• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 75
  • 42
  • 26
  • 19
  • 16
  • 12
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 507
  • 189
  • 138
  • 104
  • 89
  • 81
  • 80
  • 66
  • 65
  • 59
  • 54
  • 47
  • 44
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Charging for Reduced Climate Emissions and a Living countryside

Tysk Hedlund, Jonas, Svedlind, Tone, Kembro, Isabelle, Yngvesson, Karolina January 2023 (has links)
The purpose of this project is to create a map showcasing the distribution of charging stations in the surrounding areas of Uppsala city in Uppsala Municipality. Additionally, the project examines the expected development of electric car utilization, identifies essential requirements, and highlights significant actors driving this development. Through an analysis of factors, such as demographic data, geographical data, car fleet data, car density and travel patterns, the project seeks to gain insight into the present and future usage patterns of electric cars. By understanding these factors, the research contributes to a better understanding of the dynamics surrounding the adoption of electric cars outside cities. Moreover, this project provides information on the optimal placement of charging infrastructure to facilitate the transition towards electric mobility. Calculations and assumptions are made to calculate the total number of electric cars in Uppsala city's surrounding areas in 2040. Based on this number, the total installed public power capacity needed is calculated in accordance with an EU regulation called AFIR. The total capacity is distributed on five different power capacities to match the need at each location. To achieve this, key actors have been examined. In addition, development and key actors in Norway are analyzed to examine similarities and to give a brief view into the future.  The results indicate that there will be a significant increase of electric cars in Uppsala Municipality. Therefore, expanding the charging infrastructure is shown to be essential. Due to the expected high usage of home charging outside cities, public charging is believed to be mostly necessary for tourists and passersby. Nevertheless, there are uncertainties that could influence the development of electric cars, which in turn would have an impact on the results. Finally, there follows a discussion both on the results and factors which could have affected the model.
52

Development of a smart charging management system for heavy-duty trucks

Sun, Xiaoying January 2022 (has links)
This paper reviews the Open Charge Point Protocol (OCPP) and implements a Charging Station Management System (CSMS) targeting heavy-duty trucks. The new technique proposed in this paper is designed to maximize Electric vehicle (EV) owner benefits by charging at a low cost, and also the electric utility benefits (operating the system within the acceptable limits) by proper choice of electricity tariff structure. EV owners can be motivated to charge at off-peak hours which have low electricity prices and stop charging at peak hours which have high electricity prices. / Detta dokument granskar Open Charge Point Protocol (OCPP) och implementerar en Charging Station Management System (CSMS) inriktat på tunga lastbilar. Den nya tekniken som föreslås i detta dokument är utformad för att maximera fördelarna för ägare av elfordon (EV) genom att ladda till en låg kostnad, och även fördelarna med elnätet (drift av systemet inom acceptabla gränser) genom korrekt val av elprisstruktur. Elbilsägare kan motiveras att ladda under lågtrafik som har låga elpriser och sluta ladda under rusningstid som har höga elpriser.
53

Triboelectrification of Granular Materials

Forward, Keith Mitchell 26 March 2009 (has links)
No description available.
54

Optimal Charging Scheduling for Electric Vehicles Based on a Moving Horizon Approach

Sahani, Nitasha January 2019 (has links)
The rapid escalation in plug-in electric vehicles (PEVs) and their uncoordinated charging patterns pose several challenges in distribution system operation. Some of the undesirable effects include overloading of transformers, rapid voltage fluctuations, and over/under voltages. While this compromises the consumer power quality, it also puts on extra stress on the local voltage control devices. These challenges demand a well-coordinated and power network-aware charging approach for PEVs in a community. This paper formulates a realtime electric vehicle charging scheduling problem as a mixed-integer linear program (MILP). The problem is to be solved by an aggregator that provides charging services in a residential community. The proposed formulation maximizes the profit of the aggregator, enhancing the utilization of available infrastructure. With prior knowledge of load demand and hourly electricity prices, the algorithm uses a moving time horizon optimization approach, allowing an unknown number of arriving vehicles. In this realistic setting, the proposed framework ensures that power system constraints are satisfied and guarantees the desired PEV charging level within the stipulated time. Numerical tests on an IEEE 13-node feeder system demonstrate the computational and performance superiority of the proposed MILP technique. / M.S. / There is an enhanced rate of global warming due to emissions and increased usage of fossil fuels in the transportation sector. As a feasible solution, electrification of transportation has become a necessary step towards an environment-friendly future. The escalation in plug-in electric vehicles (PEVs) has increased the impact on loading and voltage fluctuations in the distribution grid due to uncoordinated charging. This puts on extra stress on the grid system and compromises the system performance. As a measure to control the vehicle charging in a residential setup, a real-time optimal charging scheduling algorithm is developed which is implemented at the neighborhood level. To increase the charging performance with the limited available resources, an aggregator is introduced. The charging profit is maximized as the PEV charging problem is solved optimally by the aggregator. This facilitates the reduction in night-time grid congestion and maximization of number of PEVs getting charged with limited dependency on communication to avoid long delays in charging control. The proposed technique guarantees the complete charging of the selected PEVs in the stipulated time while considering the power grid operational constraints. It also reduces the impact of peak load demand by flattening the base load demand curve. To demonstrate the efficiency of the proposed mixed integer linear programming optimization algorithm, numerical tests for an IEEE 13 node feeder are performed. The results are discussed to give an outlook on the balance between system and user requirements by meeting the demand of the PEV users.
55

Den gröna milen : En GIS-analys av laddningsstationer i Hallands län / The Green Mile : A GIS-analysis of charging stations in Halland County

Åkerman, Liam January 2024 (has links)
Denna rapport undersöker huruvida det befintliga nätverket av publika laddstationer i Hallands län är tillräckligt för att möta den växande efterfrågan i linje med elektrifieringen av vägtrafiken, som i sin tur kan hjälpa Sverige nå sina långsiktiga klimatmål. Vad som är att betrakta som tillräckligt definieras i denna rapports kontext utifrån riktmärken angivna av Europeiska unionen (EU) och European Automobile Manufacturers’ Association (ACEA). För att genomföra analysen skapades en karta med publika laddningsstationer i programmet ArcMap, till vilken geodata över administrativa länsgränser och vägar lades till. Enligt Europaparlamentets direktiv 2014/94 krävs en laddningspunkt per tio elbilar - ett förhållande på 1:10. ACEA tillhandahåller en liknande, men inte identisk, riktlinje där de rekommenderar ett förhållande på 1:7 i Sverige. Båda dessa riktlinjer överträffas av den nuvarande infrastrukturen enligt resultaten som redovisats i denna rapport, som uppnår ett förhållande på 1:4,3. ACEA specificerar dock ytterligare en riktlinje - att 134 laddningspunkter krävs per 100 km väg längs huvudkorridorerna i TEN-T-nätverket. I detta sammanhang visar resultatet från rapporten att det befintliga nätverket av publika laddstationer endast uppgår till 118 per 100 km. Även om det är betryggande att den befintliga infrastrukturen uppfyller två av de tre nämnda riktlinjerna, bör den uppfylla alla för att anses vara tillräcklig. Slutsatsen i denna rapport är därför att det nuvarande nätverket av offentliga laddstationer inte är tillräckligt. Tilläggningsvis har det även i rapporten observerats att endast 57% av länets befolkning har en eller fler publika laddningsstationer inom 2 km - vilket ytterligare antyder att den befintliga infrastrukturen ej erbjuder tillräcklig täckning för invånarna. Fortsatt utveckling och utbyggnad av laddinfrastrukturen är nödvändig för att stödja den ökande elektrifieringen av vägtrafiken och bidra till att uppnå Sveriges långsiktiga klimatmål. Framtida arbeten där andra län med andra förutsättningar än Halland undersöks kan potentiellt erbjuda värdefulla insikter i hur laddinfrastrukturen skiljer sig mellan länen och var ytterligare investeringar eventuellt behövs för att skapa en mer homogen infrastruktur i landet. Alternativt kan en övergripande analys på riksnivå göras, vilket skulle ge en bra överblick över infrastrukturen i riket generellt. En utmaning i en sådan undersökning blir dock att fastställa var ytterligare investeringar behövs, då situationen kan skilja sig avsevärt mellan länen. Risken är då att skillnaderna inte framgår tydligt ifall studien görs på en övergripande riksnivå, beroende på detaljnivån i en sådan studie. / This report examines whether the existing network of public charging stations in Halland County is sufficient to meet the growing demand in line with the increasing number of electric cars, which in turn would help Sweden reach its long-term climate goals. In the context of this report, what is considered sufficient is defined using benchmarks from the European Union (EU) and the European Automobile Manufacturers’ Association (ACEA). To carry out the analysis, a map of public charging stations was created in ArcMap, to which geodata of county boundaries and road networks was added. According to the European Parliament's directive 2014/94, one charging point is required per ten electric cars - a ratio of 1:10. The ACEA provides a similar, but not identical, benchmark where they recommend a ratio of 1:7 in Sweden. Both of these benchmarks are exceeded by the current infrastructure according to results shown in this report, which achieves a ratio of 1:4.3. However, the ACEA also specify another benchmark - that 134 charging points are required per 100 km of road along the main corridors of the TEN-T network. In this context, the results of this report show that the existing network of public charging stations only number 118 per 100 km. Although it is reassuring that the existing infrastructure achieves two of the three outlined benchmarks, it should achieve all of them in order for it to be considered sufficient. The conclusion of this report is therefore that the current network of public charging stations is not sufficient. Additionally, it has in this report been observed that only 57% of the county’s population have one or more public charging stations within 2 km - further indicating that the current infrastructure does not provide sufficient coverage for the populace. Continued development and expansion of the charging infrastructure is necessary to support the increasing electrification of road traffic and contribute to achieving Sweden's long-term climate goals. Future studies in which other counties with different conditions than Halland County are examined could potentially offer valuable insights into how charging infrastructure varies between counties and where further investments may be needed to create a more homogeneous infrastructure in the country. Alternatively, a comprehensive national-level analysis could be conducted, providing a good overview of the infrastructure in the country overall. However, a challenge in such a study would be to determine where additional investments are needed, as the situation can vary significantly between counties. These differences may not be clearly visible if the study is conducted on a nation- wide scale, depending on the level of detail of the study.
56

Vehicle to Home and Vehicle to Grid : a study and modeling of the technical system when charging and discharging electric vehicles for households with PV systems

Timm, Christine January 2023 (has links)
As the world undertakes global climate goals to lower the emissions of greenhouse gases, more renewable energy sources are introduced in the electrical energy system, and fossil fuel driven combustion engines aims to be replaced by electric vehicles. New problems connected to the transition such as voltage fluctuations, production and consumption mismatch and high peak loads, requires new solutions. Such a solution could be to use smart charging algorithms and bidirectional charging for electrical vehicles in order to avoid further increased power demand during peak demand hours and to make the electric vehicle a resource more than solely as a mode of transportation. Such resource could be a battery storage for the home by using a vehicle to home strategy and for the electrical grid by using a vehicle to grid strategy. These strategies demand certain technology with only a few options available on the market today, but with a lot of recent and ongoing research on the way. In this thesis a smart charging algorithm is developed which aims to lower a households electricity cost by optimizing charging and discharging of an electric vehicle. The charging may come from the grid or the household’s photovoltaic system and the discharging may go to the house home appliances or back to the grid, utilizing vehicle to home and vehicle to grid strategies. The algorithm was tested in MATLAB for five different scenarios showcasing these possibilities and simulated in combination with five different user profiles. The results show that the charging peaks are moved to an area of less consumption and verify that the electricity costs can be lowered on daily and yearly basis.
57

Stable paraffin composites for latent heat thermal storage systems

Mallow, Anne 07 January 2016 (has links)
Phase change materials (PCMs) have the ability to store thermal energy as latent heat over a nearly isothermal temperature range. Compared to sensible heat storage, properly chosen PCMs can store an order of magnitude more energy when undergoing phase change. Organic PCMs present several advantages including their non-corrosive behavior and ability to melt congruently, which result in safe and reliable performance. Because of these qualities, organic PCMs have been proposed for use in latent heat thermal storage systems to increase the energy efficiency or performance of various systems such as cooling and heating in buildings, hot water heating, electronics cooling, and thermal comfort in vehicles. Current performance is hindered by the low thermal conductivity, which significantly limits the rate of charging and discharging. Solutions to this challenge include the insertion of high conductivity nanoparticles and foams to increase thermal transport. However, performance validation remains tied to thermal conductivity and latent heat measurements, instead of more practical metrics of thermal charging performance, stability of the composite, and energy storage cost. This thesis focuses on the use of graphite nanoplatelets and graphite foams to increase the thermal charging performance of organic PCMs. Stability of graphite nanoplatelets in liquid PCM is realized for the first time through the use of dispersants and control of the viscosity, particle distribution, and oxidation. Thermal charging response of stable graphite nanoplatelet composites is compared to graphite foam composites. This study includes a correlation of thermal conductivity and latent heat to material concentration, geometry, and energy storage cost. Additionally, a hybrid PCM storage system of metal foam combined with graphite nanoplatelet PCM is proposed and evaluated under cyclic thermal conditions.
58

Charging Cost Optimization of Plug-in Hybrid Electric Vehicles

KNUTFELT, MARKUS January 2015 (has links)
The future success of chargeable vehicles will, among other factors, depend on their charging costs and their ability to charge with minimal disturbances to the national, local and household electrical grid. To be able to minimize costs and schedule charging sessions, there has to be knowledge of how the charging power varies with time. This is called charging profile. A number of charging profiles for a Volvo V60 plug‑in hybrid electric vehicle have been recorded. For charging currents above 10 A they prove to be more complex than are assumed in most current research papers.   The charging profiles are used together with historical electricity prices to calculate charging costs for 2013 and 2014. Charging is assumed to take place during the night, between 18:00 and 07:00, with the battery being totally depleted at 18:00. By using a timer to have the charging start at 01:00, instead of immediately at 18:00, annual charging costs are reduced by approximately 7 to 8%. By using dynamic programming to optimize the charging sessions, annual charging costs are reduced by approximately 10 to 11%. An interesting issue regarding dynamic programming was identified, namely when using a limited set of predetermined discrete control signals, interpolation returns unrealizable cost-to-go values. This occurs specifically for instances crossing the zero cost-to-go area boundary.   It is concluded that the mentioned savings are realizable, via implementing timers or optimization algorithms into consumer charging stations. Finally, by using these decentralized charging planning tools and seen from a power usage perspective, at least 30% of the Swedish vehicle fleet could be chargeable and powered by the electrical grid.
59

The Influence of Electric Charge and Electric Fields on the Formation and Duration of Water Boules

Ahern, Jeremy Clive January 2003 (has links)
Consideration is given to the conditions under which floating drops of water, here referred to as water boules, form, exist and coalesce. Particular emphasis is placed on the part played by electric charge and electric fields in these processes. The literature is reviewed in terms of both the phenomenon of floating drops and of the development of hydrostatics, hydrodynamics and electrohydrodynamics as applicable to the subject. . Experimental investigations to ascertain the boundary conditions to the influence of such electrical forces are described, together with observations of the connected electrical events. It is confirmed that boules will fail to form at all, i) under conditions of high humidity, and ii) in the presence of an electric field greater than a certain value. This is investigated experimentally, and shown to be approximately 34kV/m, this figure being about two-thirds that previously reported. Boules traversing a plane water surface are demonstrated to acquire additional charge in the process. In the case of drops dispensed from a grounded source, forming boules and crossing a bulk water surface some 15cm wide, the additional charge gathered is significant. Boules of 0.055g mass were found to have a mean charge of 1.6 x 10-12C on leaving a water surface, having arrived as drops with an average charge of 5.8 x 10-14C. Possible charging mechanisms are discussed. The origin of the initial drop charge is considered, and measurements of this are presented from (i), conventional Faraday cup determinations, and (ii), induction methods applied to free-falling drops. Experimental investigation of the time-dependent electrical records of the coalescence of a dispensed drop with a plane water surface shows the whole coalescence process to have a two-part form. This detail is commonly hidden within more conventional charge-transfer measurements. For the coalescences investigated experimentally an small initial event is shown to occur, involving a charge transfer in the range 1.2 – 4.8 x 10-12C. Oscillograms taken from a large number of coalescences show this preliminary event to be a general feature of the coalescence process, with a number of such traces being appended to the thesis. This initial event is followed by a larger one where the signs of the signals from the drop and the bulk surface are opposite to those of the initial event, and whose potential magnitude is broadly in agreement with that anticipated by double layer disruption. The interfacial potential difference necessary for the onset of instability and subsequent coalescence in the case of closely opposed drops is shown to be dependent on the relative humidity of the ambient air. Consideration is given to G I Taylor’s equation describing the critical potential for the onset of instability between closely spaced drops, and this is shown experimentally to require correction for different humidities. It is demonstrated that the critical potential, Vc, at a relative humidity of 100% is approximately 50% of that at 40% RH. Possible reasons for this are discussed, drawing attention to the problem of establishing an accurate DC relative permittivity value for vapour-laden air in small interfacial gaps. The rôle of evaporation in modifying the system geometry is considered experimentally and theoretically, and shown to be significant only for humidities < 50%. The complex nature of the interface in the case of very small air-gaps is discussed, together with the implications of these investigations for the interfacial stability of a floating drop or boule system. A theoretical model based on a consideration of the complex liquid-air-liquid interface as a capacitive system is developed, and shown to be in good agreement with practical observations. This model demonstrates that the parts played by electrical forces, together with environmental factors, are likely to be significant in terms of coalescence at stages prior to gap thinning to the point where London/van-der-Waals forces become dominant. Interfacial potentials are calculated in a boule system at a number of times between 0.1 and 10 seconds, and shown to be sufficient to promote instability and coalescence. Full data based on a number of values of instability potentials is appended to the thesis. Development of the model raises questions concerning the validity of currently accepted values both for interfacial stability in small gaps and for the relative permittivity of humid air in similar situations. Suggestions are made for future work in such areas, together with possible methodologies. The phenomenon of floating water drops is therefore shown to be compatible with the general coalescence process, the event time being modified by such diverse factors as the impact energy with the surface, the ambient humidity and the magnitude of the initial drop charge. The latter is shown to be the dominant factor in the case of drops arriving on a clean surface with low kinetic energies, with the small charge inherent on any water drop being sufficient to produce potentials adequate to promote eventual instability.
60

Wireless Inductive Charging for Electrical Vehicules : Electromagnetic Modelling and Interoperability Analysis / Analyse d'Interopérabilité d'un Système de Recharge Sans Contact pour le Véhicule Electrique

Ibrahim, Mohammad 09 December 2014 (has links)
Le développement de la recharge sans contact de batteries comporte divers avantages pour les véhicules électriques. Cette solution est facile à utiliser, robuste et résistante aux intempéries par rapport aux câbles généralement utilisés. Le principe est basé sur le couplage magnétique entre un émetteur et un récepteur. L'objectif de cette thèse est de contribuer à proposer une norme pour permettre l’interopérabilité, c’est-à-dire, permettre à plusieurs émetteurs de fonctionner avec des récepteurs de différents fournisseurs. Comme le système doit aussi être tolérant au positionnement et doit respecter les recommandations concernant l’exposition humaine, de nombreuses configurations doivent être envisagées. Dans cette thèse, une modélisation avancée et fiable du système complet est proposée. La méthode des éléments finis est exploitée pour déterminer les caractéristiques électriques du coupleur inductif (inductances propres et mutuelles, facteur de couplage) dans différentes configurations de positionnement et d’interopérabilité. Ces valeurs permettent le dimensionnement du convertisseur à résonance. A ce stade différentes topologies de compensation sont considérées. Un modèle analytique au premier harmonique est mis en œuvre pour comparer les topologies et déterminer la fréquence de résonance globale du système. Un modèle circuit du système complet est ensuite développé pour évaluer précisément les courants et tensions. Enfin, un algorithme de régulation basé sur une méthode MPPT (Maximum Power Point Tracking) est évalué pour le réglage automatique de fréquence. A partir des courants calculés à la fréquence de résonance pour un point de fonctionnement nominal et grâce au modèle éléments finis incluant le châssis du véhicule le champ magnétique rayonné est calculé et comparé aux valeurs limites recommandées. A chaque étape de la modélisation, la sensibilité du système aux paramètres de configuration (positionnement, interopérabilité) est analysée. Des mesures effectuées au niveau du coupleur inductif et sur le système complet sont aussi utilisées dans l’analyse et permettent de valider le modèle / Development of contactless battery charging is an opportunity for electric vehicles. Compared to regular plugin cables, this solution is easy to use, robust and weather resistant. The power is transferred thanks to the magnetic coupling of inductive coils and a reduced magnetic circuit. The aim of this thesis is to contribute to propose a standard that would make possible to couple emitters with receivers from different suppliers, that is, to insure interoperability. As the system should also be tolerant to positioning and should respect human exposure recommendations, many configurations must be tested. In this thesis, an advanced and reliable modeling of the whole system is proposed. Using the finite element methods, the electrical characteristics (self, mutual inductances and coupling factor) of the inductive coupler are computed for different geometric and interoperability configurations. These values allow the dimensioning of the resonant converter. At this stage, different compensation topologies are considered. It is shown that the global resonant frequency can be derived and the topologies compared from a classical first harmonic approximation and analytical model. Then, a circuit model of the full system is developed in order to evaluate precisely the currents and voltages. Finally, the performance of a Maximum Power Point Tracking as frequency regulation algorithm is evaluated. From the currents computed at resonant frequency for the nominal operating point and the finite element model of the coupler, including the chassis of the vehicle, the radiated magnetic field is evaluated in order to check safety compliance. At each step of the modeling, the sensitivity of the system to the configuration parameters (positioning, interoperability) is analyzed. Measurements at the coupler level and for the full system are also used in this analysis and allow validating the model

Page generated in 0.1112 seconds