Spelling suggestions: "subject:"boundary bonditions."" "subject:"boundary 12onditions.""
181 |
Solution of the neutrals species in a weakly ionised plasma by means of the SIMPLE algorithmZorzetto, Alberto January 2021 (has links)
In recent years, the Helicon Plasma Thruster (HPT) has become one of the most promising technologies of in-space electric propulsion. T4i Technology for Propulsion and Innovation S.P.A. is one of the leading companies working with this new type of systems, and their thruster, REGULUS, is the first HPT ever to be operated in orbit. To better assess the performance of the motor, the company has developed, in conjunction with the University of Padova and the University of Bologna, a numerical tool called 3DVIRTUS (3Dimensional adVanced fluId dRifT diffUsion plaSma solver), which simulates the plasma dynamics in the production stage of the thruster. The model describes the species present in the plasma (electrons, ions, excited and neutrals) by means of a fluid approach, as the plasma density in this part of the motor is in the order of 1017-1018 m−3. Particularly, the tool considers the Drift-Diffusion (DD) approximation instead of the full set of fluid momentum equations. Unfortunately, for typical discharges applied to HPTs, this assumption is accurate only for the electrons species, but not for the heavy species in the plasma, i.e. ions, excited and neutrals. The thesis project presented in this report, executed in collaboration with T4i S.P.A, proposes an updated numerical tool which solves the fully coupled continuity and momentum equations for the neutrals species in the plasma. The new solver is implemented with OpenFOAM®, a finite volume library written in C++, and the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) is utilised to resolve the pressure-velocity coupling in the continuity and momentum equations. Four different test cases are considered: a one-dimensional typical discharge, a cylindrical discharge, the Schwabedissen GECICP reactor experiment and the Piglet helicon reactor of Lafleur. The obtained results have been compared against the original drift-diffusion solver, and when available, with experimental data. The new tool produced similar results to the older one, even though the neutrals density computed with the former generally presented stronger gradients. Additionally, in the case of the GECICP and Piglet reactors, the agreement in terms of electrons density computed with the new solver was satisfactory compared to the empirical data. Nevertheless, all the analysis performed during the thesis project revealed that the keys to obtain physically realistic results are the boundary conditions for the neutrals’ pressure and velocity, which greatly affects the outcome of the simulations. Overall, the new solver has shown to provide accurate results with reasonable computational time. / Under de senaste åren har Helicon Plasma Thruster (HPT) blivit en av de mest lovande teknikerna för elektrisk framdrift i rymden. T4i Technology for Propulsion and Innovation S.P.A. är ett av de ledande företagen som arbetar med denna nya typ av system, och deras motor, REGULUS, är den första HPT som har demonstrerats fungera i omloppsbana. För att bättre kunna bedöma motorns prestanda har företaget tillsammans med universitetet i Padova och universitetet i Bologna utvecklat ett numeriskt verktyg som kallas 3DVIRTUS (3Dimensional adVanced fluId dRifT diffUsion plaSma solver), som simulerar plasmadynamiken i thrusterns produktionsstadium. Modellen beskriver de typer av partikler som finns i plasma (elektroner, joner, exciterade och neutrala) med hjälp av en vätskeapproximation, eftersom plasmatätheten i denna del av motorn är i storleksordningen 10171018 m−3. Särskilt överväger verktyget approximationen Drift-Diffusion (DD) istället för hela uppsättningen vätska ekvationer. Dessvärre, för typiska urladdningar som appliceras på HPT, är detta antagande korrekt endast för elektroner, men inte för de tunga partiklarna i plasma, dvs joner, exciterade och neutrala partiklar. Avhandlingsprojektet som presenteras i denna rapport, utfört i samarbete med T4i S.P.A, föreslår ett uppdaterat numeriskt verktyg som löser de fullständigt kopplade kontinuitets och rörelseekvationerna för neutrala partiklar i plasma. Den nya lösaren implementeras med OpenFOAM®, ett begränsat volymbibliotek skrivet i C++, och Semi-Implicit Method for Pressure Linked Equations (SIMPLE) används för att lösa tryck hastighetskopplingen i kontinuitets och rörelseekvationer. Fyra olika testfall övervägs: en endimensionell typisk urladdning, en cylindrisk urladdning, Schwabedissen GECICP reaktorförsöket och Piglet helicon reaktorn i Lafleur. De erhållna resultaten har jämförts med det ursprungliga driftdiffusions antagandet, och när möjligt, med experimentella data. Det nya verktyget gav liknande resultat som det äldre, även om densiteten av neutrala partiklar beräknad med den tidigare generellt visade starkare gradienter. Dessutom, när det gäller GECICP och Piglet reaktorerna, var överenskommelsen i termer av elektrontäthet beräknad med den nya lösaren tillfredsställande jämfört med empiriska data. Ändå avslöjade all analys som gjordes under avhandlingsprojektet att nycklarna för att få fysiskt realistiska resultat är randvillkoren för de neutrala partiklarnas tryck och hastighet, vilket i hög grad påverkar resultatet av simuleringarna. Sammantaget har den nya lösaren visat sig ge noggranna resultat med rimlig beräkningstid.
|
182 |
QCD+QED simulations with C* boundary conditionsLücke, Jens 14 March 2024 (has links)
Es gibt im Allgemeinen zwei Paradigmen für Entdeckungen in der Teilchenphysik:
direkte und indirekte Suchen. Direkte Suchen zielen darauf ab, klare Signale für vermutete Phänomene zu finden, während indirekte Suchen nach Abweichungen zwischen theoretischen Vorhersagen und experimentellen Messungen suchen. Nach dem Nachweis des Higgs-Bosons, wodurch das Standardmodell der Teilchenphysik vervollständigt wurde, haben sich indirekte Suchen als besonders relevant erwiesen, da direkte Nachweise von Physik jenseits des Standardmodells bei aktuellen Energiebereichen unwahrscheinlich sind. Die Herausforderung besteht darin, die Präzision der theoretischen Vorhersagen zu erhöhen, um mögliche Diskrepanzen zu erkennen. Hierbei spielen Gitter-QCD Simulationen für die Berechnung nichtperturbativer hadronischer Observablen eine zentrale Rolle. Für Vorhersagen mit subprozentualer Genauigkeit sind Korrekturen durch Strahlungseffekte und Isospin-Brechung zunehmend wichtig, was durch die Simulation von QCD+QED erreicht wird. Die Einbeziehung von QED stellt neue technische Herausforderungen dar. Diese Arbeit fokussiert sich auf einen Ansatz, der QED-Probleme in endlichen Volumina löst und dabei Eichinvarianz, Lokalität und Translationssymmetrie wahrt, bekannt als QED mit C-Paritäts-Randbedingungen (QED$_C$). Es werden erste umfangreiche QCD+QED$_C$-Simulationen analysiert, darunter acht Eichfeld-Ensembles mit unterschiedlichen Werten der renormierten elektrischen Kopplung, jedoch gleicher Pionenmasse und Gitterabstand. Außerdem wird auf die Einstellung (tuning) der Eingabeparameter für Gittersimulationen eingegangen, um reale physikalische Verhältnisse zu reproduzieren, sowie eine optimierte Strategie mittels Neugewichtung (reweighting) der nackten Quarkmassen im Kontext des RHMC-Algorithmus vorgestellt und evaluiert. / Particle physics research employs two primary approaches for discoveries: direct and indirect searches. Direct searches aim to directly observe phenomena, while indirect searches seek discrepancies between theoretical predictions and experimental results. With the discovery of the Higgs boson, the standard model of particle physics was completed, shifting the focus towards indirect searches due to the lack of compelling evidence for new physics at current energy scales. These searches necessitate highly precise theoretical predictions, particularly for non-perturbative hadronic observables, which are calculated using lattice QCD simulations. The need for sub-percent precision has highlighted the importance of accounting for radiative and isospin-breaking corrections, leading to the simulation of fully dynamical QCD+QED.
This thesis addresses the challenges of incorporating QED into lattice QCD, focusing on an approach that maintains gauge invariance, locality, and translational invariance using QED with C-parity boundary conditions (QED$_C$). It presents a comprehensive technical analysis of the first large-scale QCD+QED$_C$ simulations, detailing eight fully dynamical gauge field ensembles with various renormalized electric coupling values ($\alpha_\mathrm{R} \in \{0,1/137,0.04\}$), consistent pion mass ($m_\pi \approx 400$ MeV), and lattice spacing ($a\approx 0.05$ fm). The thesis examines the stability of the simulation algorithm, finite volume effects, and the behavior of different hadron masses.
Furthermore, it elaborates on the tuning of input parameters for lattice simulations to replicate real-world physics accurately, focusing on the hadronic renormalization scheme used to fix bare quark masses. It introduces an optimized strategy for tuning QCD+QED parameters via mass reweighting, adapted for simulations using the RHMC algorithm, highlighting its development, implementation, and testing.
|
183 |
Advances In Numerical Methods for Partial Differential Equations and OptimizationXinyu Liu (19020419) 10 July 2024 (has links)
<p dir="ltr">This thesis presents advances in numerical methods for partial differential equations (PDEs) and optimization problems, with a focus on improving efficiency, stability, and accuracy across various applications. We begin by addressing 3D Poisson-type equations, developing a GPU-accelerated spectral-element method that utilizes the tensor product structure to achieve extremely fast performance. This approach enables solving problems with over one billion degrees of freedom in less than one second on modern GPUs, with applications to Schrödinger and Cahn<i>–</i>Hilliard equations demonstrated. Next, we focus on parabolic PDEs, specifically the Cahn<i>–</i>Hilliard equation with dynamical boundary conditions. We propose an efficient energy-stable numerical scheme using a unified framework to handle both Allen<i>–</i>Cahn and Cahn<i>–</i>Hilliard type boundary conditions. The scheme employs a scalar auxiliary variable (SAV) approach to achieve linear, second-order, and unconditionally energy stable properties. Shifting to a machine learning perspective for PDEs, we introduce an unsupervised learning-based numerical method for solving elliptic PDEs. This approach uses deep neural networks to approximate PDE solutions and employs least-squares functionals as loss functions, with a focus on first-order system least-squares formulations. In the realm of optimization, we present an efficient and robust SAV based algorithm for discrete gradient systems. This method modifies the standard SAV approach and incorporates relaxation and adaptive strategies to achieve fast convergence for minimization problems while maintaining unconditional energy stability. Finally, we address optimization in the context of machine learning by developing a structure-guided Gauss<i>–</i>Newton method for shallow ReLU neural network optimization. This approach exploits both the least-squares and neural network structures to create an efficient iterative solver, demonstrating superior performance on challenging function approximation problems. Throughout the thesis, we provide theoretical analysis, efficient numerical implementations, and extensive computational experiments to validate the proposed methods. </p>
|
184 |
Modeling and Analysis of a Cantilever Beam Tip Mass SystemMeesala, Vamsi Chandra 22 May 2018 (has links)
We model the nonlinear dynamics of a cantilever beam with tip mass system subjected to different excitation and exploit the nonlinear behavior to perform sensitivity analysis and propose a parameter identification scheme for nonlinear piezoelectric coefficients.
First, the distributed parameter governing equations taking into consideration the nonlinear boundary conditions of a cantilever beam with a tip mass subjected to principal parametric excitation are developed using generalized Hamilton's principle. Using a Galerkin's discretization scheme, the discretized equation for the first mode is developed for simpler representation assuming linear and nonlinear boundary conditions. We solve the distributed parameter and discretized equations separately using the method of multiple scales. We determine that the cantilever beam tip mass system subjected to parametric excitation is highly sensitive to the detuning. Finally, we show that assuming linearized boundary conditions yields the wrong type of bifurcation.
Noting the highly sensitive nature of a cantilever beam with tip mass system subjected to parametric excitation to detuning, we perform sensitivity of the response to small variations in elasticity (stiffness), and the tip mass. The governing equation of the first mode is derived, and the method of multiple scales is used to determine the approximate solution based on the order of the expected variations. We demonstrate that the system can be designed so that small variations in either stiffness or tip mass can alter the type of bifurcation. Notably, we show that the response of a system designed for a supercritical bifurcation can change to yield a subcritical bifurcation with small variations in the parameters. Although such a trend is usually undesired, we argue that it can be used to detect small variations induced by fatigue or small mass depositions in sensing applications.
Finally, we consider a cantilever beam with tip mass and piezoelectric layer and propose a parameter identification scheme that exploits the vibration response to estimate the nonlinear piezoelectric coefficients. We develop the governing equations of a cantilever beam with tip mass and piezoelectric layer by considering an enthalpy that accounts for quadratic and cubic material nonlinearities. We then use the method of multiple scales to determine the approximate solution of the response to direct excitation. We show that approximate solution and amplitude and phase modulation equations obtained from the method of multiple scales analysis can be matched with numerical simulation of the response to estimate the nonlinear piezoelectric coefficients. / Master of Science / The domain of structural dynamics involves the evaluation of the structures response when subjected to time-varying loads. This field has many applications. For instance, by observing specific variations in the response of a structure such as bridge or a structural element such as a beam, one can diagnose the state of the structure or one of its elements. At much smaller scales, one can use a device to observe small variations in the response of a beam to detect the presence of bio-materials or gas particles in air. Additionally, one can use the response of a structure to harvest energy of ambient vibrations that are freely available.
In this thesis, we develop a mathematical framework for evaluating the response of a cantilever beam with a tip mass to small variations in material properties caused by fatigue and to small variations in the tip mass caused by additional mass that gets bound to the structure. We also exploit the response of the beam to evaluate nonlinear material properties of piezoelectric materials that have been suggested for use in charging micro sensors, vibration control, load sensing and for high power energy transfer applications.
|
185 |
Théorie des semi-groupes pour les équations de Stokes et de Navier-Stokes avec des conditions aux limites de type Navier / Semi-group theory for the Stokes and Navier-Stokes equations with Navier-type boundary conditionsAl Baba, Hind 10 June 2015 (has links)
Cette thèse est consacrée à l'étude théorique mathématique des équations de Stokes et de Navier-Stokes dans un domaine borné de R^3 en utilisant la théorie des semi-groupes. Trois différents types de conditions seront considérés : des conditions aux limites de Navier, de type-Navier et des conditions qui dépendent de la pression. Ce manuscrit est composé de six chapitres. Tout d'abord nous commençons par un état de l'art sur les équations de Navier-Stokes. Ensuite nous démontrons l'analyticité du semi-groupe de Stokes avec chacune des conditions ci-dessus. Ceci permet de résoudre le problème d'évolution en utilisant la théorie des semi-groupes. Nous étudions également les puissances complexes et fractionnaires de l'opérateur de Stokes pour lesquelles nous démontrons certaines propriétés et estimations. Ces résultats seront utilisés dans la suite pour obtenir des estimations de type L^p-L^q pour le semi-groupe de Stokes, un résultat de régularité L^p-L^q maximale pour le problème de Stokes inhomogène et des résultats d'existence et d'unicité locale pour le problème non-linéaire. Après nous étudions le problème d'évolution de Stokes. Outre la régularité L^p-L^q maximale, nous démontrons l'existence des solutions faibles u∈L^q (0,T; W^(1,p) (Ω)), fortes u∈L^q (0,T; W^(2,p) (Ω)) et très faibles u∈L^q (0,T; L^p (Ω)) du problème de Stokes. On termine par l'étude du problème de Navier-Stokes avec chacune des conditions aux limites citées ci-dessus. Tout d'abord, en utilisant les estimations L^p-L^q on démontre l'existence d'une unique solution locale u qui vérifieu∈BC([0,T_0 ); L_(σ,τ)^p (Ω))∩L^q (0,T_0; L_(σ,τ)^r (Ω)), q,r>p, 2/q+3/r=3/p.De plus, pour une donnée initiale petite, on obtient l'existence globale des solutions. Ensuite en estimant le terme non-linéaire en fonction des puissances fractionnaires de l'opérateur de Stokes on démontre la régularité de la solution. / This thesis is devoted to the mathematical theoretical study of the Stokes and Navier-Stokes equations in a bounded domain of R^3 using the semi-group theory. Three different types of boundary conditions will be considered: Navier boundary conditions, Navier-type boundary conditions and boundary condition involving the pressure. This manuscript contains six chapters. We prove first the analyticity of the Stokes semi-group with each of the boundary conditions stated above. This allows us to solve the time dependent Stokes problem using the semi-group theory. We will study also the complex and fractional powers of the Stokes operator for which we prove some properties and estimations. These results will be used in the sequel to prove an estimate of type L^p-L^q for the Stokes semigroup, as well as the maximal L^p-L^q regularity for the inhomogeneous Stokes problem and an existence result for the non-linear problem. Next we study the time dependent Stokes problem, besides the maximal L^p-L^q regularity, we prove the existence of weak u∈L^q (0,T; W^(1,p) (Ω)), strong u∈L^q (0,T; W^(2,p) (Ω)) and very weak u∈L^q (0,T; L^p (Ω)) solutions to the Stokes problem. We end with the study of the Navier-Stokes problem. First using the L^p-L^q estimate for the Stokes semi-group we prove the existence of a unique local in time mild solution for the Navier-Stokes problem that verifies u∈BC([0,T_0 ); L_(σ,τ)^p (Ω))∩L^q (0,T_0; L_(σ,τ)^r (Ω)), q,r>p, 2/q+3/r=3/p.Furthermore, for some initial data the solution is global in time. Finally, by estimating the non-linear term as a function of the fractional powers of the Stokes operator we prove that the solution is regular.
|
186 |
Etude des méthodes de pénalité-projection vectorielle pour les équations de Navier-Stokes avec conditions aux limites ouvertes / Study of the vector penalty-projection methods for Navier-Stokes equations with open boundary conditionsCheaytou, Rima 30 April 2014 (has links)
L'objectif de cette thèse consiste à étudier la méthode de pénalité-projection vectorielle notée VPP (Vector Penalty-Projection method), qui est une méthode à pas fractionnaire pour la résolution des équations de Navier-Stokes incompressible avec conditions aux limites ouvertes. Nous présentons une revue bibliographique des méthodes de projection traitant le couplage de vitesse et de pression. Nous nous intéressons dans un premier temps aux conditions de Dirichlet sur toute la frontière. Les tests numériques montrent une convergence d'ordre deux en temps pour la vitesse et la pression et prouvent que la méthode est rapide et peu coûteuse en terme de nombre d'itérations par pas de temps. En outre, nous établissons des estimations d'erreurs de la vitesse et de la pression et les essais numériques révèlent une parfaite concordance avec les résultats théoriques. En revanche, la contrainte d'incompressibilité n'est pas exactement nulle et converge avec un ordre de O(varepsilondelta t) où varepsilon est un paramètre de pénalité choisi assez petit et delta t le pas temps. Dans un second temps, la thèse traite les conditions aux limites ouvertes naturelles. Trois types de conditions de sortie sont étudiés et testés numériquement pour l'étape de projection. Nous effectuons des comparaisons quantitatives des résultats avec d'autres méthodes de projection. Les essais numériques sont en concordance avec les estimations théoriques également établies. Le dernier chapitre est consacré à l'étude numérique du schéma VPP en présence d'une condition aux limites ouvertes non-linéaire sur une frontière artificielle modélisant une charge singulière pour le problème de Navier-Stokes. / Motivated by solving the incompressible Navier-Stokes equations with open boundary conditions, this thesis studies the Vector Penalty-Projection method denoted VPP, which is a splitting method in time. We first present a literature review of the projection methods addressing the issue of the velocity-pressure coupling in the incompressible Navier-Stokes system. First, we focus on the case of Dirichlet conditions on the entire boundary. The numerical tests show a second-order convergence in time for both the velocity and the pressure. They also show that the VPP method is fast and cheap in terms of number of iterations at each time step. In addition, we established for the Stokes problem optimal error estimates for the velocity and pressure and the numerical experiments are in perfect agreement with the theoretical results. However, the incompressibility constraint is not exactly equal to zero and it scales as O(varepsilondelta t) where $varepsilon$ is a penalty parameter chosen small enough and delta t is the time step. Moreover, we deal with the natural outflow boundary condition. Three types of outflow boundary conditions are presented and numerically tested for the projection step. We perform quantitative comparisons of the results with those obtained by other methods in the literature. Besides, a theoretical study of the VPP method with outflow boundary conditions is stated and the numerical tests prove to be in good agreement with the theoretical results. In the last chapter, we focus on the numerical study of the VPP scheme with a nonlinear open artificial boundary condition modelling a singular load for the unsteady incompressible Navier-Stokes problem.
|
187 |
Evolution equations in physical chemistryMichoski, Craig E. 05 August 2010 (has links)
We analyze a number of systems of evolution equations that arise in the study of physical chemistry. First we discuss the well-posedness of a system of mixing compressible barotropic multicomponent flows. We discuss the regularity of these variational solutions, their existence and uniqueness, and we analyze the emergence of a novel type of entropy that is derived for the system of equations.
Next we present a numerical scheme, in the form of a discontinuous Galerkin (DG) finite element method, to model this compressible barotropic multifluid. We find that the DG method provides stable and accurate solutions to our system, and that further, these solutions are energy consistent; which is to say that they satisfy the classical entropy of the system in addition to an additional integral inequality. We discuss the initial-boundary problem and the existence of weak entropy at the boundaries. Next we extend these results to include more complicated transport properties (i.e. mass diffusion), where exotic acoustic and chemical inlets are explicitly shown.
We continue by developing a mixed method discontinuous Galerkin finite element method to model quantum hydrodynamic fluids, which emerge in the study of chemical and molecular dynamics. These solutions are solved in the conservation form, or Eulerian frame, and show a notable scale invariance which makes them particularly attractive for high dimensional calculations.
Finally we implement a wide class of chemical reactors using an adapted discontinuous Galerkin finite element scheme, where reaction terms are analytically integrated locally in time. We show that these solutions, both in stationary and in flow reactors, show remarkable stability, accuracy and consistency. / text
|
188 |
Partitions spectrales optimales pour les problèmes aux valeurs propres de Dirichlet et de NeumannPéloquin-Tessier, Hélène 10 1900 (has links)
Les façons d'aborder l'étude du spectre du laplacien sont multiples. Ce mémoire se concentre sur les partitions spectrales optimales de domaines planaires. Plus précisément, lorsque nous imposons des conditions aux limites de Dirichlet, nous cherchons à trouver la ou les partitions qui réalisent l'infimum (sur l'ensemble des partitions à un certain nombre de composantes) du maximum de la première valeur propre du laplacien sur tous ses sous-domaines. Dans les dernières années, cette question a été activement étudiée par B. Helffer, T. Hoffmann-Ostenhof, S. Terracini et leurs collaborateurs, qui ont obtenu plusieurs résultats analytiques et numériques importants.
Dans ce mémoire, nous proposons un problème analogue, mais pour des conditions aux limites de Neumann cette fois. Dans ce contexte, nous nous intéressons aux partitions spectrales maximales plutôt que minimales. Nous cherchons alors à vérifier le maximum sur toutes les $k$-partitions possibles du minimum de la première valeur propre non nulle de chacune des composantes. Cette question s'avère plus difficile que sa semblable dans la mesure où plusieurs propriétés des valeurs propres de Dirichlet, telles que la monotonicité par rapport au domaine, ne tiennent plus. Néanmoins, quelques résultats sont obtenus pour des 2-partitions de domaines symétriques et des partitions spécifiques sont trouvées analytiquement pour des domaines rectangulaires. En outre, des propriétés générales des partitions spectrales optimales et des problèmes ouverts sont abordés. / There exist many ways to study the spectrum of the Laplace operator. This master thesis focuses on optimal spectral partitions of planar domains. More specifically, when imposing Dirichlet boundary conditions, we try to find partitions that achieve the infimum (over all the partitions of a given number of components) of the maximum of the first eigenvalue of the Laplacian in all the subdomains. This question has been actively studied in recent years by B. Helffer, T. Hoffmann-Ostenhof, S. Terracini and their collaborators, who obtained a number of important analytic and numerical results.
In the present thesis we propose a similar problem, but for the Neumann boundary conditions. In this case, we are looking for spectral maximal, rather than minimal, partitions. More precisely, we attempt to find the maximum over all possible $k$-partitions of the minimum of the first non-zero Neumann eigenvalue of each component. This question appears to be more difficult than the one for the Dirichlet conditions, since many properties of Dirichlet eigenvalues, such as domain monotonicity, no longer hold in the Neumann case. Nevertheless, some results are obtained for 2-partitions of symmetric domains, and specific partitions are found analytically for rectangular domains. In addition, some general properties of optimal spectral partitions and open problems are also discussed.
|
189 |
Théorème de Pleijel pour l'oscillateur harmonique quantiqueCharron, Philippe 08 1900 (has links)
L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés. / The aim of this thesis is to explore the geometric properties of eigenfunctions of the isotropic quantum harmonic oscillator. We focus on studying the nodal domains, which are the connected components of the complement of the nodal (i.e. zero) set of an eigenfunction. Assume that the eigenvalues are listed in an increasing order. According to a fundamental theorem due to Courant, an eigenfunction corresponding to the $n$-th eigenvalue has at most $n$ nodal domains. This result has been originally proved for the Dirichlet eigenvalue problem on a bounded Euclidean domain, but it also holds for the eigenfunctions of a quantum harmonic oscillator. Courant's theorem was refined by Pleijel in 1956, who proved a more precise result on the asymptotic behaviour of the number of nodal domains of the Dirichlet eigenfunctions on bounded domains as the eigenvalues tend to infinity. In the thesis we prove a similar result in the case of the isotropic quantum harmonic oscillator. To do so, we use a combination of classical tools from spectral geometry (some of which were used in Pleijel’s original argument) with a number of new ideas, which include applications of techniques from algebraic geometry and the study of unbounded nodal domains.
|
190 |
Géométrie nodale et valeurs propres de l’opérateur de Laplace et du p-laplacienPoliquin, Guillaume 09 1900 (has links)
La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété.
Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire.
Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage.
Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse. / The main topic of the present thesis is spectral geometry. This area of mathematics is concerned with establishing links between the geometry of a Riemannian manifold and its spectrum. The spectrum of a closed Riemannian manifold M equipped with a Riemannian metric g associated with the Laplace-Beltrami operator is a sequence of non-negative numbers tending to infinity. The square root of any number of this sequence represents a frequency of vibration of the manifold.
This thesis consists of four articles all related to various aspects of spectral geometry. The first paper, “Superlevel sets and nodal extrema of Laplace eigenfunction”, is presented in Chapter 1. Nodal geometry of various elliptic operators, such as the Laplace-Beltrami operator, is studied. The goal of this paper is to generalize a result due to L. Polterovich and M. Sodin that gives a bound on the distribution of nodal extrema on a Riemann surface for a large class of functions, including eigenfunctions of the Laplace-Beltrami operator. The proof given by L. Polterovich and M. Sodin is only valid for Riemann surfaces. Therefore, I present a different approach to the problem that works for eigenfunctions of the Laplace-Beltrami operator on Riemannian manifolds of arbitrary dimension.
The second and the third papers of this thesis are focused on a different elliptic operator, namely the p-Laplacian. This operator has the particularity of being non-linear. The article “Principal frequency of the p-Laplacian and the inradius of Euclidean domains” is presented in Chapter 2. It discusses lower bounds on the first eigenvalue of the Dirichlet eigenvalue problem for the p-Laplace operator in terms of the inner radius of the domain. In particular, I show that if p is greater than the dimension, then it is possible to prove such lower bound without any hypothesis on the topology of the domain. Such bounds have previously been studied by well-known mathematicians, such as W. K. Haymann, E. Lieb, R. Banuelos, and T. Carroll. Their papers are mostly oriented toward the case of the usual Laplace operator. The generalization of such lower bounds for the p-Laplacian is done in my third paper, “Bounds on the Principal Frequency of the p-Laplacian”. It is presented in Chapter 3.
My fourth paper, “Wolf-Keller theorem of Neumann Eigenvalues”, is a joint work with Guillaume Roy-Fortin. This paper is concerned with the shape optimization problem in the case of the Laplace operator with Neumann boundary conditions. The main result of our paper is that eigenvalues of the Neumann boundary problem are not always maximized by disks among planar domains of given area. This joint work is presented in Chapter 4.
|
Page generated in 0.1164 seconds