• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 72
  • 57
  • 31
  • 20
  • 18
  • 14
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 488
  • 116
  • 108
  • 92
  • 76
  • 66
  • 64
  • 56
  • 54
  • 45
  • 45
  • 44
  • 42
  • 40
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Novel MEMS Tunable Capacitors with Linear Capacitance-Voltage Response Considering Fabrication Uncertainties

Shavezipur, Mohammad January 2008 (has links)
Electrostatically actuated parallel-plate MEMS tunable capacitors are desired elements for different applications including sensing, actuating and communications and RF (radio frequency) engineering for their superior characteristics such as quick response, high Q-factor and small size. However, due to the nature of their coupled electrostatic-structural physics, they suffer from low tuning range of 50% and have nonlinear capacitance-voltage (C-V) responses which are very sensitive to the voltage change near pull-in voltage. Numerous studies in the literature introduce new designs with high tunability ranging from 100% to over 1500%, but improvement of the nonlinearity and high sensitivity of the capacitor response have not received enough attention. In this thesis, novel highly tunable capacitors with high linearity are proposed to reduce sensitivity to the voltage changes near pull-in. The characteristic equations of a perfectly linear capacitor are first derived for two- and three-plate capacitors to obtain insight for developing linear capacitance-voltage responses. The devices proposed in this research may be classified into three categories: designs with nonlinear structural rigidities, geometric modifications and flexible moving electrodes. The concept of nonlinear supporting beams is exploited to develop parallel-plate capacitors with partially linear C-V curves. Novel electrodes with triangular, trapezoidal, butterfly, zigzag and fishbone shapes and structural/geometric nonlinearities are used to increase the linearity and tuning ratio of the response. To investigate the capacitors' behavior, an analytical approximate model is developed which can drastically decrease the computation time. The model is ideal for early design and optimization stages. Using this model, design variables are optimized for maximum linearity of the C-V responses. The results of the proposed modeling approach are verified by ANSYS FEM simulations and/or experimental data. When the fabrication process has dimensional limitations, design modifications and geometric enhancements are implemented to improve the linearity of the C-V response. The design techniques proposed in this thesis can provide tunabilities ranging from 80% to over 350% with highly linear regions in resulting C-V curves. Due to the low sensitivity of the capacitance to voltage changes in new designs, the entire tuning range is usable. Furthermore, the effect of fabrication uncertainties on parallel-plate capacitors performance is studied and a sensitivity analysis is performed to find the design variables with maximum impact on the C-V curves. An optimization method is then introduced to immunize the design against fabrication uncertainties and to maximize the production yield for MEMS tunable capacitors. The method approximates the feasible region and the probability distribution functions of the design variables to directly maximize the yield. Numerical examples with two different sets of design variables demonstrate significant increase in the yield. The presented optimization method can be advantageously utilized in design stage to improve the yield without increasing the fabrication cost or complexity.
52

Novel MEMS Tunable Capacitors with Linear Capacitance-Voltage Response Considering Fabrication Uncertainties

Shavezipur, Mohammad January 2008 (has links)
Electrostatically actuated parallel-plate MEMS tunable capacitors are desired elements for different applications including sensing, actuating and communications and RF (radio frequency) engineering for their superior characteristics such as quick response, high Q-factor and small size. However, due to the nature of their coupled electrostatic-structural physics, they suffer from low tuning range of 50% and have nonlinear capacitance-voltage (C-V) responses which are very sensitive to the voltage change near pull-in voltage. Numerous studies in the literature introduce new designs with high tunability ranging from 100% to over 1500%, but improvement of the nonlinearity and high sensitivity of the capacitor response have not received enough attention. In this thesis, novel highly tunable capacitors with high linearity are proposed to reduce sensitivity to the voltage changes near pull-in. The characteristic equations of a perfectly linear capacitor are first derived for two- and three-plate capacitors to obtain insight for developing linear capacitance-voltage responses. The devices proposed in this research may be classified into three categories: designs with nonlinear structural rigidities, geometric modifications and flexible moving electrodes. The concept of nonlinear supporting beams is exploited to develop parallel-plate capacitors with partially linear C-V curves. Novel electrodes with triangular, trapezoidal, butterfly, zigzag and fishbone shapes and structural/geometric nonlinearities are used to increase the linearity and tuning ratio of the response. To investigate the capacitors' behavior, an analytical approximate model is developed which can drastically decrease the computation time. The model is ideal for early design and optimization stages. Using this model, design variables are optimized for maximum linearity of the C-V responses. The results of the proposed modeling approach are verified by ANSYS FEM simulations and/or experimental data. When the fabrication process has dimensional limitations, design modifications and geometric enhancements are implemented to improve the linearity of the C-V response. The design techniques proposed in this thesis can provide tunabilities ranging from 80% to over 350% with highly linear regions in resulting C-V curves. Due to the low sensitivity of the capacitance to voltage changes in new designs, the entire tuning range is usable. Furthermore, the effect of fabrication uncertainties on parallel-plate capacitors performance is studied and a sensitivity analysis is performed to find the design variables with maximum impact on the C-V curves. An optimization method is then introduced to immunize the design against fabrication uncertainties and to maximize the production yield for MEMS tunable capacitors. The method approximates the feasible region and the probability distribution functions of the design variables to directly maximize the yield. Numerical examples with two different sets of design variables demonstrate significant increase in the yield. The presented optimization method can be advantageously utilized in design stage to improve the yield without increasing the fabrication cost or complexity.
53

Development of Monolithic Switched-Capacitor Power Converters for Self-Powered Microsystems

Su, Ling January 2009 (has links)
Modern electronics continues to push past boundaries of integration and functional density toward elusive, completely autonomous, self-powered microsystems. As systems continue to shrink, however, less energy is available on board, leading to short device lifetimes (run-time or battery life). Extended battery life is particularly advantageous in the systems with limited accessibility, such as biomedical implants and structure-embedded micro-sensors. The power management process usually requires compact and efficient power converters to be embedded in these microsystems. This dissertation introduces switched-capacitor (SC) power converter designs that make all these techniques realizable on silicon.Four different integrated SC power converters with multiple control schemes are designed here to provide low-power high-efficient power sources. First, a monolithic step-down power converter with subthreshold z-domain digital pulse-width modulation (DPWM) controller is proposed for ultra-low power microsystems. The subthreshold design significantly reduces the power dissipation in the controller. Second, an efficient monolithic master-slave complementary power converter with a feedback controller that purely operates in subthreshold operation region is discussed to tailor for the aforementioned ultra-low power applications. Third, we introduce an efficient monolithic step-down SC power stage with multiple-gain control and on-chip capacitor sizing for self-powered microsystems. The multiple-gain control helps the converter to constantly maintain high efficiency over a large input/output range. The size-adjustable pumping capacitors allow the output voltage to be regulated at different desired levels, with a constant 50% duty ratio. The monolithic implementations in these three integrated CMOS power converters effectively suppress noise and glitches caused by parasitic components due to bonding, packaging and PCB wiring. Fourth, an efficient step-up and step-down SC power converter with multiple-gain closed-loop controller is presented. The measurements and simulation results in these four power converters demonstrate the techniques proposed in this research. The approaches presented in this dissertation are evidently viable for realizing compact and high efficient SC power converters, contributing to next generation power-efficient microsystems designs.
54

Avaliação do desempenho do óxido de alumínio com tratamento de superfície como dielétrico para capacitores MIS e OFETs / Evaluation of the performance of aluminum oxide with Surface treatment as dielectric for MIS and OFET capacitors

Silva, Marcelo Marques da [UNESP] 25 April 2017 (has links)
Submitted by Marcelo Marques da Silva null (marcelomarques657@yahoo.com.br) on 2017-08-31T02:34:55Z No. of bitstreams: 1 Tese_versão_FINAL.pdf: 3504812 bytes, checksum: d5cea839c787579376ad107a79a48213 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-09-01T13:28:41Z (GMT) No. of bitstreams: 1 silva_mm_dr_bauru.pdf: 3504812 bytes, checksum: d5cea839c787579376ad107a79a48213 (MD5) / Made available in DSpace on 2017-09-01T13:28:41Z (GMT). No. of bitstreams: 1 silva_mm_dr_bauru.pdf: 3504812 bytes, checksum: d5cea839c787579376ad107a79a48213 (MD5) Previous issue date: 2017-04-25 / Foi realizado um estudo sobre as propriedades elétricas de filmes finos de óxido de alumínio (Al2O3) obtidos por anodização em solução eletrolítica preparada com ácido tartárico, etileno glicol e água. Filmes de Al2O3 com espessuras entre 20 e 70 nm foram crescidos sobre camadas de alumínio as quais foram depositadas por evaporação em vácuo sobre lâminas de vidro. Utilizou-se o processo de anodização em duas etapas, sendo que na primeira etapa aplica-se uma corrente constante de 0,48 mA/cm2 e monitora a tensão até alcançar o valor final, programado conforme a espessura desejada; e então, na segunda etapa, mantem-se se a tensão final durante 2 minutos, enquanto mede-se a corrente. Os filmes de Al2O3 apresentam constante dielétrica média de aproximadamente sete (ε = 7), tan δ da ordem de 10-3 e resistividade elétrica da ordem de 1013 cm. Estudou-se o efeito do tratamento de superfície pela a deposição de monocamadas dos silanos, octadecil triclorosilano (OTS), hexametildisilazano (HMDS) e do ácido fosfônico (OPA) nas características elétricas. O tratamento com HMDS se mostrou o mais efetivo, diminuindo a corrente de fuga e aumentando campo de ruptura dielétrica. Também foi estudado o efeito do recobrimento, da superfície dos filmes de Al2O3, com filmes dos polímeros isolantes poliestireno (PS), polivinil álcool (PVA), fluoreto de polivinilideno (PVDF) e polimetilmetacrilato (PMMA). A deposição de um filme de PMMA foi a que apresentou os melhores resultados, com redução da corrente de fuga em torno de duas ordens de grandeza em relação aos filmes não tratados. Dispositivos com estrutura metal isolante e semicondutor (MIS) tendo o poli(3-hexyltiofeno) (P3HT) como semicondutor, também foram estudados com a finalidade de avaliar a aplicabilidade do Al2O3 como dielétrico em eletrônica orgânica. Conclui-se que filmes de Al2O3 preparados pela técnica de anodização com tratamento de superfície por deposição de uma monocamada de HMDS ou recoberto com um filme de PMMA é uma boa opção de dielétrico para eletrônica orgânica. / A study about electric properties of aluminum oxide (Al2O3) obtained by anodization of aluminum in a electrolytic solution prepared with tartaric acid, ethylene glycol and water was performed. Thin Al2O3 films from 20 to 70 nm were grown on aluminum layer which were deposited on glass slides by vacuum metallization. It was used the anodization process in two stages, being that in first stage applies a constant current of 0,48 mA/cm2 and monitory the voltage until reach the final value, programmed in according to the desired thickness; and in the second stage, the final voltage is maintained for two minutes, while the current is measured. The Al2O3 films present medium dielectric constant about seven (ε = 7), tan δ in order of 10-3 and resistivity in order of 1013 cm. It was studied the surface treatment effect by monolayers depositions of octadecyl trichlorosilane (OTS), hexamethyldisilazane (HMDS) and phosphonic acid (OPA) on the electrical characteristics. The HMDS treatment proved to be the most effective, reducing the leakage current and increasing the dielectric rupture field. The effect of the addition of polystyrene (PS), polyvinyl alcohol (PVA), polyvinylidene fluoride (PVDF) and polymethylmethacrylate (PMMA) films on the oxide surface was also studied. The deposition of a PMMA film presented the best results, with reduction of the leakage current around two orders of magnitude in relation to pristine oxide. Devices with metal-insulator-semiconductor (MIS) structure, using the polymeric (3-hexythiophene) (P3HT) as semiconductors, also have been studied in order to evaluate the applicability of Al2O3 films as dielectric in organic electronics. It was concluded that Al2O3 films prepared by anodization, coated with a monolayer of HMDS or a thin PMMA film, are an excellent choice for apply as dielectric in organic electronics.
55

Instrumentação para a caracterização dielétrica de filmes biodegradáveis / Instrumentation for dielectric characterization of biodegradable films

Paula Figueiredo Matheus Cremasco 19 February 2016 (has links)
A caracterização dielétrica de um material pode ser usada como uma técnica não destrutiva para avaliar e monitorar sua qualidade, bem como no entendimento da relação estrutura-propriedade de um material, através de suas propriedades dielétricas em função da frequência, temperatura, composição química do material, dentre outros. Na literatura há escassez de trabalhos e dados de caracterização dielétrica de filmes a base de biopolímeros. Diante desse contexto, o objetivo deste trabalho foi o desenvolvimento e a construção de uma instrumentação alternativa a equipamentos disponíveis no mercado, como analisadores de rede e de impedância, que pudesse ser utilizada para a caracterização dielétrica de filmes biodegradáveis a base de gelatina. Foi utilizado o método de placas paralelas na determinação da parte real da permissividade conhecida como permissividade relativa ou constante dielétrica (ε\'). O circuito utilizado para a instrumentação foi um oscilador astável com funcionamento baseado no amplificador operacional (741) chaveado pela carga de um capacitor de placas paralelas cujo dielétrico foi uma amostra de filme biodegradável. A partir dos valores da frequência de oscilação e geometria do capacitor, foi possível calcular a capacitância de cada amostra e, consequentemente obter os valores da permissividade relativa do filme, usando relações básicas bem estabelecidas. Os filmes de gelatina foram produzidos pela técnica de casting sendo utilizados como plastificantes o glicerol (G), o sorbitol (S) e suas misturas, na proporção (G:S) de 30:70, 50:50 e 70:30. Os filmes foram caracterizados quanto à umidade e cristalinidade. A permissividade relativa (ε\') dos filmes, determinada a temperatura ambiente, foi avaliada em função da frequência (5 a 50 kHz), tempo de armazenamento, do teor de umidade e tipo de plastificante. A instrumentação projetada e construída foi capaz de medir com precisão a permissividade relativa das amostras, sendo que essa propriedade diminuiu com o aumento da frequência para todos os filmes. Mantendo-se a frequência constante, não houve variação de ε\' para os filmes de gelatina, independente do plastificante, ao longo de um mês de armazenamento a 24 ± 3 °C. O efeito da umidade foi observado em frequências menores que 25 kHz, sendo que quanto maior o teor de umidade maior a permissividade relativa. O efeito do tipo de plastificante na permissividade relativa dos filmes foi observado a baixas frequências (5 kHz) e filmes plastificados com sorbitol apresentaram maiores valores de ε\'. Os filmes plastificados com maior teor de umidade apresentaram menor cristalinidade, portanto maior mobilidade molecular e consequentemente maior a permissividade relativa. / The dielectric characteristics of a material can be used as a non-destructive technique to evaluate and monitor the quality as well as the understanding of the structure-property of a material, through its dielectric properties as a function of frequency, temperature, chemical composition of the material, among others. In the literature there are few studies and data of dielectric characterization of films based on biopolymers. In this context, the objective of this research was the development and construction of an alternative instrumentation equipment on the market, such as network and impedance analyzers, which could be used for the dielectric characterization of biodegradable films based on gelatin. The method of parallel plates was used to determine the real part of permittivity known as relative permittivity or dielectric constant (ε\'). The circuit used for the instrumentation was an astable oscillator operation based on operational amplifier (741) switched by the load of a parallel plate capacitor whose dielectric was a sample of the biodegradable film. From the values of the oscillation frequency and geometry of the capacitor, it was possible to calculate the capacitance of each sample and thus obtaining values of the relative permittivity of the film, using well established basic relationships. Gelatin films were produced by casting technique being used as plasticizer glycerol (G), sorbitol (S) and mixtures thereof, in proportion (G:S) 30:70, 50:50 and 70:30. The films were characterized for moisture and crystallinity. The relative permittivity (ε\') of the films, determined at room temperature, was evaluated as a function of frequency (5-50 kHz), storage time, moisture content and type of plasticizer. The designed and constructed instrumentation was able to accurately measure the relative permittivity of the samples, being that this property decreased with increasing frequency for all films. Keeping constant frequency, there was no variation in ε\' for the gelatin films, independent of the plasticizer over one month of storage at 24 ± 3 °C. The moisture effect was observed at frequencies lower than 25 kHz, how bigger the moisture content the higher the relative permittivity. The effect of the plasticizer type in relative permittivity of the films were observed at low frequency (5 kHz) and plasticized films with sorbitol have higher ε\' values. The plasticized films with higher moisture content exhibit lower crystallinity, hence larger molecular mobility and consequently higher the relative permittivity.
56

Estudo e fabricação de capacitores MOS com camada isolante de SiOxNy depositada por PECVD. / Study and fabrication of MOS capacitor with PECVD SiOxNy.

Katia Franklin Albertin 03 April 2003 (has links)
Neste trabalho foram fabricados e caracterizados capacitores MOS com camada dielétrica de oxinitreto de silício de diferentes composição química, depositada pela técnica de PECVD a baixa temperatura, com o intuito de estudar suas propriedades dielétricas e de interface visando à aplicação deste material em dispositivos MOS e de filme fino. Os capacitores foram fabricados sobre lâminas de silício do tipo p que passaram pelo processo de limpeza química inicial, seguida da deposição da camada dielétrica, fotogravação, metalização e sinterização. Os filmes de SiOxNy, utilizados como camada dielétrica, foram depositados pela técnica de PECVD à temperatura de 320ºC variando os fluxos dos gases precursores de forma a obter filmes com diferentes composições químicas. Os capacitores MOS foram caracterizados por medidas de capacitância e corrente em função da tensão, de onde foram extraídas a densidade de estados de interface, a densidade de carga efetiva, constante dielétrica e campo elétrico de ruptura dos filmes. Os resultados mostraram uma variação linear da constante dielétrica do filme em função da concentração de nitrogênio, indo do valor de 3,9, correspondente ao dióxido de silício estequiométrico (SiO2) à 7,2 correspondente ao nitreto de silício estequiométrico (Si3N4). Também observamos que o nitrogênio é uma barreira eficiente à difusão de impurezas através do dielétrico. Porém, notamos uma grande dispersão de duas ordens de grandeza nos valores da carga efetiva (Nss) e de densidade de estados de interface (Dit). Por outro lado, controlando algumas variáveis de forma a manter constante o valor de Nss ( ~1012 cm-2), observamos uma variação de Dit em função da concentração de nitrogênio no filme, esta variação porém é pequena comparada com a dispersão de duas ordens de grandeza observada, que atribuímos assim a fatores externos. O menor valor obtido de Dit foi de 4,55.1010 eV-1.cm-2, que é ótimo para um filme obtido por PECVD, sem nenhum tratamento térmico e melhor que os reportados na literatura para dielétricos obtidos por técnicas que utilizam altas temperaturas (LPCVD-800ºC e oxinitretação térmica – 1100ºC). Assim, podemos concluir que a técnica de PECVD é promissora para a obtenção de dielétricos a baixas temperaturas. / In this work, MOS capacitors with different chemical composition silicon oxynitride insulating layer, deposited by PECVD technique at low temperature were fabricated and characterized, in order to study its dielectric and interface properties, seeking its aplication as insulating layer in MOS and thin films devices. The MOS capacitors were fabricated onto p-silicion wafers previously cleaned by a standard process, followed by the insulating layer deposition, photolitography, metalization and sinterization. The SiOxNy insulating layer was deposited by the PECVD technique at 320ºC changing the precursor gases flows to obtain films with different chemical compositions. The MOS capacitors were characterized by capacitance and current vs. voltage measurements, from where the interface state density (Dit), the effective charge density (Nss), the dielectric constant (k) and the film electrical breakdown field (Ebd) were extracted. The results showed a dielectric constant varying linearly as a function of the films nitrogen concentration, going from a value of 3.9, corresponding to stoichiometric silicon dioxide (SiO2) to a value of 7.2, corresponding to stoichiometric silicon nitride film (Si3N4). We also observed that nitrogen is an efficient diffusion barrier against contaminants. However, a large dispersion, about two orders of magnitude, in the effective charge and in the interface state density was observed. On the other hand, controlling some variables so as to keep the Nss value constant (~1012 cm-2) we observed a Dit variation as a function of the film nitrogen concentration, this variation is small when compared with the observed dispersion of two orders of magnitude, thus attributed to external factors. The smallest obtained Dit was 4.55.1010 eV-1.cm-2, which is unexpected for a PECVD film without any anealing process and is better than the values reported in the literature for dielectrics obtained at high temperatures techniques (as LPCVD – 800ºC and thermal oxynitridation – 1100ºC). Therefore, we can conclude that the PECVD technique is promising for obtaining low temperature dielectrics.
57

Processing Carbon Nanotube Fibers for Wearable Electrochemical Devices

Kanakaraj, Sathya Narayan January 2019 (has links)
No description available.
58

Development and Testing of a Capacitor Probe to Detect Deterioration in Portland Cement Concrete

Diefenderfer, Brian K. 11 February 1998 (has links)
Portland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage or chloride presence) can lead to significant reductions in maintenance costs. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant in a laboratory setting. A parallel-plate capacitor operating in the frequency range of 0.1 to 40.1 MHz was developed at Virginia Tech for this purpose. While useful in research, this approach is not practical for field implementation. In this study, a capacitor probe was designed and fabricated to determine the in-situ dielectric properties of PCC over a frequency range of 2.0 to 20.0 MHz. It is modeled after the parallel-plate capacitor in that it consists of two conducting plates with a known separation. The conducting plates are flexible, which allows them to conform to different geometric shapes. Prior to PCC testing, measurements were conducted to determine the validity of such a system by testing specimens possessing known dielectric properties (Teflon). Portland cement concrete specimens were cast (of sufficient size to prevent edge diffraction of the electromagnetic waves) having two different air contents, two void thicknesses, and two void depths (from the specimen's surface). Two specimens were cast for each parameter and their results were averaged. The dielectric properties over curing time were measured for all specimens, using the capacitor probe and the parallel-plate capacitor. The capacitor probe showed a decrease in dielectric constant with increasing curing time and/or air content. In addition to measuring dielectric properties accurately and monitoring the curing process, the capacitor probe was also found to detect the presence and relative depth of air voids, however, determining air void thickness was difficult. / Master of Science
59

A Charge-Balancing Incremental Analog to Digital Converter for Instrumental Applications

Zrilić, D., Skendzić, D., Pajavić, S., Ghorishi, R., Fu, F., Kandus, G. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1988 / Riviera Hotel, Las Vegas, Nevada / A switched-capacitor technique for realization of one bit serial A/D converter is presented. A conversion accuracy that is higher than 15 bits can be expected from its integrated realization. Results of simulation are presented. It is shown that arithmetic operations on bit serial signals are possible. Using arithmetic operations on delta-modulated signals, it is possible to build inexpensive options necessary in instrumentation.
60

Interdigitated capacitor sensor for complex dielectric constant sensing

Zhang, Sheng, 1986- 26 October 2010 (has links)
The objective of this thesis is to develop a complex dielectric properties sensor using interdigitated capacitor (IDC) structure. IDCs are easy to fabricate and because of its planar structure, it can be easily integrated with other sensing components and signal processing electronics. The design, fabrication, modeling, and testing of IDC sensors are presented in this thesis. Design parameters and their influence on sensor's output signals are discussed. Previous IDC models are reviewed and the limitations are studied. A new equivalent circuit model based on the fringing electric field distribution and a novel iterative data extraction algorithm combining Finite-Element Method (FEM) and the equivalent circuit model is studied. Results suggest that the algorithm can accurately extract relatively low dielectric constant and conductivity of material under test (MUT) from measured impedance data. / text

Page generated in 0.0344 seconds