• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonctionnalisation des surfaces de diamant dopé au bore et applications en biosciences / Covalent functionalization of boron-doped diamond electrodes for biosensor applications

Wang, Mei 15 June 2009 (has links)
Le diamant présente des caractéristiques physique, chimique et mécanique exceptionnelles : une grande conductivité thermique, une dureté très élevée, une large bande, une transparence optique (de l'UV à l'IR) et une grande stabilité chimique. C'est un semi-conducteur à grand gap (5,45eV) possédant de bonnes propriétés mécaniques et caractérisé par ses propriétés de biocompatibilité. Le dopage de celui-ci lui confère de bonnes propriétés de conduction électrique et donc ouvre des perspectives pour son utilisation en bioélectronique. Pour cette fin, il est devenu urgent de développer une chimie de surface spécifique pour introduire des fonctions chimiques ou biologiques sur la surface. Mon travail de thèse s'inscrit dans cette perspective. D'un point de vue technologique, le diamant cristallin est très cher et donc notre étude a été limitée au diamant polycristallin. Dans cette thèse, on a contribué à la mise au point de nouvelles méthodes de fonctionnalisation de la surface de diamant. Ces méthodes sont basées sur des concepts chimique, photochimique et électrochimique et permettent d'introduire des groupements fonctionnels sur la surface de diamant de façon contrôlée. La première partie de ma thèse concerne la réaction d'oxydation de la surface de diamant hydrogéné en utilisant trois différentes techniques: plasma d'oxygène, voie électrochimique et UV/ozone. Dans la deuxième partie de ma thèse, j'ai utilisé pour la première fois la réaction de couplage par « click ». La troisième partie de ma thèse concerne l'étude de la réactivité des surfaces de diamant oxydé avec un liquide ionique (IL, 1-(Methylcarboxylcacid)-3octylimidazolium-bis (tritluoromethyl sulfonyl) imide). Finalement, nous avons mis au point une nouvelle technique d'halogénation de la surface de diamant hydrogéné. / Diamond, owing to its combination of specific physical, chemical and mechanical properties such as high thermal conductivity, high hardness, large band gap, optical transparency over a wide wavelength region (from UV to IR), stability against chemical reagents, high mechanical stability, corrosion resistance and biocompatibility has been regarded as one of the most promising industrial materials in various fields. Diamond display a very large band-gap (5.45eV), but can be made conducting by doping with certain elements. On basis of all above properties, diamond is a particularly attractive substrate for robust chemical and biochemical modification for sensor applications. ln this thesis, we have contributed to the development of easy, controllable and specific surface functionalization methods for the introduction of different functional groups on the diamond surface. These methods are based on chemical, photochemical, and electrochemieal concepts. The first part of my thesis deals with the reaction of oxidation of the hydrogenated diamond surface using three different techniques: plasma oxygen channel eleetrochemieal and UV/ ozone. ln the second part of my thesis, l first used the coupling reaction by "click". The third part of my thesis deals with the study of the reactivity of oxidized diamond surfaces with an ionic liquid (IL, 1-(Methylcarboxylcacid)-3-octylimidazolium-bis (trifluoromethyl sulfonyl) imide). Finally, we have developed a new technique of halogenation of hydrogenated diamond surface.
2

Amphiphiles bioinspirés dérivés d'acides nucléiques : synthèses, caractérisations et études

Godeau, Guilhem 09 November 2009 (has links)
Dans le cadre de ce travail, nous avons synthétisé, isolé et caractérisé de nouvelles molécules amphiphiles dérivées d’acides nucléiques. Les modifications de ces structures ont été réalisées par voie chimique au moyen d’une réaction de chimie clic, la réaction de Huisgen. Les amphiphiles développés peuvent être classés dans deux catégories différentes : - Les amphiphiles de faible masse moléculaire qui dérivent de nucléosides et de glycosylnucléosides. Les propriétés d’auto organisation de ces composés ont été étudiées par différentes techniques, notamment de microscopie électronique et de diffraction des rayons X. La capacité de ces amphiphiles à former des gels a été évaluée dans différents solvants (eau et solvants organiques). Les propriétés de complexation des acides nucléiques de ces molécules ont également été mises en évidence. Les premiers résultats de transfection montrent que les glycosylnucléosides amphiphiles permettent l’internalisation des oligonucléotides à visée thérapeutique dans des cellules humaines de carcinome hépatocellulaire (Huh 7) en présence de sérum. - Les amphiphiles de masse moléculaire élevée qui dérivent d’oligonucléotides. La formation d’agrégats a été mise en évidence par différentes techniques telles que la microscopie électronique et la diffusion de la lumière. Les propriétés de reconnaissance associées à la séquence oligonucléotide ont été étudiées par des expériences de thermodénaturation. L’auto vectorisation de ces composés a pu être observée par microscopie d’épi-fluorescence et confocale. Cette auto vectorisation a également pu être quantifiée par cytométrie en flux sur une gamme variée de types cellulaires humains tels que les cellules épithéliales (Hela T4), les cellules gastriques (NCI) ou encore les cellules de carcinome hépatocellulaire (Huh-7). Ces travaux présentent également pour la première fois l’évaluation in cellulo d’oligonucléotides amphiphiles ciblant le virus de l’hépatite C. / *
3

Mise en forme et caractérisation de nano-fibres fonctionnalisées par chimie click pour l'ingénierie tissulaire

Lancuski, Anica 20 December 2013 (has links) (PDF)
Le procédé d'électro-filage est devenu une technique privilégiée pour la préparation des matériaux nano-fibreux, grâce à sa simplicité de mise en oeuvre, la polyvalence des matières premières utilisées, ainsi que la diversité des structures obtenues. Sa capacité à produire des réseaux fibrillaires, proches de ceux du vivant ont ouvert la voie à d'importantes applications en ingénierie tissulaire. Cette étude a porté sur i) l'élaboration de nano-fibres à base de biopolymères commerciaux par un procédé d'électro-filage, pour des applications en ingénierie tissulaire, ii) leur fonctionnalisation et, iii) l'étude par SANS de la stabilité des chaînes de polymères constituant ces fibres. La stabilité d'un polymère est un facteur important pour la dégradation contrôlée dans les systèmes biologiques. Des études de la stabilité de polystyrène, utilisé ici comme un modèle simple, dans le milieu confiné des nanofibres, ont été élaborés avec la technique de diffusion de neutrons aux petits angles. L'investigation de la conformation des chaînes de polymère dans les nanofibres montre une anisotropie remarquable, en suggérant une forte déformation des chaînes dans la direction axiale des fibres d'au cours de procédé d'électro-filage. La dynamique de relaxation des chaînes a permis d'évaluer leur stabilité et vieillissement dans le milieu confiné des nanofibres. Des fibres biocompatibles à base de poly(-caprolactone) (PCL) ont été électro-filées et optimisées pour obtenir des matériaux nano-structurés et fonctionnalisés en vue d'applications biomédicales. L'introduction par chimie click azide-alcyne de groupes saccharidiques dans le coeur ou en surface des fibres de PCL a été réalisée très efficacement selon deux approches distinctes avant ou après électro-filage. Les caractérisations physico-chimiques et biologiques réalisées sur les différents systèmes ont notamment permis de mettre en évidence la biodisponibilité des sucres à la surface des fibres ainsi que leur capacité à rendre la PCL hydrophile. Ces résultats attestent du potentiel de la chimie click à permettre la fonctionnalisation de fibres de polyesters sans altération de leur structure ouvrant ainsi d'importantes perspectives dans le domaine de l'ingénierie tissulaire.
4

Mise en forme et caractérisation de nano-fibres fonctionnalisées par chimie click pour l'ingénierie tissulaire / Processing and characterization of click-functionalized electrospun nano-fibers toward tissue engineering applications

Lancuski, Anica 20 December 2013 (has links)
Le procédé d’électro-filage est devenu une technique privilégiée pour la préparation des matériaux nano-fibreux, grâce à sa simplicité de mise en oeuvre, la polyvalence des matières premières utilisées, ainsi que la diversité des structures obtenues. Sa capacité à produire des réseaux fibrillaires, proches de ceux du vivant ont ouvert la voie à d’importantes applications en ingénierie tissulaire. Cette étude a porté sur i) l'élaboration de nano-fibres à base de biopolymères commerciaux par un procédé d’électro-filage, pour des applications en ingénierie tissulaire, ii) leur fonctionnalisation et, iii) l’étude par SANS de la stabilité des chaînes de polymères constituant ces fibres. La stabilité d’un polymère est un facteur important pour la dégradation contrôlée dans les systèmes biologiques. Des études de la stabilité de polystyrène, utilisé ici comme un modèle simple, dans le milieu confiné des nanofibres, ont été élaborés avec la technique de diffusion de neutrons aux petits angles. L’investigation de la conformation des chaînes de polymère dans les nanofibres montre une anisotropie remarquable, en suggérant une forte déformation des chaînes dans la direction axiale des fibres d’au cours de procédé d’électro-filage. La dynamique de relaxation des chaînes a permis d’évaluer leur stabilité et vieillissement dans le milieu confiné des nanofibres. Des fibres biocompatibles à base de poly(-caprolactone) (PCL) ont été électro-filées et optimisées pour obtenir des matériaux nano-structurés et fonctionnalisés en vue d’applications biomédicales. L’introduction par chimie click azide-alcyne de groupes saccharidiques dans le coeur ou en surface des fibres de PCL a été réalisée très efficacement selon deux approches distinctes avant ou après électro-filage. Les caractérisations physico-chimiques et biologiques réalisées sur les différents systèmes ont notamment permis de mettre en évidence la biodisponibilité des sucres à la surface des fibres ainsi que leur capacité à rendre la PCL hydrophile. Ces résultats attestent du potentiel de la chimie click à permettre la fonctionnalisation de fibres de polyesters sans altération de leur structure ouvrant ainsi d’importantes perspectives dans le domaine de l’ingénierie tissulaire. / Electrospinning process has become a leading technique for producing nano-fibrous scaffolds that are highly porous, lighter, and with superior mechanical properties than their bulk equivalents. Structural properties of electrospun fibers closely resemble to the connective cell tissue, making these nonwovens readily employed in medicine and pharmacy. The research study of this thesis focused on bridging the commercially available biopolymers with the tissue engineering applications through multifunctional aspects of carbohydrates and click chemistry coupling. Biocompatible fibers were electrospun from poly(-caprolactone) and further optimized into clickable azido-PCL scaffolds. Their surface-activity was visualized after click coupling of a fluorescent dye onto PCL-based electrospun fibers, while hydrophilicity and bioactivity were achieved by covalent bonding of carbohydrates, enabling specific cell adhesion possibilities of these nonwovens. Selective lectin surface-immobilization revealed the potential of these scaffolds for specific protein adhesion and therefore controlled cell-material interactions. Polymer stability is an important factor for controlled degradation in tissue engineering applications. Small angle neutron scattering studies were carried out to estimate the stability of polystyrene as a model-polymer, its chain conformation in as-spun and thermally annealed electrospun fibers. Notable anisotropy of polymeric chains within the fibers was observed. The terminal relaxation time of the polystyrene was estimated and compared to the theoretical value.
5

Développement d'un microsystème séparatif sur monolithe organique pour l'analyse des radionucléides en milieu acide nitrique / Development of a separatif microsystem for radionuclides analysis in nitric acid media

Losno, Marion 23 November 2017 (has links)
L’analyse des radionucléides est une nécessité pour la gestion des matières et déchets radioactifs liée à l’industrie nucléaire. Pour éviter les interférences et améliorer la précision des mesures, les étapes de traitement de l’échantillon et de séparations restent aujourd’hui incontournables. Elles sont cependant longues, irradiantes, difficiles à mettre en œuvre en boite à gants et produisent un volume de déchets liquides et solides significatif. L’objectif de cette thèse est de proposer une alternative innovante à l’utilisation des colonnes d’extraction sur phase solide dans les protocoles de séparation des radionucléides en milieu nitrique concentré permettant de réduire ces déchets en fin de cycle analytique et d’automatiser ces étapes. Un premier microsystème jetable en plastique (COC) intégrant une micro-colonne séparative de chromatographie d’extraction a été conçu. La phase stationnaire est un monolithe poly(AMA-co-EDMA) synthétisé par photopolymérisation in situ à structure ajustable, fonctionnalisable à façon, résistant au milieu nitrique concentré. Les capacités d’échange obtenues sont de l’ordre de 150 mgU/g de monolithe pour le TBP et le mélange TBP/CMPO et 280 mgU/g de monolithe pour le DAAP. Les valeurs des coefficients de partage des monolithes imprégnés ont été déterminées pour U(VI), Th(IV), Eu(III) et Nd(III) pour les 3 extractants (ainsi que pour Pu(IV) dans le cas de monolithes imprégnés par le TBP). La synthèse du monolithe a été transférée en microsystème centrifuge et après étude hydrodynamique, la séparation U,Th/Eu en milieu nitrique a été réalisée sur colonne imprégnée TBP en microsystème classique puis transférée en microsystème centrifuge. / Radionuclides analysis is a key point for nuclear waste management and nuclear material control. Several steps of sample modification have to be carried out before measurements in order to avoid any interferences and improve measurement precision. However those different steps are long, irradiant and difficult to achieve in gloveboxes. Moreover they produce liquid and solid waste. The goal of the study is to offer a new alternative to the use of solid phase extraction column for radionuclides separation in hard nitric acid medium. The system will decrease the amount of nuclear waste due to the analysis and automatize the different steps of the analysis. A plastic device made of COC containing a micro solid phase extraction column is first designed. Stationary phase is a poly(AMA-co-EDMA) monolith synthetized in situ. Its structure is adjustable and its functionalization versatile with a high resistance to nitric acid medium. Exchange capacity is 150 mg/g of monolith for TBP and TBP/CMPO column and up to 280 mg/g of monolith in case of DAAP. Exchange coefficients are determined for U(VI), Th(IV), Eu(III) and Nd(III) for 3 different extractants (and Pu(IV) in case of TBP column). Monolith synthesis is transferred in centrifugal device and hydrodynamic behavior studied. U,Th/Eu separation was finally carried out in both classic and centrifugal microsystem on TBP column.
6

Elaboration de biomatériaux pour la délivrance contrôlée de principes actifs hydrophobes / Lipid nanoparticles incorporated into biopolymer-based hydrogels; materials for controlled rate of drug delivery.

Racine, Lisa 22 November 2016 (has links)
Le développement de nouveaux systèmes pour la délivrance locale et contrôlée de principes actifs (PA) peut avoir plusieurs intérêts : augmenter la biodisponibilité du PA, délivrer une forte dose prolongée en limitant les effets secondaires, et améliorer le confort du patient. Pour développer ces nouveaux systèmes de délivrance, des matériaux composites ont été élaborés. Ces matériaux sont constitués d’une matrice hydrogel intégrant des nanoparticules lipidiques (LNPs) capables de solubiliser un principe actif hydrophobe. Cette double encapsulation a pour but de solubiliser puis de délivrer un principe actif hydrophobe qui ne pourrait pas être encapsulé directement dans la matrice hydrophile, et de retarder sa libération en créant des interactions particules/polymères. Nous avons élaboré différents matériaux en sélectionnant 2 polysaccharides largement utilisés pour des applications biomédicales : la carboxyméthylcellulose (CMC) et le chitosane (CS). Ces 2 polymères ont été mélangés à du poly(éthylène glycol) (PEG), un polymère synthétique flexible, pour augmenter les possibilités de moduler la structure et les propriétés mécaniques de la matrice. Ces hydrogels hybrides de CMC/PEG ou CS/PEG réticulés chimiquement par chimies clics, ont été proposés sous forme d’hydrogel en volume, de films ou d’éponges. Après un travail sur le développement et la caractérisation de ces nouvelles matrices hydrogels, les propriétés des matériaux composites polysaccharides/LNPs ont été évaluées et corrélées à la diffusion des particules dans le réseau hydrogel. / Due to their high biocompatibility, macroscale hydrogels have been studied as promising materials for the design of drug delivery systems (DDS). Such systems devoted to the local administration and prolonged drug release can improve the efficacy of pharmaceutical coumpounds while limiting undesired side-effects. Hydrogels present a high water content and soft consistency with mechanical properties that can match those of biological tissues. Nevertheless, these systems are essentially limited to the delivery of hydrophilic drugs. Our approach for extended release of hydrophobic drugs is to design composite materials composed of lipid nanoparticles (LNPs) entrapped within polysaccharide hydrogels. We selected two polysaccharides which are currently used in pharmaceutical and biomedical applications: carboxymethylcellulose (CMC) and chitosan (CS). We also used poly(ethylene glycol) (PEG) as a plasticizer to tune the matrix mechanical properties. Three types of LNP-loaded hybrid materials were studied; i) bulk CMC/PEG hydrogels, ii) CS/PEG films, and iii) CS/PEG sponges. These materials were chemically crosslinked through attractive click reactions. LNPs were successfully entrapped within the three materials without affecting their properties. A deeper study was conducted with the CMC/PEG composite hydrogel. The LNP release profiles were correlated with the network structure and particles properties. The different materials appear promising systems for the time-controlled delivery of therapeutics.
7

Synthèse et caractérisation de copolymères amphiphiles à base de poly(acide lactique) et de poly(éthylène glycol) pour la délivrance de principes actifs / Synthesis and characterization of amphiphilic copolymers based on poly(lactic acid) and poly(ethylene glycol) towards drug delivery system

Coumes, Fanny 18 December 2014 (has links)
Ce travail avait pour but de synthétiser et caractériser des copolymères amphiphiles à base de poly(éthylène glycol) (PEG) et de poly(acide lactique) (PLA) pour la confection de systèmes de délivrance de principes actifs (PA). Les polymères ont été choisis pour leur biocompatibilité et de leur biorésorbabilité. Plusieurs architectures de copolymères amphiphiles ont été créées et leur comportement auto-associatif en milieu aqueux ainsi que leur capacité à encapsuler des principes actifs ont été étudiés. Tout d'abord, un copolymère greffé a été synthétisé par copolymérisation d'un monomère fonctionnel, le glycolide monopropargylé, avec du L-lactide pour obtenir un squelette polyester fonctionnel sur lequel des branches hydrophiles de PEG ont été greffés avec plusieurs degrés de substitution. Ensuite, un copolymère peigne tribloc a été synthétisé à partir d'un bloc central PLA dont les extrémités de chaînes ont été modifiées pour permettre l'amorçage de la polymérisation de méthacrylate d'oligo(éthylène glycol) avec des taux de substitution variables. L'étude de l'auto-assemblage et de la capacité à encapsuler des PA a révélé que l'architecture et la balance hydrophile/hydrophobe sont des facteurs déterminants pour la nature des objets formés et leur potentiel d'encapsulation. Enfin, des stratégies de fonctionnalisation ont été mises en place afin d'augmenter et de moduler l'efficacité des PA encapsulés. Ceci est illustré par le couplage d'une molécule fluorescente modèle et, dans le cadre d'une collaboration, par la conjugaison d'un peptide immunostimulateur sur un système dibloc amphiphile. La comparaison à d'autres formulations a montré que le conjugué permettait de moduler et renforcer l'efficacité du PA utilisé. / The objective of this work was to synthesize and characterize amphiphilic copolymers based on poly(ethylene glycol) (PEG) and poly(lactic acid) (PLA) intended for drug delivery applications. The polymers were chosen regarding to their biocompatibility and bioresorbability. Different architectures of amphiphilic copolymers were prepared, and their behavior in aqueous media, as well as their abilities to encapsulate drugs were studied. First, a graft copolymer was synthesized through copolymerization of a functional monomer, monopropargylated glycolide, with L-lactide to yield a functionalized polyester backbone. The latter was then grafted with different densities of hydrophilic branches of PEG. Then, a brush-like triblock copolymer was synthesized through ROP and ATRP. To this end, chain ends of a telechelic block of PLA were modified to yield a macroinitiator able to initiate oligo(ethylene glycol) methacrylate polymerization with variable substitution degrees. Self-assembly and drug loading studies revealed that architecture and hydrophobic/hydrophilic balance played a major role on the nature of the formed objects and on their encapsulation potential. Finally, to modulate and increase the efficacy of encapsulated drugs, functionalization strategies were realized. This is illustrated by the linking of a fluorescent model molecule on a triblock brush-like copolymer and, in a collaboration project, the linking of an immunostimulant peptide on an amphiphilic diblock system. Comparison with other formulations revealed that the conjugate allowed modulating and reinforcing the drug's efficacy.
8

Nanostructure des particules polymériques : aspects physiques, chimiques et biologiques

Rabanel, Jean-Michel 04 1900 (has links)
Les nanotechnologies appliquées aux sciences pharmaceutiques ont pour but d’améliorer l’administration de molécules actives par l’intermédiaire de transporteurs nanométriques. Parmi les différents types de véhicules proposés pour atteindre ce but, on retrouve les nanoparticules polymériques (NP) constituées de copolymères “en bloc”. Ces copolymères permettent à la fois l’encapsulation de molécules actives et confèrent à la particule certaines propriétés de surface (dont l’hydrophilicité) nécessaires à ses interactions avec les milieux biologiques. L’architecture retenue pour ces copolymères est une structure constituée le plus fréquemment de blocs hydrophiles de poly(éthylène glycol) (PEG) associés de façon linéaire à des blocs hydrophobes de type polyesters. Le PEG est le polymère de choix pour conférer une couronne hydrophile aux NPs et son l’efficacité est directement liée à son organisation et sa densité de surface. Néanmoins, malgré les succès limités en clinique de ces copolymères linéaires, peu de travaux se sont attardés à explorer les effets sur la structure des NPs d’architectures alternatives, tels que les copolymères en peigne ou en brosse. Durant ce travail, plusieurs stratégies ont été mises au point pour la synthèse de copolymères en peigne, possédant un squelette polymérique polyesters-co-éther et des chaines de PEG liées sur les groupes pendants disponibles (groupement hydroxyle ou alcyne). Dans la première partie de ce travail, des réactions d’estérification par acylation et de couplage sur des groupes pendants alcool ont permis le greffage de chaîne de PEG. Cette méthode génère des copolymères en peigne (PEG-g-PLA) possédant de 5 à 50% en poids de PEG, en faisant varier le nombre de chaînes branchées sur un squelette de poly(lactique) (PLA). Les propriétés structurales des NPs produites ont été étudiées par DLS, mesure de charge et MET. Une transition critique se situant autour de 15% de PEG (poids/poids) est observée avec un changement de morphologie, d’une particule solide à une particule molle (“nanoagrégat polymére”). La méthode de greffage ainsi que l’addition probable de chaine de PEG en bout de chaîne principale semblent également avoir un rôle dans les changements observés. L’organisation des chaînes de PEG-g-PLA à la surface a été étudiée par RMN et XPS, méthodes permettant de quantifier la densité de surface en chaînes de PEG. Ainsi deux propriétés clés que sont la résistance à l’agrégation en conditions saline ainsi que la résistance à la liaison aux protéines (étudiée par isothermes d’adsorption et microcalorimétrie) ont été reliées à la densité de surface de PEG et à l’architecture des polymères. Dans une seconde partie de ce travail, le greffage des chaînes de PEG a été réalisé de façon directe par cyclo-adition catalysée par le cuivre de mPEG-N3 sur les groupes pendants alcyne. Cette nouvelle stratégie a été pensée dans le but de comprendre la contribution possible des chaines de PEG greffées à l’extrémité de la chaine de PLA. Cette librairie de PEG-g-PLA, en plus d’être composée de PEG-g-PLA avec différentes densités de greffage, comporte des PEG-g-PLA avec des PEG de différent poids moléculaire (750, 2000 et 5000). Les chaines de PEG sont seulement greffées sur les groupes pendants. Les NPs ont été produites par différentes méthodes de nanoprécipitation, incluant la nanoprécipitation « flash » et une méthode en microfluidique. Plusieurs variables de formulation telles que la concentration du polymère et la vitesse de mélange ont été étudiées afin d’observer leur effet sur les caractéristiques structurales et de surface des NPs. Les tailles et les potentiels de charges sont peu affectés par le contenu en PEG (% poids/poids) et la longueur des chaînes de PEG. Les images de MET montrent des objets sphériques solides et l'on n’observe pas d’objets de type agrégat polymériques, malgré des contenus en PEG comparable à la première bibliothèque de polymère. Une explication possible est l’absence sur ces copolymères en peigne de chaine de PEG greffée en bout de la chaîne principale. Comme attendu, les tailles diminuent avec la concentration du polymère dans la phase organique et avec la diminution du temps de mélange des deux phases, pour les différentes méthodes de préparation. Finalement, la densité de surface des chaînes de PEG a été quantifiée par RMN du proton et XPS et ne dépendent pas de la méthode de préparation. Dans la troisième partie de ce travail, nous avons étudié le rôle de l’architecture du polymère sur les propriétés d’encapsulation et de libération de la curcumine. La curcumine a été choisie comme modèle dans le but de développer une plateforme de livraison de molécules actives pour traiter les maladies du système nerveux central impliquant le stress oxydatif. Les NPs chargées en curcumine, montrent la même transition de taille et de morphologie lorsque le contenu en PEG dépasse 15% (poids/poids). Le taux de chargement en molécule active, l’efficacité de changement et les cinétiques de libérations ainsi que les coefficients de diffusion de la curcumine montrent une dépendance à l’architecture des polymères. Les NPs ne présentent pas de toxicité et n’induisent pas de stress oxydatif lorsque testés in vitro sur une lignée cellulaire neuronale. En revanche, les NPs chargées en curcumine préviennent le stress oxydatif induit dans ces cellules neuronales. La magnitude de cet effet est reliée à l’architecture du polymère et à l’organisation de la NP. En résumé, ce travail a permis de mettre en évidence quelques propriétés intéressantes des copolymères en peigne et la relation intime entre l’architecture des polymères et les propriétés physico-chimiques des NPs. De plus les résultats obtenus permettent de proposer de nouvelles approches pour le design des nanotransporteurs polymériques de molécules actives. / The goal set to nanotechnologies applied to pharmaceutical sciences is to improve drug delivery and benefits with the help of nanometer-sized vehicles. At this time different types of drug carriers had been proposed. Amongst them, block copolymer nanoparticles (NP) have been designed to allow, at the same time, efficient drug encapsulation and provide surface properties (hydrophilic layer) to the NP which are necessary for its interactions with biological systems by preventing the opsonisation and the subsequent recognition by the mononuclear macrophage system (MPS) and the rapid elimination of the drug carrier. The most prominent polymer architecture in drug delivery application is the linear di-block copolymer architecture, such as poly(ethylene glycol) blocks (PEG) linked to a polyester hydrophobic chain. PEG is the gold standard to add a hydrophilic corona to drug carrier’s surface, but its efficacy is directly linked to its surface organization and surface densities. In spite of limited success of diblock at the clinical stage, few studies have been devoted to other type of architecture such as comb-like copolymers, either for the exploration of new synthesis routes or for the characterization of particles prepared from alternative architecture polymers. We attempted in preamble of this work to define more closely the conceptual and technical framework allowing quantitative determination of PEG surface densities. This review work has been used in the experimental work to define the characterization methods. Several synthesis strategies have been developed for the preparation of comb copolymers in this work. All strategies are based on random copolymerization of dilactide with small epoxy molecules with a pendant group suitable for subsequent PEG grafting, yielding a polyester-co-ether backbone. In a second step, PEG chains have been grafted on available pendant groups (alcohol groups or alkyne) to produce the final comb copolymers. In the first part of the experimental work, esterification reaction by acylation and coupling (the Steglish reaction) allowed the preparation of a first comb-like copolymer library with PEG content varying from 5 to 50 % (w/w). The number of PEG chains (PEG grafting density) was varying while the lengths of the PEG chains and the hydrophobic PLA backbone were kept constant. The library of comb-like polymers was used to prepare nanocarriers with dense PEG brushes at their surface, stability in suspension, and resistance to protein adsorption. The structural properties of nanoparticles (NPs) produced from these polymers by a surfactant-free method were assessed by DLS, zeta potential, and TEM and were found to be controlled by the amount of PEG present in the polymers. A critical transition from a solid NP structure to a soft particle with either a “micelle-like” or “polymer nano-aggregate” structure was observed when the PEG content was between 15 to 25% w/w. This structural transition was found to have a profound impact on the size of the NPs, their surface charge, their stability in suspension in presence of salts as well as on the binding of proteins to the surface of the NPs. The arrangement of the PEG-g-PLA chains at the surface of the NPs was investigated by 1H NMR and X-ray photoelectron spectroscopy (XPS). NMR results confirmed that the PEG chains were mostly segregated at the NP surface. Moreover, XPS and NMR allowed the quantification of the PEG chain coverage density at the surface of the solid NPs. Concordance of the results between the two methods was found to be remarkable. Physical-chemical properties of the NPs such as resistance to aggregation in saline environment as well as anti-fouling efficacy, assessed by isothermal titration calorimetry (ITC), were related to the PEG surface density and ultimately to polymer architecture. In the second part of this work, grafting of PEG chains on a polyester-co-ether backbone was directly performed using cyclo-addition of PEG azide on pendant alkyne groups. The new strategy was designed to understand the contribution of PEG chains grafted on PLA backbone ends. The new polymer library was composed of PEG-g-PLA with different PEG grafting densities and PEG molecular weights (750, 2000 and 5000 D). PEG chain grafting could only take place on pendant groups with this approach. NPs were produced by different methods of nanoprecipitation, including “flash nanoprecipitation” and microfluidic technology. Some formulation variables such as polymer concentration and speed of mixing were studied in order to observe their effects on NP surface characteristics. Unlike for the first copolymer library, here the NPs size and zeta potential were found to not be much affected by the PEG content (% w/w in polymer). Sizes were also not affected by the PEG chains length. TEM images show round shaped object and as expected sizes were found to decrease with polymer concentration in the organic phase and with a decrease in mixing time of the two phases (for flash nanoprecipitation and microfluidic technology). PEG chain surface densities were assessed by quantitative 1H NMR and XPS. In the third experimental part, we explored the role of polymer architecture on drug encapsulation and release of curcumin from NPs. Curcumin has been chosen as a model with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. As previously observed with blank NPs, a sharp decrease in curcumin-loaded NP size and morphology change occurred between 15 to 20 % w/w of PEG. Drug loading, Drug loading efficiency and the diffusion coefficients of curcumin in NPs are showing a dependence over the polymer architecture. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. In a nutshell, our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers. The results obtained lead us to propose PEG-g-PLA comb architecture copolymers for nanomedecine development as an alternative to the predominant polyester-PEG diblock polymers.
9

Chemical biology approaches to study toxin clustering and lipids reorganization in Shiga toxin endocytosis / Etude de la condensation et de la réorganisation des lipides lors de l’endocytose de la toxine de Shiga via une approche de biologie chimique

Gao, Haifei 12 November 2015 (has links)
La toxine bactérienne de Shiga se lie au glycosphingolipide (GSL) globotriaosylcéramide (Gb3) afin d’entrer par endocytose dans les cellules en utilisant une voie dépendante et indépendante de la clathrine. Dans la voie indépendante de la clathrine, la toxine de Shiga réorganise les lipides de la membrane de façon à imposer une contrainte mécanique sur la bicouche, conduisant ainsi à la formation de pic d’invagination d'endocytose profonds et étroits. Mécaniquement ce phénomène n’est pas encore compris, notamment il reste énigmatique, comment se traduisent les propriétés géométriques de l’agrégation des glycosphingolipides GSLS et de la toxine. Dans mon travail de thèse, via l’utilisation de la sous-unité B de la toxine de Shiga (STxB) comme un modèle, différentes espèces moléculaires de son récepteur Gb3 ont été synthétisés avec des structures délibérément choisis. Les études réalisées par imagerie de haute résolution et par la modélisation informatique ont permis d’élucider les contraintes mécano-chimique sous-jacente conduisant à une réorganisation efficace qui a pour résultat l’agrégation de la toxine et la réorganisation des lipides. En combinant des expériences de simulation sur ordinateur de dynamique des particules dissipatives (DPD) et des expériences sur des modèles de membranes cellulaires, nous avons fourni la preuve de l’induction d’une force de fluctuation-membrane, de type « force de Casimir », conduisant à l'agrégation des molécules de toxines associées à la membrane à des échelles de longueur mésoscoiques. Nous avons observé et mesuré, en outre la condensation lipidique induite par la toxine, quantitativement sur des monocouches de Langmuir en utilisant la réflectivité des rayons X (XR) et par la mesure de la diffraction des rayons X par incidence rasante (GIXD), fournissant ainsi une preuve directe de l'hypothèse que la toxine a le potentiel de réduire de façon asymétrique la surface moléculaire sur la partie membranaire exoplasmique, ce qui conduit à une déformation locale de la membrane. Durant ma thèse, nos efforts ont été consacrés à la réalisation de nouveaux glycosphinolipides (GSL) comme outils chimiques à visée biologique. Par ailleurs, une nouvelle stratégie de reconstitution de GSL fonctionnels sur la membrane cellulaire, basée sur une réaction de ligation de type « click » entre un glycosyl-cyclooctyne et un azido-sphingosine a été étudiée. Les résultats obtenus sur les cellules se sont avérés beaucoup moins efficace que ceux in vitro. Une poursuite de l'optimisation de cette méthodologie est actuellement en cours. Une sonde fluorescente du glycosphinolipide Gb3, marquée à l’Alexa Fluor 568 lui-même lié par l'intermédiaire d'un bras PEG-α à la position de la chaîne acyle, a été synthétisée. Cette sonde se lie à la STxB sur couche mince de TLC, mais pas sur des membranes modèles. D'autres améliorations sont discutées. / Bacterial Shiga toxins bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3) to enter cells by clathrin-dependent and independent endocytosis. In the clathrin-independent pathway, Shiga toxin reorganizes membrane lipids in a way such as to impose mechanical strain onto the bilayer, thus leading to the formation of deep and narrow endocytic pits. Mechanistically how this occurs is not yet understood, and notably how the geometric properties of toxin-GSLs complexes translate into function has remained enigmatic. In my thesis work, using the B-subunit of Shiga toxin (STxB) as a model, different molecular species of its receptor Gb3 have been synthesized with deliberately chosen structures, coupled with high resolution imaging and computational modeling, to understand the underlying mechano-chemical constraints leading to efficient toxin clustering and lipids reorganization. By combining dissipative particle dynamics (DPD) computer simulation and experiments on cell and model membranes, we provided evidence that a membrane fluctuation-induced force, termed Casimir-like force, drives the aggregation of tightly membrane-associated toxin molecules at mesoscopic length scales. Furthermore, toxin-induced lipid condensation was observed and measured quantitatively on Langmuir monolayers using X-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), thereby providing direct evidence for the hypothesis that the toxin has the potential to asymmetrically reduce the molecular area of the exoplasmic membrane leaflet, leading to local membrane deformation. During my PhD, effort was also invested to develop new GSL tools applied to the biological setting. A novel strategy based on the Cu-free click reaction between glycosyl-cyclooctyne and azido-sphingosine was designed with the goal to functionally incorporate GSLs into cellular membranes. Following the synthesis work, click reactions have been performed in solution and on cells. Compared to the former, results on cells were far less efficient. Further optimization is currently ongoing. A fluorescently labeled Gb3 probe with Alexa Fluor 568 coupled via a PEG linker to the α-position of the acyl chain, was synthesized, to which STxB bound on TLCs, but not on model membranes. Further improvements are discussed.

Page generated in 0.045 seconds