Spelling suggestions: "subject:"CRISPR/cas9."" "subject:"CRISPR/has9.""
181 |
Induced pluripotent stem cell-derived cardiomyocytes as model for studying CPVT caused by mutations in RYR2Henze, Sarah 29 November 2016 (has links)
No description available.
|
182 |
Development of a modular in vivo reporter system for CRISPR-mediated genome editing and its therapeutic applications for rare genetic respiratory diseasesFoster, Robert Graham January 2018 (has links)
Rare diseases, when considered as a whole, affect up to 7% of the population, which would represent 3.5 million individuals in the United Kingdom alone. However, while 'personalised medicine' is now yielding remarkable results using recent sequencing technologies in terms of diagnosing genetic conditions, we have made much less headway in translating this patient information into therapies and effective treatments. Even with recent calls for greater research into personalised treatments for those affected by a rare disease, progress in this area is still severely lacking, in part due to the astronomical cost and time involved in bringing treatments to the clinic. Gene correction using the recently-described genome editing technology CRISPR/Cas9, which allows precise editing of DNA, offers an exciting new avenue of treatment, if not cure, for rare diseases; up to 80% of which have a genetic component. This system allows the researcher to target any locus in the genome for cleavage with a short guide-RNA, as long as it precedes a highly ubiquitous NGG sequence motif. If a repair sequence is then also provided, such as a wild-type copy of the mutated gene, it can be incorporated by homology-directed repair (HDR), leading to gene correction. As both guide-RNA and repair template are easily generated, whilst the machinery for editing and delivery remain the same, this system could usher in the era of 'personalised medicine' and offer hope to those with rare genetic diseases. However, currently it is difficult to test the efficacy of CRISPR/Cas9 for gene correction, especially in vivo. Therefore, in my PhD I have developed a novel fluorescent reporter system which provides a rapid, visual read-out of both non-homologous end joining (NHEJ) and homology-directed repair (HDR) driven by CRISPR/Cas9. This system is built upon a cassette which is stably and heterozygously integrated into a ubiquitously expressed locus in the mouse genome. This cassette contains a strong hybrid promoter driving expression of membrane-tagged tdTomato, followed by a strong stop sequence, and then membrane-tagged EGFP. Unedited, this system drives strong expression of membrane-tdTomato in all cell types in the embryo and adult mouse. However, following the addition of CRISPR/Cas9 components, and upon cleavage, the tdTomato is rapidly excised, resulting via NHEJ either in cells without fluorescence (due to imperfect deletions) or with membrane-EGFP. If a repair template containing nuclear tagged-EGFP is also supplied, the editing machinery may then use the precise HDR pathway, which results in a rapid transition from membrane-tdTomato to nuclear- EGFP. Thereby this system allows the kinetics of editing to be visualised in real time and allows simple scoring of the proportion of cells which have been edited by NHEJ or corrected by HDR. It therefore provides a simple, fast and scalable manner to optimise reagents and protocols for gene correction by CRISPR/Cas9, especially compared to sequencing approaches, and will prove broadly useful to many researchers in the field. Further to this, I have shown that methods which lead to gene correction in our reporter system are also able to partially repair mutations found in the disease-causing gene, Zmynd10; which is implicated in the respiratory disorder primary ciliary dyskinesia (PCD), for which there is no effective treatment. PCD is an autosomal-recessive rare disorder affecting motile cilia (MIM:244400), which results in impaired mucociliary clearance leading to neonatal respiratory distress and recurrent airway infections, often progressing to lung failure. Clinically, PCD is a chronic airway disease, similar to CF, with progressive deterioration of lung function and lower airway bacterial colonization. However, unlike CF which is monogenic, over 40 genes are known to cause PCD. The high genetic heterogeneity of this rare disease makes it well suited to such a genome editing strategy, which can be tailored for the correction of any mutated locus.
|
183 |
Criblage génétique et caractérisation fonctionnelle des mutations dans le gène CHD2 associé à l’épilepsie dans un modèle de poisson zèbreCloutier, Véronique 04 1900 (has links)
No description available.
|
184 |
Developing an induced pluripotent stem cell model of pulmonary arterial hypertension to understand the contribution of BMPR2 mutations to disease-associated phenotypes in smooth muscle cellsKiskin, Fedir January 2019 (has links)
Mutations in the gene encoding the bone morphogenetic protein type 2 receptor (BMPR2) are the most common genetic cause of heritable pulmonary arterial hypertension (PAH). However, given the reduced penetrance of BMPR2 mutations in affected families, a major outstanding question is the identity of additional factors or pathways that are responsible for the manifestation of clinical disease. Furthermore, limited human tissue is available for study and usually only from patients with end-stage disease, making it difficult to understand how PAH is established and progresses. Alternative human models of PAH are therefore required. This thesis describes the characterisation of the first human iPSC-derived smooth muscle cell (iPSC-SMC) model of PAH and elucidates the role of BMPR2 deficiency in establishing PAH-associated phenotypes in iPSC-derived SMCs. To achieve this, I used CRISPR-Cas9 gene editing to generate wild-type and BMPR2+/- iPSC lines with isogenic backgrounds which were subsequently differentiated into lineage-specific iPSC-SMCs that displayed a gene expression profile and responses to BMP signalling akin to those present in distal pulmonary artery smooth muscle cells (PASMCs). Using these cells, I found that the introduction of a single BMPR2 mutation in iPSC-SMCs was sufficient to recapitulate the pro-proliferative and anti-apoptotic phenotype of patient-derived BMPR2+/- PASMCs. However, acquisition of the mitochondrial hyperpolarisation phenotype was enhanced by inflammatory signalling and required an interaction between BMPR2 mutations and environmental stimuli provided by exposure to serum over time. Furthermore, I showed that BMPR2+/- iPSC-SMCs had an altered differentiation state and were less contractile compared to wild-type iPSC-SMCs, phenotypes which have not been observed previously in PAH-derived PASMCs. Finally, RNA sequencing analysis identified genes that were differentially expressed between wild-type and BMPR2+/- iPSC-SMCs and may hence provide further insights into PAH pathobiology. The iPSC-SMC model described in this study will be useful for identifying additional factors involved in disease penetrance and for validating therapeutic approaches that target BMPR2.
|
185 |
In Vitro Molecular Modification of Human Cultured and Primary Cells Using Lance Array NanoinjectionSessions, John W 01 March 2016 (has links)
Fundamentally altering cellular function at a genetic level is a major area of interest in the biologic sciences and the medical community. By engineering transfectable constructs that can be inserted to dysfunctional cellular systems, scientists can mitigate aberrant genetic behavior to produce proper molecular function. While viral vectors have been a mainstay in the past, there are many limitations, particularly related to safety, that have changed the focus of genome editing to incorporate alternative methods for gene delivery. Lance Array Nanoinjection (LAN), a second-generation microfabricated transfection biotechnology, is one of these alternative technologies. LAN works by utilizing both simultaneous electrostatic interaction with molecular loads and physical lancing of hundreds of thousands of target cell membranes. The purpose of this work is to demonstrate LAN in the context of in vitro transfection of immortalized culture cells and primary cells. As part of that exploration, three distinct areas of investigation are considered, which include: characterizing environmental factors that impact LAN transfection, demonstrating LAN genetic modification of immortalized HeLa 229 culture cells using an indicator marker, and lastly, investigating the effects of LAN on human primary, neonatal fibroblasts.
|
186 |
Detection of Sickle Cell Disease-associated Single Nucleotide Polymorphism Using a Graphene Field Effect TransistorFung, Kandace 01 January 2019 (has links)
Sickle Cell Disease (SCD) is a hereditary monogenic disorder that affects millions of people worldwide and is associated with symptoms such as stroke, lethargy, chronic anemia, and increased mortality. SCD can be quickly detected and diagnosed using a simple blood test as an infant, but as of now, there is currently limited treatment to cure an individual of sickle cell disease. Recently, there have been several promising developments in CRISPR-Cas-associated gene-editing therapeutics; however, there have been limitations in gene-editing efficiency monitoring, which if improved, could be beneficial to advancing CRISPR-based therapy, especially in SCD. The CRISPR-Chip, a three-terminal graphene-based field effect transistor (gFET), was used to detect genomic samples of individuals with SCD, with and without amplification. With the dRNP-HTY3’ complex, CRISPR-Chip was able to specifically detect its target sequence with and without pre-amplification. With the dRNP-MUT3’ complex, CRISPR-Chip was only able to specifically detect one of its two target sequences. Facile detection, analysis, and editing of sickle cell disease using CRISPR-based editing and monitoring would be beneficial for simple diagnostic and gene-editing therapeutic treatment of other single nucleotide polymorphisms as well, such as beta-thalassemia and cystic fibrosis.
|
187 |
Les fonctions vitales de WT1 au cours de la vie des cellules progénitrices du rein embryonnaire / Vital functions of WT1 during renal progenitor lifeJian Motamedi, Fariba 04 December 2015 (has links)
Le développement du rein est un exemple intriguant d’un équilibre délicat entre la prolifération des cellules progénitrices, la différentiation et l’apoptose. Le gène Wt1 est indispensable pour la survie des cellules progénitrices. Le but de cette thèse a été de définir les voies de signalisation activées par Wt1 pendant le développement du rein. En utilisant les souris Wt1 KO, nous avons démontré que WT1 coordonne l’action de deux voies de signalisation opposées : Fgf et Bmp/Smad intervenant dans la survie des cellules progénitrices rénales. Dans une deuxième étude, nous avons analysé le rôle du modificateur épigénétique, le gène Phf19 pendant le développement du rein. Nous avons démontré que l’expression de ce gène est Wt1-dependant et il est exclusivement exprimé dans les cellules progénitrices rénales au cours du développement et que son inactivation dans le rein embryonnaire en culture, conduit à l’apoptose des cellules progénitrices. Nous avons généré des souris knockout de Phf19 par l’approche de CRISPR/Cas9. Dans le cas d’une létalité précoce des embryons homozygotes, nous opterons pour la production du model animal knockout conditionnel et procéderons à la caractérisation de leur profile épigénétique. Cette thèse a permis d’une part, de découvrir deux voies de signalisation antagonistes, régulées par le Wt1et impliquées dans le contrôle de la survie des cellules progénitrices rénales et d’autre part de nous orienter vers le contrôle de la survie et la prolifération de ces cellules par modifications épigénétiques. Ceci nous permettra de contribuer à la connaissance de l’étiologie d’une grande proportion des malformations rénales restant à ce jour inconnues. / Kidney organogenesis requires the tight control of proliferation, differentiation and apoptosis of renal progenitor cells. The Wilms’ tumour suppressor Wt1 is required for renal progenitor survival. The aim of this thesis was to elucidate the molecular cause for renal agenesis in Wt1 mutant mouse. Here we demonstrate that lack of Wt1 abolishes FGF and induces BMP/pSMAD signaling within the metanephric mesenchyme. We further show that recombinant BMP4, but not BMP7, induces an apoptotic response within the early kidney that can be suppressed by simultaneous addition of FGFs. These data reveal an unknown sensitivity of early renal progenitors to pSMAD signalling, establishes FGF and pSMAD signalling as antagonistic forces in early kidney development and places WT1 as a key regulator of pro-survival FGF signalling pathway genes. In a second study, we demonstrated, that Phf19, an epigenetic modifier, is essential both for maintaining Wt1 expression in renal progenitor cells and their survival in an ex-vivo culture. We further generated a Phf19 knockout mouse by CRISPR/Cas9. The homozygous embryos will be analyzed to further decipher the contribution of Phf19 to potential kidney malformations and the epigenetic profile of renal progenitor cells will be characterized. Overall, the new insights into the molecular mechanisms controlling the survival of renal progenitor cells, reported in this thesis, provide one more step in our understanding of renal malformations. In addition, our results conducted us toward the epigenetique modifications that could open up promising new avenue of understanding the etiology of an important proportion of renal malformation that remains unknown.
|
188 |
Green and red fluorescent protein tagging of endogenous proteins in glioblastoma using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 systemLindvall, Jenny January 2016 (has links)
Glioblastoma multiforme is the most malignant primary brain tumor that affects adults, recognized by the World Health Organization as an aggressive grade IV astrocytoma. Patients diagnosed with this type of tumor are left with a poor prognosis even with the most advanced treatment available. The cancer is quite heterogeneous and is typically categorized into four different subtypes depending on genetic aberrations and patient characteristics. Furthermore, researchers have discovered a subpopulation of glioblastoma cells, known as cancer stem cells, which are thought to be resistant to current therapies and responsible for tumor reoccurrence and relapse. Previous studies, in addition to this one, have found that the differentiation of glioblastoma cells downregulate nestin protein expression, the selected stem cell marker, and upregulate glial fibrillary acid protein expression, the selected differentiation marker, using immunofluorescence. Thus, one alternative treatment option is to understand the mechanism underlying the differentiation of cancer stem cells. Four cell cultures representative of each glioblastoma subtype will be endogenously tagged using the genome editing system, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9). The representative stem cell marker, nestin, will be tagged with a green fluorescent protein, while the chosen differentiation marker, glial fibrillary acid protein, will be tagged with a red fluorescent protein. Several drugs were screened to analyze whether the drugs had a differentiation effect on the glioblastoma cells. As a result, strong evidence indicated that bone morphogenetic protein four upregulated glial fibrillary acid protein expression levels to the same extent as the differentiation control media using 5% fetal bovine serum. The goal of this study is to establish a method to directly monitor the differentiation process of glioblastoma cells as a novel molecular screening method. In this case, all glioblastoma cells, even the ones resistant to treatment, can be eliminated through an initial “pre-treatment” by forcing differentiation of cancer stem cells, making the cells more susceptible to the chemotherapy drugs. In the long run, glioblastoma patients would have a chance at a more positive prognosis; a longer life that is free of glioblastoma. / Master Thesis in Applied Biotechnology
|
189 |
Contraction de répétitions de trinucléotides par induction ciblée d'une cassure double brin / Trinucleotide repeats contraction by double-strand break inductionMosbach, Valentine 18 April 2017 (has links)
Les répétitions de trinucléotides sont des séquences répétées en tandem pouvant subir, chez l'homme, de larges expansions à l'origine de nombreuses maladies génétiques. La dystrophie myotonique de type 1 (DM1) est due à l'expansion d'une répétition CTG en 3'UTR du gène DMPK. Les mécanismes d'instabilités des répétitions, peu connus, reposeraient sur leur capacité à former des structures secondaires constituant un obstacle aux mécanismes impliquant une synthèse d'ADN. Nous avons montré qu'une TALEN induisant une cassure double brin dans les répétitions CTG à l'origine de la DM1 insérées chez la levure Saccharomyces cerevisiae permettait de manière efficace et spécifique d'aboutir après réparation à leur contraction. Le mécanisme de réparation est dépendant uniquement de deux gènes, RAD50 et RAD52, suggérant la formation de structures aux extrémités de la DSB devant être retirées pour initier la réparation, suivis d'une réaction de SSA entre les répétitions aboutissant à leur contraction. L'efficacité et spécificité d'un système CRISPR-Cas9 à contracter ces répétitions chez la levure ont été comparées à la TALEN. L'induction de CRISPR-Cas9 n'aboutit pas à la contraction des répétitions mais à des réarrangements chromosomiques suggérant un manque de spécificité et un mécanisme de réparation différent de celui de la TALEN. Enfin, nous avons étudié si ces nucléases peuvent contracter ces répétitions CTG à des tailles non pathologiques dans des cellules de mammifères. L'induction de la TALEN dans des cellules de souris transgéniques DM1, puis dans des fibroblastes humains de patients DM1 montre des résultats préliminaires encourageant de contraction des répétitions. / Trinucleotides repeats are a specific class of microsatellites whose large expansions are responsible for many human neurological disorders. Myotonic dystrophy type 1 (DM1) is due to an expansion of CTG repeats in the 3’UTR of DMPK gene, which can reach thousands of repeats. Molecular mechanisms leading to these large expansions are poorly understood but in vitro studies have shown the capacity of these repeats to form secondary structures, which probably interfere with mechanisms involving DNA synthesis. We shown that a TALEN used to induce double-strand break (DSB) in DM1 CTG repeats integrated in the yeast Saccharomyces cerevisiae is specific and leads to highly efficient repeat contractions after repair. Mechanism involved in TALEN-induced DSB only depends of RAD50 and RAD52 genes, suggesting the formation of secondary structures at DSB ends that need to be removed for repair initiation, followed by an intramolecular recombinaison repair such as SSA between repeats leading to their contraction. We compared the efficiency and specificity of a CRISPR-Cas9 and the TALEN to contract CTG repeats in yeast. Surprisingly, CRISPR-Cas9 induction do not lead to repeat contraction but to chromosomal rearrangement, suggesting a lack of specificity and a different repair mechanism than with the TALEN. At last, we studied whether these nucleases could contract CTG repeats to a non-pathological length in mammalian cells. Finally, TALEN induction in DM1 transgenic mice cells, and in DM1 human fibroblasts show promising repeat contractions.
|
190 |
The influence of cell size on cytokinesis in situ and genomic interrogation of human cell size regulationGauvin Bourdages, Karine 12 1900 (has links)
La cellule est l’élément fondamental de la vie. Plus d’une vingtaine de trillions de cellules forment les organes et tissus de notre corps. Ces cellules sont de taille spécifique puisqu’elles ont des fonctions précises au sein de leur tissu respectif. Dans la plupart des cas, les cellules doivent proliférer en se divisant pour se renouveler et ainsi assurer le bon fonctionnement d’un organisme. La dernière étape de la division cellulaire, la cytokinèse, est exécutée par la contraction d’un anneau contractile d’actomyosine, nécessaire pour effectuer la séparation physique de la cellule en deux cellules filles. La première partie des travaux décrits dans cet ouvrage portent sur la caractérisation de la cytokinèse en utilisant, comme modèle in vivo, les cellules précurseur de la vulve (VPCs) du nématode C. elegans. Notre étude révèle que plusieurs aspects de l’anneau d’actomyosine s’ajustent en fonction de la taille de la cellule. Entre autres, la largeur de l’anneau contractile, juste avant sa constriction, s’ajuste en fonction de la longueur des VPCs. De plus, la rapidité avec laquelle l’anneau se contracte dépend de la circonférence de la cellule. Ces découvertes nous ont amené à nous demander comment la cellule régule sa taille? Les cellules en prolifération maintiennent leur taille en homéostasie en équilibrant leur taux de croissance et de division cellulaire. Afin d’interroger les gènes impliqués dans le maintien de la taille cellulaire du mammifère, nous avons utilisé la technologie CRISPR/Cas9, afin d’éliminer par délétion tous les gènes humains, à raison d’un par cellule, pour identifier ceux qui causent une augmentation ou une diminution de la taille cellulaire. Cette étude nous a permis d’identifier plusieurs gènes déjà connus régulant la croissance cellulaire. De plus, nous avons identifié un groupe de gènes, incluant TLE4 un corépresseur de la transcription que nous avons caractérisé, n’ayant jamais été associé avec une fonction de contrôle de la taille cellulaire chez les mammifères. En somme, nos travaux ont contribué à l’approfondissement des connaissances sur la division cellulaire, plus précisément la cytokinèse, et des gènes impliqués dans le maintien de la taille cellulaire. Une meilleure connaissance du fonctionnement de ces deux évènements cellulaires est essentielle puisque leur dérégulation peut entrainer plusieurs pathologies, incluant le cancer. / Cells are the fundamental building blocks of life. The human body contains over twenty trillion cells that make up the different tissues and organs of our bodies. Cells within organs are of specific sizes to perform their specialized functions. In most cases, these cells must divide to proliferate and replenish the population of cells essential for proper organism function. The final stage of cellular division, termed cytokinesis, entails the assembly and constriction of a contractile ring that drives the dramatic cell shape changes required to physically partition the cell into two daughter cells. The first part of the work presented in this thesis addresses the characterization of cytokinesis in the epithelial vulval precursor cells (VPCs) of the nematode worm C. elegans. This study principally revealed that several aspects of cytokinesis scale with cell size. For instance, I observed that the breadth of the actomyosin ring scaled with VPC length. In addition, the speed of contractile ring constriction scaled with the circumference of VPCs. These scaling events raised the more general question as to how cells regulate their size. Proliferating cells attain cell size homeostasis by balancing cell growth and cell division. In order to define the molecular regulators of size in human cells a genome-wide approach was taken. Recently developed CRISPR/Cas9 technology was used to perform the first pooled knockout screens for human cell size regulators in the NALM-6 pre-B lymphocytic cell line. These screens revealed many genes that affect the size of NALM-6 cells, a number of which were previously known to be involved in growth regulation. In addition, these screens revealed the identity of many genes with no previously established functions associated with cell size regulation. Amongst the previously unknown regulators, I characterized the function of a co-repressor of transcription, TLE4, which I showed functions as a regulator of the B-cell lineage. This work contributes to the knowledge of the mechanics of cytokinesis in C. elegans epithelial cells and of the genes that coordinate cell size in humans. These results provide insights into cell growth and division in normal cells and how these processes may be perturbed in cancer and other diseases.
|
Page generated in 0.0478 seconds