautes résolution de l’aldolase de classe I chez Toxoplasma gondii, qui porte une identité de séquence élevée avec l’aldolase humaine (57%), en complexe avec l’intermédiaire ternaire de pré-condensation. Le complexe ternaire révèle un mode de liaison non-productive inhabituel pour G3P dans une configuration cis qui permet l’alignement de l'aldéhyde à proximité du nucléophile naissant. La configuration compétente pour la condensation aldolique provient d'une transposition cis-trans de l'aldéhyde qui produit une liaison hydrogène courte permettant la polarisation de l'aldéhyde et le transfert de proton au niveau de Glu-189. Nos résultats informent les chimistes synthétiques qui cherchent à développer l’aldolase comme biocatalyseur pour des réactions stéréo-contrôlées. Le rôle présumé de l’aldolase dans la production du méthyglyoxal (MGO), un métabolite dicarbonyle hautement réactif qui génère des « advanced glycation end products » (AGES) a également été étudié structurellement et enzymatiquement. Une enquête structurelle cristallographique de MGO générée par décomposition enzymatique chez l’aldolase de classe I a révélé que, contrairement aux indications préliminaires, l'apparition hypothétique de MGO et de phosphate inorganique (Pi) résultant de la décomposition enzymatique de DHAP dans le site actif de l’aldolase est mieux interprétée par une population mixte de DHAP et de molécules d'eau. Une étude enzymatique a révélé que la décomposition spontannée des trioses-phosphate est une source majeure de la production de MGO, alors qu’une production catalysée par l’aldolase est peu concluante. L’identification des sources de production de MGO continue d'être une priorité afin de développer des stratégies pour atténuer les manifestations cliniques de pathologies associées au MGO. La FBP aldolase est également reconnu pour ses activités « moonlighting » - du fait qu’elle effectue plus d'une activité sans rapport avec sa fonction glycolytique. Divers partenaires de l’aldolase sont rapportés dans la littérature, y compris les adhésines de surface cellulaire chez les parasites apicomplexes, dans lequel l’aldolase exécute une fonction d'échafaudage entre le complexe actomyosine et les adhésines - une interaction qui est décisive pour la motilité et l'invasion des cellules hôte. Le mode de liaison de cette interaction a été étudié et nos résultats sont compatibles avec une liaison au site actif. Les détails précis de cette interaction ont des implications thérapeutiques, étant donné que le ciblage de celui-ci réduit l'invasion des cellules hôte par les parasites. Enfin, l’aldolase de classe I est de plus en plus reconnu pour son potentiel comme cible anti-glycolytique dans les cellules qui sont fortement tributaires du flux glycolytique, comme les cellules cancéreuses et les parasites protozoaires. Le développement de nouveaux inhibiteurs de haute affinité est donc non seulement avantageux pour des études mécanistiques, mais représente un potentiel pharmacologique sans fin. Nous avons développé une nouvelle classe d’inhibiteurs de haute affinité de type inhibition lente et avons déterminé la base moléculaire de leur inhibition grâce à des structures cristallographiques à haute résolution et par un profilage enzymatique. Cette étude, qui combine plusieurs disciplines, y compris la cristallographie, enzymologie et chimie organique, souligne l'intérêt et l'importance d'une approche multidisciplinaire. / Class I Fructose-1,6-bisphosphate aldolases are glycolytic enzymes (EC 4.1.2.13) that catalyze the reversible cleavage of fructose-1,6-bisphosphate (FBP) to dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). Years of research on FBP aldolases has identified residues implicated in the reaction mechanism, mapped the greater part of the reaction coordinates, and revealed novel moonlighting functions. Further, FBP aldolase is recognized as an attractive target for anti-glycolytic applications such as cancer. There are nevertheless outstanding questions related to these activities that were investigated in this thesis. First, the detailed trajectory of the reaction mechanism from aldehyde binding in the active site to carbon-carbon bond formation by aldol condensation is undefined. To elucidate the molecular details related to these events, we solved high-resolution crystallographic structures of native class I aldolase from Toxoplasma gondii, which has a high sequence identity with human aldolase (57 %), in complex with the pre-condensation ternary intermediate. The ternary complex reveals a condensation-incompetent binding mode for G3P in a cis-configuration that aligns the aldehyde alongside the nascent nucleophile. The productive aldol-competent configuration arises from a cis-trans rearrangement of the aldehyde that produces a short hydrogen bond required for polarization of the aldehyde and coincident proton transfer at Glu-189. Our results inform synthetic chemists seeking to develop aldolases for stereo-controlled reactions in biosynthetic applications. The suspected role of aldolase in methylglyoxal (MGO) production, a highly reactive dicarbonyl metabolite that produces advanced glycation end-products (AGES) was also probed structurally and enzymatically. A crystallographic structural investigation of MGO generated by enzymatic decomposition in class I aldolase revealed that, contrary to preliminary indications, the appearance of MGO and inorganic phosphate (Pi) resulting from enzymatic decomposition of DHAP in the active site of aldolase is more appropriately modeled by a mixed population of DHAP and water molecules. Enzymatic investigation revealed triose-phosphate decomposition to be a major source of MGO production, whereas production by aldolase did not exceed assay background levels. Identifying the main sources of MGO production continues to be a priority for mitigating the clinical manifestations of MGO-derived pathologies. FBP aldolase is also recognized for its moonlighting properties – performing more than one activity unrelated to the glycolytic function. Diverse aldolase partners are reported, including cell surface adhesins in apicomplexan parasites, in which aldolase performs a bridging function between the actomyosin complex and the cytoplasmic domain of the adhesins – an interaction that is crucial for motility and host-cell invasion. The binding mode of this interaction was investigated and our results are consistent with active site binding. The precise details of aldolase-adhesin binding has therapeutic implications, since targeting of the latter reduces host-cell invasion by parasites. Finally, class I aldolase is gaining prominence as an anti-glycolytic target in cells that are highly dependent on glycolytic flux, such as cancer cells and protozoan parasites. Developing new high-affinity inhibitors for these enzymes is therefore not only advantageous for mechanistic studies, but has endless pharmacological potential. We developed a novel class of high-affinity aldolase inhibitors, bisphosphonates, and determined the molecular basis of their inhibition with high-resolution crystallographic structures and enzymatic profiling. This study, which combined several disciplines, including crystallography, enzymology, and organic chemistry, underscores the interest and significance of a multidisciplinary approach.

Page generated in 0.0662 seconds