• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 15
  • 13
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 120
  • 15
  • 14
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Étude de l'influx calcique des cellules épithéliales bronchiques mucoviscidosiques : implication des canaux TRP / Ca2+ influx in human bronchial epithelial cells : implication of TRP channels

Vachel, Laura 28 November 2014 (has links)
Les canaux TRP (Transient Receptor Potential) sont des acteurs clés de l'homéostasie calcique. Plusieurs de ces canaux interviennent dans l'influx calcique des cellules épithéliales bronchiques, notamment TRPC6, qui est impliqué dans un couplage fonctionnel avec le canal Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Les mutations du CFTR (F508del et G551D) sont à l'origine de la mucoviscidose (Cystic Fibrosis (CF)), qui aboutit à l'augmentation de l'influx calcique dans les cellules CF. L'objectif de ce travail a été d'étudier l'implication des canaux TRP dans la dérégulation de l'influx calcique des cellules épithéliales bronchiques CF. Nous avons mis en évidence que CFTR régulait négativement l'activité de TRPC6, tandis que l'influx calcique via TRPC6 permettait de potentialiser l'activité du canal muté CFTR-G551D, activé au préalable par le VX-770. Nous proposons donc une nouvelle stratégie thérapeutique, combinant un potentiateur de CFTR et un activateur spécifique de TRPC6. Nous nous sommes ensuite intéressés au rôle des canaux TRPV, en particulier TRPV5 et TRPV6, dans l'influx calcique des cellules épithéliales bronchiques. Nous avons observé que l'influx Ca2+ constitutif, attribuable à ces deux canaux, était doublé dans les cellules CF, dû à une augmentation de l'activité de TRPV6. En effet, l'expression de la PLC-δ1, une enzyme régulant négativement TRPV6, est dramatiquement réduite dans les cellules CF. La correction de l'adressage du F508del-CFTR a permis de normaliser l'activité de TRPV6 sans restaurer l'expression de la PLC-δ1 dans les cellules CF, suggérant un contrôle plus complexe de TRPV6 dans les cellules épithéliales bronchiques. / TRP (Transient Receptor Potential) channels are keys actors of Ca2+ homeostasis. Several of these channels are involved in the Ca2+ influx of bronchial epithelial cells, including TRPC6 which is implicated in a functional coupling with the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) channel. CFTR mutation leads Cystic Fibrosis (CF) disease and causes abnormal Ca2+ homeostasis trought an increased of Ca2+ influx in CF bronchial epithelial cells. Our objective is to investigate the implication of TRP channels in abnormal Ca2+ influx of CF bronchial epithelial cells.We showed that CFTR down regulates TRPC6 activity whereas Ca2+ influx through TRPC6 potentiates G551D-CFTR, activated by VX-770. We propose a new therapeutic strategy that combines a CFTR potentiator and a specific activator of TRPC6. Then, we focused on the role of TRPV channels, particularly TRPV5 and TRPV6, in Ca2+ influx of bronchial epithelial cells. We observed that constitutive Ca2+ influx, related to TRPV5/TRPV6 activity, was twice higher in CF cells due to the increase of TRPV6 activity. The expression of PLC-δ1, an enzyme that negatively regulates TRPV6 activity, is dramatically decreased in CF cells. The correction of F508del-CFTR trafficking allows TRPV6 activity normalization but do not restore PLC-δ1 expression level in CF cells, suggesting a more complex control of TRPV6 in bronchial epithelial cells.
92

Alleviating poverty with new technology? : A field study of the implications of a new agriculture production methodin Zambia and the factors affecting its adoption

Kalkan, Almina, Wiss, Johanna January 2009 (has links)
New technology and new innovations have for long been considered as a spring for growth. Conservation farming (CF) is a new production method introduced in rural Zambia and previous research shows that it increases yields and improves soil fertility. Even though the method is proven more efficient than conventional agriculture, only approximately 10 % of Zambia’s farmers have adopted the method. The purpose of this study is to discuss the implications of the introduction of CF on the capabilities of farmers and on economic growth. Furthermore, the study aims to explore why CF, which is proven to be more economically efficient than the conventional method, is not adopted to a larger extent in Zambia. A qualitative study of 25 farmers, farming with either CF or conventional methods, was performed in the region of Mumbwa, Zambia. The results were divided depending on whether the farmers were using the new method or not. To analyze the selected material theories were chosen that regard economic growth and technological change, the adoption process of new innovations, incentive creation and the expansion of capabilities. The two groups showed differences in age, the size of their land, how many crops they grew and to what extent they were working for others or hiring labor. The conclusion from the small sample of farmers is that the farmers using CF had been able to expand their capabilities in different ways. They had food for all the year, the new method allowed them to plan their time better and it was more environmentally sustainable than the old method. The negative aspect of CF is that it is not compatible with the old method in terms of social norms. CF leads to a more efficient use of capital and labor and therefore it can increase the economic growth. In terms of a new innovation, CF seems to have a relative advantage over the old method but it must be spread to a larger group of farmers to reach a breakthrough. To create a higher adoption rate of the method the farmers’ perception must be taken into account. / Minor Field Study (Sida)
93

Možnosti prezentace výsledků DZD na webu / Options of presentation of KDD results on Web

Koválik, Tomáš January 2015 (has links)
This diploma thesis covers KDD analysis of data and options of presentation of KDD results on Web. The paper is divided into three main sections, which follow the whole process of this thesis. In the first section are mentioned theoretical basics needed for understanding of discussed problem. In this section are described notions data matrix and domain knowledge, concept of CRISP-DM methodology, GUHA method, system LISp-Miner and implementation of GUHA method in LISp-Miner including description of core procedures 4ft-Miner and CF-Miner. The second section is dedicated to the first goal of this paper. It briefly summarizes analysis made during pre-analysis phase. Then is described process of analysis of domain knowledge in a given data set. The third part focuses on the second goal of this thesis, which is problem of presentation of KDD results on Web. This section covers brief theoretical basis for used technologies. Then is described development of export script for automatic generation of website from results found using LISp-Miner system including description of structure of the output and recommendations for work in LISp-Miner system.
94

The Body as a Grenade : Illness Metaphors, The Suffering of Others and Conservativism in Contemporary Sick-Flicks

Gregory, Christian January 2023 (has links)
Film has since its inception been a potent storytelling tool, and the concept of illnesses and death havebeen a critical element in the stories mankind has told through cinema since the beginning. While theearly years of film saw few titles which directly named or featured diseases such as cancer, the 1980’sand 1990’s saw a vast increase in illness narratives being produced. By the beginning of the newmillennium, a new subgenre of film was beginning to emerge, specifically targeted at youngaudiences: Sick-Flicks.The purpose of this thesis is to examine the Sick-Flick subgenre, and scrutinize the films which the author has identified according to how they handle a variety of factors. These include the portrayal ofmale and female sufferers in accordance with the feminist theoretical observation of masculinity beingrepresented as active, while femininity is typically passive in nature. Beyond this, the essay alsoattempts to add to Susan Sontag’s essay Illness as Metaphor, exploring how the portrayal of illnessmay have shifted since the essay’s publication in 1978. Finally, this thesis also concerns itself with thereoccurring narrative trend of featuring talented adolescents as terminally ill sufferers and how thismay tie into neoliberalism and belief in the meritocracy.This thesis concludes that while there has been a shift in the metaphorical portrayal of diseases,especially as it pertains to cancer, which Susan Sontag concludes unsuitable for romanticization,overall, many of the criticisms and potentially problematic commonalities which both Sick-Flicks andtheir literary counterpart Sick-Lit have featured through the years remain. There is a remaining focuson heteronormative and racially homogenous victims, and innate talents and intelligence are present,arguably in order to make the eventual loss of the ill characters more tangibly tragic. The authorconcludes that while it is debatable whether or not filmmakers should feel any responsibility to portrayillnesses accurately, they should at least likely strive to reflect the current reality as far as survivalrates are concerned.
95

The Young & The Dying : The Continued Romanticization of Terminally Ill Adolescents in Contemporary American Cinema

Gregory, Christian January 2020 (has links)
This essay examines how the past decade’s wave of young adult films portraying termi-nal illnesses compare and contrast with similar works from both film as well as literary works commonly referred to as “sick-lit”. By viewing three prominent films released be-tween 2014 and 2019 and applying both literature dealing with sick-lit as well as texts fo-cused on how cinema tends to portray serious illnesses such as cancer, I attempt to dis-cern whether significant change in the way which contemporary film handles severe ill-nesses has occurred.What this study reveals is that while certain narrative traits have been altered and various problematic elements addressed, film still vastly prefers portraying illnesses such as can-cer and cystic fibrosis as bleak, death sentences. The “sick-flicks” of modern-day cinema have also failed to address critique of the sub-genre as being both heteronormative and racially homogenous in nature.However, compared to films depicting terminal illnesses in teenagers from the 2000’s the recent wave of films in general dedicate more time to spotlighting their diseases. No longer relegating them to emotional revelations toward the end of the film.Overall, the findings are that most criticisms of cinema’s portrayal of terminal illnesses remain, yet progress has also been achieved in certain respects. Filmmakers more inter-ested in utilizing illnesses as a way to examine coming-of-age topics than the full experi-ence of terminal illness, notwithstanding.
96

Utilizing bacteriophage to evolve antibiotic susceptibility in multidrug-resistant Pseudomonas aeruginosa

Choudhury, Anika Nawar 15 September 2021 (has links)
No description available.
97

Herder in Riga / Zur Konstellation der frühen philosophischen, homiletischen, pädagogischen und ästhetischen Schriften. Mit einem Ausblick auf das Volksliedprojekt

Renner, Kaspar 04 September 2023 (has links)
Die Arbeit beginnt mit einer kritischen Rekonstruktion des Gedenk- und Forschungsdiskurses über ,Herder in Riga‘. Dabei werden drei Schwerpunkte gesetzt: Erstens werden ,Denkmäler‘ seit der Einweihung des Herder-Denkmals in Riga 1864 auf ihre kulturpolitischen Implikationen hin befragt. Zweitens werden ,Werkausgaben, Briefwechsel und Lebensbilder‘ seit der ersten postumen Gesamtwerkausgabe untersucht. Drittens werden ,Neuere Ansätze zur Edition und Interpretation‘ seit der Neuerschließung des handschriftlichen Nachlasses betrachtet. Im Zusammenspiel dieser drei Betrachtungsebenen wird die rückblickender Verfertigung verschiedener Bilder von ,Herder in Riga‘ metareflexiv nachvollzogen. Der Schwerpunkt der Arbeit liegt dann auf einer konzentrierten Relektüre der Schriften der Rigaer Jahre 1765 bis 1769. Blickleitend ist dabei die These, dass Herder in diesen Texten ein zentrales Problem bearbeitet, das Problem der Volksbildung. Dieses wird erstmals im philosophischen Diskurs der sogenannten ,Philosophieschrift‘ identifiziert, um in angrenzenden Diskursfeldern weiter bearbeitet zu werden. Ein besonderes Augenmerk gilt dabei den Feldern der praktischen Bildungsarbeit von Homiletik (,Der Redner Gottes‘), Pädagogik (,Von der Gratie‘) und Politik (,Publikumsabhandlung‘). Darüber hinaus wird das Projekt einer ,Revitalisierung der Poesie‘ nachgezeichnet, wie es in den poetologischen und literaturkritischen Reflexionen der Rigaer Jahre skizziert wird (,Dithyrambische Rhapsodie‘, ,Odenfragmente‘, ,Literaturfragmente‘). Analog dazu werden die Ansätze zu einer ,Reform der Prosakultur‘ rekonstruiert, wie sie im literaturkritischen und ästhetischen Diskurs entwickelt werden (,Literaturfragmente‘, ,Torso von einem Denkmal‘, ,Viertes Kritisches Wäldchen‘). Den Fluchtpunkt der Studie bildet das Volksliedprojekt: Im Ausgang der Rigaer Konstellation wird das Volkslied als privilegiertes Medium der Volksbildung entdeckt (,Briefwechsel über Ossian‘, ,Alte Volkslieder‘, ,Volkslieder‘). / The study begins with a critical reconstruction of the memorial and research discourse on 'Herder in Riga'. Three focal points are set: First, the monument culture, beginning with the Herder monument in Riga 1864, is examined with regard to its political implications. Secondly, the philological disourse on Herders life and letters since the first posthumous edition of his complete works is considered. Thirdly, new approaches on edition and interpretation since the new catalogization of Herder’s ,Nachlass‘ are evaluated. In the interplay of these three levels of observation, the retrospective production of various images of 'Herder in Riga' is retraced. Departing from these observation, the study develops a series of close-readings of the writings of the Riga years 1765 to 1769. The guiding thesis is that Herder continuously works on a central problem in these texts, the problem of popular education (,Volksbildung‘). The study argues that this topic is discovered in the so-called ,Philosophieschrift‘ and subsequently processed in adjacent fields of discourse. A focus lies on the practical fields of popular education in homiletics ('Der Redner Gottes'), pedagogics ('Von der Gratie') and politics ('Publikumsabhandlung'). In addition, the project of a 'revitalization of poetry' is retraced, as outlined in the poetological and literary-critical reflections of the Riga years ('Dithyrambische Rhapsodie', 'Odenfragmente', 'Literaturfragmente'). Analogously, Herder’s approaches to a 'reform of the prose culture' are reconstructed, as developed in literary criticism and aesthetic discourse ('Literaturfragmente', 'Torso von einem Denkmal', 'Viertes Kritisches Wäldchen'). The last chapter is dedicated to the folk song project: The study argues that folk songs are finally discovered as the ideal medium of popular education and can thus be considered as the ,telos‘ of the Riga project of ,Volksbildung‘ ('Briefwechsel über Ossian', 'Alte Volkslieder', 'Volkslieder').
98

FIRE DESIGN BY ADVANCED ANALYSIS OF ARCHETYPE STEEL-COMPOSITE STRUCTURE

Nimisha Dilip Jain (19200691) 26 July 2024 (has links)
<p dir="ltr">Fire is an extreme event that can lead to failure of structural components and potentially collapse of the structural system or sub-systems. Currently, there are no comprehensive, research-based methodologies for performance-based fire structural design (PBFSD) of composite wall-to-floor connections subjected to gravity loads and realistic fire scenarios. The existing studies primarily focus on the performance of simple shear connections to steel columns, and lack approaches for structural design of floor systems and their connections to walls (wall-to-floor connections) at elevated temperatures. This study addresses the need for evaluating the performance of composite floor systems and composite wall-to-floor connections under fire loading and developing research-based approaches to conduct performance-based structural design of these systems at elevated temperatures.</p><p dir="ltr">This study aims to give a simpler design method for shear tab and single angle shear connections at elevated temperatures by specifying retention factors for steel yield strength, ultimate strength, bolt material strength, and weld metal strength at elevated temperatures. The connection limit state equations specified in AISC Specifications are modified to incorporate these factors for higher temperatures. Additionally, an archetype building is designed and one floor system is evaluated using Finite Element Analysis (FEA) to assess the robustness of the structure and its resistance to collapse using PBFSD.</p><p dir="ltr">It also discusses the application of fire protection materials for steel members to resist fire scenarios for specified durations. Various fire scenarios, including ventilation-controlled and fuel-controlled fires were evaluated to assess localized behavior at the connection points and the overall behavior of the structural compartment. The FE analyses included various fire scenarios, compartment locations (interior, edge, or middle), and fire protection scenarios (2-hour rating fire protection, or no fire protection on interior beams). The composite floor system is evaluated for a combination of these scenarios under fire and gravity loading.</p><p dir="ltr">Through this study, a comprehensive analysis of the behavior of composite floors systems and associated connections in SpeedCore Wall Systems (C-PSW/CF) under fire loading is achieved.</p>
99

Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS project / Entwicklung einer Schnittstelle zur Überführung von Geodaten des Projektes CEOP-AEGIS in ein NetCDF-Datenmodell und Publikation dieser Daten unter Verwendung der Internetanwendung DChart

Holzer, Nicolai 08 August 2011 (has links) (PDF)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security. The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability. Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way. Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community. / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit. Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann. In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt. In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.
100

Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS project

Holzer, Nicolai 20 April 2011 (has links)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security. The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability. Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way. Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community.:Task of Diploma Thesis ii Declaration of academic honesty vii Abstract ix Acknowledgments xiii Dedication xv Table of Contents xvii List of Figures xxi List of Tables xxiii List of Listings xxv Nomenclature xxvii 1 Introduction 1 1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10 2 Theoretical foundations 13 2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31 2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33 2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34 2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35 2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36 2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42 2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47 2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48 2.2.5 OPeNDAP data models and data types . . . . . . . . . 49 2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53 2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57 2.3.2 System architecture and Dapper services . . . . . . . . 58 2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60 2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61 2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64 2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66 2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67 2.5.2 Dapper and DChart system requirements . . . . . . . . 67 3 Implementation 69 3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71 3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73 3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80 3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89 3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93 3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95 3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98 3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98 3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105 3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4 Conclusion 111 4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A Appendix 119 A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119 A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121 A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122 A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123 A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124 A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125 A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126 A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127 A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130 A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131 A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132 A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133 A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134 A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135 A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136 A.5.4 Data Interface modules and classes . . . . . . . . . . . 137 A.5.5 Data Interface NetCDF metadata file for gridded data 138 A.5.6 Data Interface NetCDF metadata file for in-situ data . 139 A.5.7 Data Interface coordinate metadata file for gridded data140 A.5.8 Data Interface coordinate metadata file for in-situ data 140 A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141 A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142 A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143 A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144 A.5.13 Data Interface settings file for gridded data . . . . . . . 145 A.5.14 Data Interface settings file for in-situ data . . . . . . . 146 A.5.15 Data Interface batch file for data conversion via GrADS146 A.5.16 Data Interface batch file for data conversion via GDAL 147 A.5.17 Data Interface batch file for data conversion via CSV . 148 A.6 Pydoc documentation for upstream data interface . . . . . . . 149 A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150 A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155 A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162 A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167 A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172 A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175 A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179 A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185 A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189 A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191 Bibliography 197 Index 205 / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit. Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann. In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt. In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.:Task of Diploma Thesis ii Declaration of academic honesty vii Abstract ix Acknowledgments xiii Dedication xv Table of Contents xvii List of Figures xxi List of Tables xxiii List of Listings xxv Nomenclature xxvii 1 Introduction 1 1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10 2 Theoretical foundations 13 2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31 2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33 2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34 2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35 2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36 2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42 2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47 2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48 2.2.5 OPeNDAP data models and data types . . . . . . . . . 49 2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53 2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57 2.3.2 System architecture and Dapper services . . . . . . . . 58 2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60 2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61 2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64 2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66 2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67 2.5.2 Dapper and DChart system requirements . . . . . . . . 67 3 Implementation 69 3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71 3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73 3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80 3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89 3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93 3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95 3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98 3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98 3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105 3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4 Conclusion 111 4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A Appendix 119 A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119 A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121 A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122 A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123 A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124 A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125 A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126 A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127 A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130 A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131 A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132 A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133 A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134 A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135 A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136 A.5.4 Data Interface modules and classes . . . . . . . . . . . 137 A.5.5 Data Interface NetCDF metadata file for gridded data 138 A.5.6 Data Interface NetCDF metadata file for in-situ data . 139 A.5.7 Data Interface coordinate metadata file for gridded data140 A.5.8 Data Interface coordinate metadata file for in-situ data 140 A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141 A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142 A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143 A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144 A.5.13 Data Interface settings file for gridded data . . . . . . . 145 A.5.14 Data Interface settings file for in-situ data . . . . . . . 146 A.5.15 Data Interface batch file for data conversion via GrADS146 A.5.16 Data Interface batch file for data conversion via GDAL 147 A.5.17 Data Interface batch file for data conversion via CSV . 148 A.6 Pydoc documentation for upstream data interface . . . . . . . 149 A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150 A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155 A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162 A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167 A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172 A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175 A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179 A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185 A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189 A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191 Bibliography 197 Index 205

Page generated in 0.0306 seconds