• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 18
  • 13
  • 4
  • 2
  • 1
  • Tagged with
  • 69
  • 69
  • 23
  • 23
  • 21
  • 18
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Koldioxidutsläpp och energianvändning vid husbyggnad med betongstomme : En studie av två flerbostadshus inom projektet Sågklingan/Pilen i Västerås

Ivarsson, Benjamin January 2022 (has links)
Purpose:  The purpose is to investigate the use of concrete as a frame material and its effects on carbon dioxide emissions and energy use. Carbon dioxide emissions and energy use are examined from the production stage to the management stage 100 years in the future. In addition, investigate other material compositions in concrete to study the possibilities 0f lower carbon dioxide impact and energy use. Method: The methods used have included investigating one construction project involving two multi-family houses with the same conditions. The investigation conducted is primarily made through calculations of CO2 emission and energy use. Furthermore, a literary study has also been conducted focused on investigating what the impact concrete has on the environment and what different alternatives are available to reduce potential carbon dioxide emissions and energy use in house construction with a concrete frame. The study has focused on both the production phase and the management phase. The construction stage has been investigated primarily within the concrete production, enforcement and including transports. Whereas the management stage has been studied upon the energy use of the buildings and its effect on carbon dioxide emission.  The literature study deals with methods that can be associated with the case study but will also deal with other presumptive methods. Results: The study of the construction project shows that CO2 emission and energy use primarily comes from cement production within the production stage. Whereas, looking at the whole life cycle studied, the primary contributor to CO2 emissions and energy use over time is the management stage of the buildings. The result also shows that by using renewable steel as reinforcement can significantly effect the energy use, as well as, CO2 emission of the production phase. Conclusions: The cement production is one of the biggest causes of CO2 emissions and energy use in the production phase of the studied life cycle. While the management phase is the largest in terms of the total life cycle studied. Several methods are possible to decrease the use of energy use and CO2-emission in the production stage, and to combine those methods is an alternative that suggested
62

Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

Yao, Yuan 01 January 2012 (has links)
Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M 1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental acceptance and economic feasibility of this technology and found that this silica alumina-based cementitious material not only meets EPA requirements but also shows several advantages in industrial application.
63

Use of Agricultural Wastes as Supplementary Cementitious Materials / Användning av jordbruksavfall som kompletterande cementmaterial

Marchetti, Ezio January 2020 (has links)
Global cement production is continuously increasing from 1990 till 2050 and growing particularly rapidly in developing countries, where it represents a crucial element for infrastructure development and industrialisation. Every tonne of ordinary Portland cement (OPC) produced releases, on average, about 800 kg of CO2 into the atmosphere, or, in total, the overall production of cement represents roughly 7% of all man-made carbon emissions. The present paper aims to deepen the re-use of agricultural solid waste materials as partial replacement of OPC, which can positively contribute to the sustainability of the concrete industry because of their availability and environmental friendliness. In particular, rice-husk ash (RHA) and oat-husk ash (OHA), burned under the right conditions, can have a high reactive silica content, representing very potential pozzolans. The mechanical and physical characteristics of both materials are investigated to evaluate the influence on concrete properties. Subsequently, using the environmental product declarations (EPDs) of the material used, a comparative environmental impact analysis between RHA concrete and ordinary concrete having the same resistance class, is presented. It is concluded that the use of RHA as supplementary cementitious material can serve a viable and sustainable partial replacement to OPC for the reduction of CO2 emissions and global warming potential. / Den globala cementproduktionen ökar från 1990 till 2050 och växer särskilt snabbt i utvecklingsländer, där den utgör en viktig del för infrastrukturutveckling och industrialisering. Varje ton vanligt portlandcement (OPC) släpper i genomsnitt ut cirka 800 kg koldioxid i atmosfären, och, totalt, representerar den totala cementproduktionen ungefär 7% av alla koldioxidutsläpp från mänsklig verksamhet. Det här examensarbetet syftar till att fördjupa kunskapen om och därmed i förlängningen återanvändningen av fasta avfallsmaterial från jordbruket som delvis ersättning av OPC, vilket kan bidra till hållbarheten i betongindustrin på grund av deras tillgänglighet och miljövänlighet. I synnerhet kan risskalaska (RHA) och havreskalaska (OHA), som bränns under rätt process, ha en hög reaktiv kiseldioxidhalt, vilket representerar mycket potentiella puzzolaner. De mekaniska och fysiska egenskaperna hos båda materialen har undersökts för att utvärdera deras inverkan på betongegenskaper. Därefter presenteras en jämförande miljökonsekvensanalys mellan RHA-betong och OPC-betong med samma motståndsklass med användning av miljövarudeklaration (EPD) för det använda materialet. Man drar slutsatsen att användningen av RHA som alternativt bindemedel (SCM) till OPC kan hjälpa till att minska koldioxidutsläppen och den globala uppvärmningspotentialen.
64

Modelagem do processo de falha em materiais cimentícios reforçados com fibras de aço. / Numerical modeling of failure processes in steel fiber reinforced cementitious materials.

Bitencourt Júnior, Luís Antônio Guimarães 10 November 2014 (has links)
Este trabalho apresenta uma estratégia numérica desenvolvida usando o método dos elementos finitos para simular o processo de falha de compósitos cimentícios reforçados com fibras de aço. O material é descrito como um compósito composto por três fases: matriz cimentícia (pasta, argamassa ou concreto), fibras descontínuas discretas, e interface fibra-matriz. Um novo esquema de acoplamento para malhas de elementos finitos não-conformes foi desenvolvido para acoplar as malhas geradas independentes, da matriz cimentícia e de uma nuvem de fibras de aço, baseado na utilização de novos elementos finitos desenvolvidos, denominados elementos finitos de acoplamento. Utilizando este esquema de acoplamento, um procedimento não-rígido é proposto para a modelagem do complexo comportamento não linear da interface fibra-matriz, utilizando um modelo constitutivo de dano apropriado para descrever a relação entre a tensão de cisalhamento (tensão de aderência) e deslizamento relativo entre a matriz e cada fibra de aço individualmente. Este esquema também foi adotado para considerar a presença de barras de aço para as análises de estruturas de concreto armado. As fibras de aço são modeladas usando elementos finitos lineares com dois nós (elementos de treliça) com modelo material elastoplástico. As fibras são posicionadas usando uma distribuição randômica uniforme isotrópica, considerando o efeito parede. Uma abordagem contínua e outra descontínua são investigadas para a modelagem do comportamento frágil da matriz cimentícia. Para a primeira, é utilizado um modelo de dano isotrópico com duas variáveis de dano para descrever o comportamento de dano à tração e à compressão. A segunda emprega uma técnica de fragmentação de malha que utiliza elementos finitos degenerados, posicionados entre todos os elementos finitos que formam a matriz cimentícia. Para esta técnica é proposto um modelo constitutivo à tração, compatível com a abordagem descontínua forte contínua, para prever a propagação de fissura. Para acelerar o cálculo e aumentar a robustez dos modelos de dano contínuos para simular o processamento de falhas, um esquema de integração implícito-explícito é utilizado. Exemplos numéricos são apresentados ao longo do desenvolvimento desta tese. Inicialmente, exemplos numéricos com um único reforço são apresentados para validar a técnica desenvolvida e para investigar à influência das propriedades geométricas 7 das fibras e sua posição em relação à superfície de falha. Posteriormente, exemplos mais complexos são considerados envolvendo uma nuvem de fibras. Nestes casos, atenção especial é dada à influência da distribuição das fibras no comportamento do compósito relacionado ao processo de fissuração. Comparações com resultados experimentais demonstram que a aplicação da ferramenta numérica para modelar o comportamento de compósitos cimentícios reforçados com fibras de aço é muito promissora e pode ser utilizada como uma importante ferramenta para melhor entender os efeitos dos diferentes aspectos envolvidos no processo de falha deste material. / This work presents a numerical strategy developed using the Finite Element Method (FEM) to simulate the failure process of Steel Fiber Reinforced Cementitious Composites (SFRCCs). The material is described as a composite made up by three phases: a cementitious matrix (paste, mortar or concrete), discrete discontinuous fibers, and a fiber-matrix interface. A novel coupling scheme for non-matching finite element meshes has been developed to couple the independent generated meshes of the bulk cementitious matrix and a cloud of discrete discontinuous fibers based on the use of special finite elements developed, termed Coupling Finite Elements (CFEs). Using this approach, a nonrigid coupling procedure is proposed for modeling the complex nonlinear behavior of the fiber-matrix interface by adopting an appropriate constitutive damage model to describe the relation between the shear stress (adherence stress) and the relative sliding between the matrix and each fiber individually. This scheme has also been adopted to account for the presence of regular reinforcing bars in the analysis of reinforced concrete structural elements. The steel fibers are modeled using two-node finite elements (truss elements) with a one-dimensional elastoplastic constitutive model. They are positioned using an isotropic uniform random distribution, considering the wall effect of the mold. Continuous and discontinuous approaches are developed to model the brittle behavior of the bulk cementitious matrix. For the former, an isotropic damage model including two independent scalar damage variables for describing the composite behavior under tension and compression is considered. The discontinuous approach is based on a mesh fragmentation technique that employs degenerated solid finite elements in between all regular (bulk) elements. In this case, a tensile damage constitutive model, compatible with the Continuum Strong Discontinuity Approach (CSDA), is proposed to predict crack propagation. To increase the computability and robustness of the continuum damage models used to simulate the failure processes in both of the strategies, an implicit-explicit integration scheme is used. Numerical analyses are performed throughout the presentation of the work. Initially, numerical examples with a single reinforcement are presented to validate the technique and to investigate the influence of the fibers geometrical properties and its position relative to the crack surface. Then, more complex examples involving a cloud of steel fibers are considered. In these cases, special attention is given to the analysis of the influence of the fiber distribution on the composite behavior relative to the cracking process. Comparisons with experimental results demonstrate that the application of the numerical tool for modeling the behavior of SFRCCs is very promising and may constitute an important tool for better understanding the effects of the different aspects involved in the failure process of this material.
65

Vers une meilleure compatibilité ciment/mâchefer (MIDND) dans la formulation de matériaux cimentaires intégrant un ciment sulfo-alumineux / Towards a better / MSWI bottom ash compatibility in the formulation of cimentitious materials integrating a sulfo-aluminate cement

Antoun, Marc 07 March 2019 (has links)
Dans un contexte accru d’économie circulaire et de valorisation des matières premières recyclées, les mâchefers d’incinération de déchets non dangereux (MIDND) constituent des déchets granulaires minéraux identifiés comme ressources renouvelables potentiellement valorisables dans la filière construction, notamment dans le domaine des matériaux cimentaires (type mortier/béton). Compte tenu de l'origine et de la nature des granulats de mâchefers, dans une finalité de concourir à une meilleure compatibilité mâchefer/ciment, il apparait essentiel en premier lieu de considérer des fractions minérales de mâchefers au mieux épurées par l’optimisation de l’enlèvement des métaux ferreux, non-ferreux et indésirables. En second temps, tenant compte des spécificités physico-chimiques résultantes des mâchefers, le choix de la base cimentaire constitue le second facteur prépondérant en sus de la nécessité de meilleure qualité de la fraction minérale de mâchefer. Le présent travail doctoral traite spécifiquement de l’apport de l’utilisation d’un ciment sulfo-alumineux dans le contexte de valorisation des mâchefers en matrice cimentaire. Des sables de mâchefers améliorés de fraction 0/2 mm ont été élaborés et utilisés pour l’étude. Dans une première partie, les résultats de formulation de mortiers cimentaires (ciment Portland, noté OPC / ciment sulfo-alumineux, noté CSA) à base de mâchefers en substitution volumique partielle du sable naturel (25, 50 et 75 %) et totale (100 %), mettent en évidence l’apport bénéfique du ciment CSA sur les résistances en compression par comparaison aux mortiers OPC. Une analyse expérimentale du réseau poreux des mortiers à 90 jours révèle que la frange de porosité supérieure à 50 nm est nettement plus faible pour les mortiers CSA. La thèse met en évidence un résultat majeur et pionnier : en interaction mâchefer, le niveau de basicité du milieu réactionnel joue un rôle prépondérant sur le potentiel de dégagement gazeux (hydrogène) après la mise en œuvre et avant la prise. Ce gaz impacte le niveau de porosité de la frange la plus grossière des mortiers durcis. La seconde partie concerne l’étude physique et microstructurale des mortiers soumis à l’attaque à l’eau pure ou à attaque sulfatique pour des substitutions volumiques de 50 et 100 %, avec les témoins pour référentiels. Les observations MEB sur les différentes matrices mettent en évidence une nette moindre sensibilité des mortiers mâchefer/CSA que des mortiers mâchefer/OPC, traduit par des porosités, fissurations et épaisseurs dégradées moindres. / In a world where circular economy and the valorization of raw materials is taking a greater importance, municipal solid waste incineration (MSWI) bottom ash is identified as potentially renewable resource in the construction field and more specifically in cementitious materials like mortar and concrete. Given the origin of the bottom ash and in order to have a better cement/MSWI bottom ash compatibility, the fraction used was as refined as possible by removing ferrous, non-ferrous and unwanted materials. The choice of the cement used is a critical factor as well because it affects the quality of the end product since MSWI bottom ash has particular physicochemical properties. The work in this PhD studies the advantages of using a sulfo-aluminate cement to valorize an improved 0/2 mm fraction of bottom ash that has been developed to be used in cementitious matrices. The first part presents the results of the mortar sample mixes containing bottom ash in a substitution by volume of the standard sand. To better highlight the effect of using a sulfo-aluminate (CSA), CSA mortars containing bottom ash were compared to a Portland cement (OPC) mortars, with substitution rates of 25 %, 50 %, 75 % and 100 % were used. A study of the porosity was then conducted at 90 days ; it shows that the pores larger to 50 nm are remarkably less present for CSA mortars. This thesis brings forward a major and innovative result : the level of alkalinity of the mortar plays an important role in the release of hydrogen gas after mixing and before setting. The presence of these gases creates large porosity in the hardened mortar samples. The second part studies the physical and microstructural aspects of the mortars after being immersed in aggressive environments : pure water and sulfate solution. The substitution rates used in this experiment were 50 % and 100 % by volume as well as the reference mortars with no bottom ash. These samples were then studied in the SEM which showed that CSA/bottom ash mortars were clearly less affected than the OPC/bottom ash mortars. This was highlighted by the porosity, the cracking and the depth of degraded zone.
66

Modelagem do processo de falha em materiais cimentícios reforçados com fibras de aço. / Numerical modeling of failure processes in steel fiber reinforced cementitious materials.

Luís Antônio Guimarães Bitencourt Júnior 10 November 2014 (has links)
Este trabalho apresenta uma estratégia numérica desenvolvida usando o método dos elementos finitos para simular o processo de falha de compósitos cimentícios reforçados com fibras de aço. O material é descrito como um compósito composto por três fases: matriz cimentícia (pasta, argamassa ou concreto), fibras descontínuas discretas, e interface fibra-matriz. Um novo esquema de acoplamento para malhas de elementos finitos não-conformes foi desenvolvido para acoplar as malhas geradas independentes, da matriz cimentícia e de uma nuvem de fibras de aço, baseado na utilização de novos elementos finitos desenvolvidos, denominados elementos finitos de acoplamento. Utilizando este esquema de acoplamento, um procedimento não-rígido é proposto para a modelagem do complexo comportamento não linear da interface fibra-matriz, utilizando um modelo constitutivo de dano apropriado para descrever a relação entre a tensão de cisalhamento (tensão de aderência) e deslizamento relativo entre a matriz e cada fibra de aço individualmente. Este esquema também foi adotado para considerar a presença de barras de aço para as análises de estruturas de concreto armado. As fibras de aço são modeladas usando elementos finitos lineares com dois nós (elementos de treliça) com modelo material elastoplástico. As fibras são posicionadas usando uma distribuição randômica uniforme isotrópica, considerando o efeito parede. Uma abordagem contínua e outra descontínua são investigadas para a modelagem do comportamento frágil da matriz cimentícia. Para a primeira, é utilizado um modelo de dano isotrópico com duas variáveis de dano para descrever o comportamento de dano à tração e à compressão. A segunda emprega uma técnica de fragmentação de malha que utiliza elementos finitos degenerados, posicionados entre todos os elementos finitos que formam a matriz cimentícia. Para esta técnica é proposto um modelo constitutivo à tração, compatível com a abordagem descontínua forte contínua, para prever a propagação de fissura. Para acelerar o cálculo e aumentar a robustez dos modelos de dano contínuos para simular o processamento de falhas, um esquema de integração implícito-explícito é utilizado. Exemplos numéricos são apresentados ao longo do desenvolvimento desta tese. Inicialmente, exemplos numéricos com um único reforço são apresentados para validar a técnica desenvolvida e para investigar à influência das propriedades geométricas 7 das fibras e sua posição em relação à superfície de falha. Posteriormente, exemplos mais complexos são considerados envolvendo uma nuvem de fibras. Nestes casos, atenção especial é dada à influência da distribuição das fibras no comportamento do compósito relacionado ao processo de fissuração. Comparações com resultados experimentais demonstram que a aplicação da ferramenta numérica para modelar o comportamento de compósitos cimentícios reforçados com fibras de aço é muito promissora e pode ser utilizada como uma importante ferramenta para melhor entender os efeitos dos diferentes aspectos envolvidos no processo de falha deste material. / This work presents a numerical strategy developed using the Finite Element Method (FEM) to simulate the failure process of Steel Fiber Reinforced Cementitious Composites (SFRCCs). The material is described as a composite made up by three phases: a cementitious matrix (paste, mortar or concrete), discrete discontinuous fibers, and a fiber-matrix interface. A novel coupling scheme for non-matching finite element meshes has been developed to couple the independent generated meshes of the bulk cementitious matrix and a cloud of discrete discontinuous fibers based on the use of special finite elements developed, termed Coupling Finite Elements (CFEs). Using this approach, a nonrigid coupling procedure is proposed for modeling the complex nonlinear behavior of the fiber-matrix interface by adopting an appropriate constitutive damage model to describe the relation between the shear stress (adherence stress) and the relative sliding between the matrix and each fiber individually. This scheme has also been adopted to account for the presence of regular reinforcing bars in the analysis of reinforced concrete structural elements. The steel fibers are modeled using two-node finite elements (truss elements) with a one-dimensional elastoplastic constitutive model. They are positioned using an isotropic uniform random distribution, considering the wall effect of the mold. Continuous and discontinuous approaches are developed to model the brittle behavior of the bulk cementitious matrix. For the former, an isotropic damage model including two independent scalar damage variables for describing the composite behavior under tension and compression is considered. The discontinuous approach is based on a mesh fragmentation technique that employs degenerated solid finite elements in between all regular (bulk) elements. In this case, a tensile damage constitutive model, compatible with the Continuum Strong Discontinuity Approach (CSDA), is proposed to predict crack propagation. To increase the computability and robustness of the continuum damage models used to simulate the failure processes in both of the strategies, an implicit-explicit integration scheme is used. Numerical analyses are performed throughout the presentation of the work. Initially, numerical examples with a single reinforcement are presented to validate the technique and to investigate the influence of the fibers geometrical properties and its position relative to the crack surface. Then, more complex examples involving a cloud of steel fibers are considered. In these cases, special attention is given to the analysis of the influence of the fiber distribution on the composite behavior relative to the cracking process. Comparisons with experimental results demonstrate that the application of the numerical tool for modeling the behavior of SFRCCs is very promising and may constitute an important tool for better understanding the effects of the different aspects involved in the failure process of this material.
67

Použitelnost ložového popele z vitrifikovaného lignitového uhlí v kompozitních cementech. / Suitability of vitrified lignite bottom ash for composite cements.

Bayer, Petr January 2014 (has links)
Předložená magisterská práce se zabývá možným použitím vitrifikovaného lignitového lóžového popele jako náhrada slinku v kompozitních cementech. Byly zkoumány vlivy přidaného vitrifikovaného lóžového popele, jeho jemnosti, alkalických roztoků a jejich koncentrací. Byly připraveny kompozitní cementy v souladu s normou DIN EN 197 – 1. V těchto cementech bylo nahrazeno 30 % slinku vitrifikovaným lóžovým popelem. Konkrétně byly připraveny kompozitní cementy s vitrifikovaným lóžovým popelem o jemnosti 5549 cm2/g a 8397 cm2/g. Dále byly přidány alkalické roztoky hydroxidů a síranů vždy o dvou různých koncentracích, za účelem stimulace pucolánové a/nebo geopolymerní reakce. Mechanické vlastnosti připravených vzorků byly charakterizovány mechanickým testováním na prizmách s rozměry 40×40×160 mm, jak je specifikováno v normě DIN EN 196 – 1. Byla provedena nedestruktivní měření dynamického elastického modulu a destruktivní testovaní na pevnosti v tlaku a v ohybu. Distribuce velikosti částic a chemická analýza vstupních materiálů byla vykonána pomocí laserové granulometrie a rentgenové fluorescence. U zatvrdlých kompozitů bylo dále zkoumáno po 2 a 28 dnech hydratace fázové složení s využitím metody rentgenové difrakce a mikrostruktura s využitím skenovací elektronové mikroskopie. Výsledky ukázaly, že mechanické vlastnosti jsou nezávislé na množství přidaných alkálií stejně jako na jemnosti přidaného vitrifikovaného lóžového popele. Nicméně, znatelně nižší mechanické pevnosti byly pozorovány pro vzorky, které byly aktivovány hydroxidy, pravděpodobně kvůli brzké tvorbě silikátového hydrogelu. Vzorky aktivované sírany nedosáhly pevností jako referenční malta.
68

Měření akustických vlastností stavebních materiálů pomocí pseudonáhodné sekvence / Measurement of Acoustic Parameters of Building Materials by Pseudorandom Sequence

Carbol, Ladislav January 2017 (has links)
The thesis deals with research of pulse compression of the acoustic signal in terms of applications in civil engineering. Based on the study and analysis of these methods, automated measuring equipment for non-destructive testing with pseudorandom sequence of maximum length and automated signal analysis, have been designed and implemented. In a single test cycle are obtained three parameters that characterize the linear and nonlinear behavior of the sample. A nonlinear parameter, Time of Flight of ultrasonic wave in the sample is further in the work compared with the conventional pulse measuring, and spectral analysis is compared with the method impact-echo. Functionality and optimization of the testing method was performed on a total of three sets of test pieces made of various building materials. The experiments proved simple result interpretation, and high sensitivity to structural damage associated with temperature loading. The results were correlated with conventional nondestructive methods and by destructive testing was measured change in compressive strength and flexural strength. This work also includes continual measurement of fundamental frequency influenced by moisture on a mortar sample. Use of pulse compression signal is in the civil engineering quite unusual. Only in recent years this topic is discussed in scientific articles with increasing frequency. Great potential lies in the association of three test methods into a single. Beneficial is high test speed and measurement reproducibility, but also theoretical possibility of testing massive test elements.
69

Miljö - och kostnadsanalys av UHPC som reparationsmaterial för bropelare / Sustainability of UHPC as a repair material for bridge piers

Huq, Saraj, Milosevic, Ivan January 2020 (has links)
Byggindustrin har i dagsläget en negativ klimatpåverkan och infrastrukturen likaså. Många länder har därför försökt undersöka möjligheten att hitta ett långsiktigt och hållbart alternativ till det konventionella reparationsmaterialet. Olika material undersöks, olika optimerade betongrecept testas för att förstå hur miljöpåverkan har minimeras för att förlänga livslängden hos betongkonstruktioner. Vid reparation av en bro är det viktigt att ta hänsyn till både kostnader och miljöpåverkan under hela dess livscykel. Kostnader som uppstår är investeringskostnader samt drift- och underhållskostnader. Miljöpåverkan från betongkonstruktioner i produkt skedet består av materialframställning, byggtransporter och produktion på byggarbetsplatserna. totala växthusgasutsläppet summeras och beräknas i kg CO2-ekv. Syftet med detta examensarbete är att studera den långsiktiga hållbarheten hos UHPC med hjälp av beräkningsmodeller såsom livscykelanalys och livscykelkostnadsanalys med avsikt att applicera reparationstekniken. Flera UHPC recept ställs mot det konventionella reparationsmaterialet detta för att kunna bedöma miljöpåverkan och kostnadseffektiviteten hos materialen. Dvs om det går det att minska klimatutsläppet och kostnaderna. De jämförda recepten är olika UHPC-recept samt traditionell betong. Recepten appliceras slutligen på en befintlig bropelare för att undersöka de olika receptens tillämpbarhet som reparationsmaterial ur ett hållbarhetsperspektiv. Det saknas tillräckligt med kunskap om UHPC:s långtidseffekter, speciellt om reparationsintervall. Med åtanke på materialets höga draghållfasthet och beständighet tillsammans med UHPC:s strukturella egenskaper har antaganden gjorts att materialet är reparationsfri under konstruktionens livslängd. Det vill säga att bropelaren som undersökts med UHPC i studien inte behövt repareras under sin livslängd. Resultatet från livscykelkostnadsanalysen visar att UHPC är dyrare i både kubikmeter (m3) och kvadratmeter (m2) med tanke på täckskiktets tjocklek än traditionell betong i materialpriset. Men med tanke på att UHPC är underhållsfritt har den en mindre livscykelkostnad. Resultatet från livscykelanalysen visar att UHPC blandningarna har större miljöpåverkan per kubikmeter. Då de olika täckskiktetstjocklek relateras till pelarens längd erhålls resultat där UHPC medför slankare konstruktioner och besparingar upp emot 50% mindre betongvolym (för den 6 m långa pelaren i fallstudien). Med UHPC som reparationsmaterial medför det till att bron inte behöver repareras under dess livslängd. Bropelaren som repareras med UHPC kommer därför ha en mindre miljöpåverkan än den traditionella betongen. Långsiktig hållbarhet och mindre totala växthusgasutsläpp (som är i riktlinje med EU:s och regeringens klimatkrav) erhålls för anläggningskonstruktioner med UHPC. / The construction industry has a negative climate impact and so does the infrastructure. Which is due to frequent repairs that are not sustainable. Many countries have therefore tried to explore the possibility of finding a long-term and sustainable alternative to conventional repair materials. Different materials are examined, different optimized concrete recipes are tested to understand how the environmental impact can be minimized and the service life of concrete structures extended. When repairing a bridge, it is important to take into account both costs and environmental impact throughout its life cycle. Costs that arise are investment costs as well as operating and maintenance costs. The environmental impact from concrete structures in the product phase consists of material production, construction transports and production at construction sites. The total greenhouse gas emissions are summed up and calculated in kg CO2 eq. The purpose of this thesis is to study the long-term sustainability of UHPC using calculation models such as life cycle analysis and life cycle cost analysis with the intention of applying the repair technique. Several UHPC prescriptions are set against the conventional repair material in order to be able to assess the environmental impact and cost-effectiveness of the materials. That is, if it is possible to reduce climate emissions and costs. The compared recipes are different UHPC recipes and traditional concrete. The recipes are finally applied to an existing bridge pillar to investigate the applicability of the various recipes as repair materials from a sustainability perspective. There is a lack of knowledge about the long-term effects of UHPC, especially about repair intervals. Given the high tensile strength and durability of the material together with the structural properties of the UHPC, it has been assumed that the material is repair-free for the life of the structure. That is, the bridge pillar examined with UHPC in the study did not need to be repaired during its lifetime. The results from the life cycle cost analysis show that UHPC is more expensive in both cubicmeters (m3) and square meters (m2) given the thickness of the cover layer than traditional concrete in the material price. However, given that UHPC is maintenance free, it has a lower lifecycle cost. The results from the life cycle analysis show that the UHPC mixtures have a greater environmental impact per cubic meter when the cover layer varies. As the thickness of the different cover layers is related to the length of the pillar, results are obtained where UHPC leads to slimmer constructions and savings of up to 50% less concrete volume (for the 6 m long pillar in the case study). With UHPC as repair material, this means that the bridge does not need to be repaired during its service life. The bridge pillar that is repaired with UHPC will therefore have a smaller environmental impact than the traditional concrete. Long-term sustainability and smaller total greenhouse gas emissions (which are in line with EU and government climate requirements) are obtained for plant constructions with UHPC.

Page generated in 0.2859 seconds