Spelling suggestions: "subject:"cellmodell"" "subject:"delmodell""
1 |
Economic Effects of Climate Change in Developing Countries: Economy-wide and Regional Analysis for EthiopiaYalew, Amsalu W., Hirte, Georg, Lotze-Campen, Hermann, Tscharaktschiew, Stefan 14 August 2017 (has links) (PDF)
Quantifying the economic effects of climate change is a crucial step for planning adaptation in developing countries. This study assesses the economy-wide and regional effects of climate change induced productivity and labor supply shocks in agriculture in Ethiopia. The study shows, in worst case scenario, the effects on national GDP may add up to -8% with uneven regional effects ranging from -10% in agrarian regions (e.g. Amhara) to +2.5% in urbanized regions (e.g. Addis Ababa). Cost-free exogenous structural change scenarios in labor markets and transaction costs may offset about 20-30% of the ripple effects of climate change. Therefore, the ongoing structural transformation in the country may underpin the resilience of the economy to climate change. Nevertheless, given the role of agriculture in the current economic structure of the country and the potency of biophysical impacts of climate change, adaptation in the sector is indispensable. Otherwise, climate change may hamper economic progress of the country, and make rural livelihood unpredictable.
|
2 |
Economic Effects of Climate Change in Developing Countries: Economy-wide and Regional Analysis for EthiopiaYalew, Amsalu W., Hirte, Georg, Lotze-Campen, Hermann, Tscharaktschiew, Stefan January 2017 (has links)
Quantifying the economic effects of climate change is a crucial step for planning adaptation in developing countries. This study assesses the economy-wide and regional effects of climate change induced productivity and labor supply shocks in agriculture in Ethiopia. The study shows, in worst case scenario, the effects on national GDP may add up to -8% with uneven regional effects ranging from -10% in agrarian regions (e.g. Amhara) to +2.5% in urbanized regions (e.g. Addis Ababa). Cost-free exogenous structural change scenarios in labor markets and transaction costs may offset about 20-30% of the ripple effects of climate change. Therefore, the ongoing structural transformation in the country may underpin the resilience of the economy to climate change. Nevertheless, given the role of agriculture in the current economic structure of the country and the potency of biophysical impacts of climate change, adaptation in the sector is indispensable. Otherwise, climate change may hamper economic progress of the country, and make rural livelihood unpredictable.
|
3 |
Analyse von verkehrs- und klimabezogenen Politikmaßnahmen in einer StadtökonomieNitzsche, Eric 24 May 2016 (has links) (PDF)
Die Dissertation befasst sich mit der Erweiterung und Anwendung des allgemeinen räumlichen Gleichgewicht- und Transportmodells RELU-TRAN (Anas und Liu, 2007) und analysiert verschiedene verkehrs- und klimabezogene Politikmaßnahmen (Tempo-30 in Städten, Infrastrukturqualität, Anpassung an den Klimawandel) in einer Stadtökonomie.
|
4 |
Improving the Depiction of Uncertainty in Simulation Models by Exploiting the Potential of Gaussian QuadraturesStepanyan, Davit 12 March 2021 (has links)
Simulationsmodelle sind ein etabliertes Instrument zur Analyse von Auswirkungen exogener Schocks in komplexen Systemen. Die in jüngster Zeit gestiegene verfügbare Rechenleistung und -geschwindigkeit hat die Entwicklung detaillierterer und komplexerer Simulationsmodelle befördert. Dieser Trend hat jedoch Bedenken hinsichtlich der Unsicherheit solcher Modellergebnisse aufgeworfen und daher viele Nutzer von Simulationsmodellen dazu motiviert, Unsicherheiten in ihren Simulationen zu integrieren. Eine Möglichkeit dies systematisch zu tun besteht darin, stochastische Elemente in die Modellgleichungen zu integrieren, wodurch das jeweilige Modell zu einem Problem (mehrfacher) numerischer Integrationen wird. Da es für solche Probleme meist keine analytischen Lösungen gibt, werden numerische Approximationsmethoden genutzt.
Die derzeit zur Quantifizierung von Unsicherheiten in Simulationsmodellen genutzt en Techniken, sind entweder rechenaufwändig (Monte Carlo [MC] -basierte Methoden) oder liefern Ergebnisse von heterogener Qualität (Gauß-Quadraturen [GQs]).
In Anbetracht der Bedeutung von effizienten Methoden zur Quantifizierung von Unsicherheit im Zeitalter von „big data“ ist es das Ziel dieser Doktorthesis, Methoden zu entwickeln, die die Näherungsfehler von GQs verringern und diese Methoden einer breiteren Forschungsgemeinschaft zugänglich machen. Zu diesem Zweck werden zwei neuartige Methoden zur Quantifizierung von Unsicherheiten entwickelt und in vier verschiedene, große partielle und allgemeine Gleichgewichtsmodelle integriert, die sich mit Agrarumweltfragen befassen.
Diese Arbeit liefert methodische Entwicklungen und ist von hoher Relevanz für angewandte Simulationsmodellierer. Obwohl die Methoden in großen Simulationsmodellen für Agrarumweltfragen entwickelt und getestet werden, sind sie nicht durch Modelltyp oder Anwendungsgebiet beschränkt, sondern können ebenso in anderen Zusammenhängen angewandt werden. / Simulation models are an established tool for assessing the impacts of exogenous shocks in complex systems. Recent increases in available computational power and speed have led to simulation models with increased levels of detail and complexity. However, this trend has raised concerns regarding the uncertainty of such model results and therefore motivated many users of simulation models to consider uncertainty in their simulations. One way is to integrate stochastic elements into the model equations, thus turning the model into a problem of (multiple) numerical integration. As, in most cases, such problems do not have analytical solutions, numerical approximation methods are applied.
The uncertainty quantification techniques currently used in simulation models are either computational expensive (Monte Carlo [MC]-based methods) or produce results of varying quality (Gaussian quadratures [GQs]).
Considering the importance of efficient uncertainty quantification methods in the era of big data, this thesis aims to develop methods that decrease the approximation errors of GQs and make these methods accessible to the wider research community. For this purpose, two novel uncertainty quantification methods are developed and integrated into four different large-scale partial and general equilibrium models addressing agro-environmental issues.
This thesis provides method developments and is of high relevance for applied simulation modelers who struggle to apply computationally burdensome stochastic modeling methods. Although the methods are developed and tested in large-scale simulation models addressing agricultural issues, they are not restricted to a model type or field of application.
|
5 |
Analyse von verkehrs- und klimabezogenen Politikmaßnahmen in einer Stadtökonomie: Erweiterung und Anwendung eines räumlichen allgemeinen GleichgewichtmodellsNitzsche, Eric 28 April 2016 (has links)
Die Dissertation befasst sich mit der Erweiterung und Anwendung des allgemeinen räumlichen Gleichgewicht- und Transportmodells RELU-TRAN (Anas und Liu, 2007) und analysiert verschiedene verkehrs- und klimabezogene Politikmaßnahmen (Tempo-30 in Städten, Infrastrukturqualität, Anpassung an den Klimawandel) in einer Stadtökonomie.
|
Page generated in 0.0327 seconds