• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 45
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 144
  • 144
  • 134
  • 59
  • 51
  • 51
  • 45
  • 40
  • 38
  • 36
  • 31
  • 30
  • 29
  • 29
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Flambagem por distorção da seção transversal em perfis de aço formados a frio submetidos à compressão centrada e à flexão" / Distortional buckling of cold-formed steel members under compression and bending.

Gustavo Monteiro de Barros Chodraui 09 April 2003 (has links)
Os perfis de aço formados a frio apresentam, em geral, elevada relação largura/espessura, tornando-os suscetíveis à flambagem local, caracterizada por uma flambagem de chapa, mas que também pode ocasionar um outro modo de flambagem, denominado flambagem por distorção, desconsiderado no dimensionamento de perfis laminados, mas que pode resultar crítico principalmente nos perfis com enrijecedores de borda e constituídos por aço de elevada resistência mecânica. Tal fenômeno é caracterizado pela perda de estabilidade do conjunto formado pelo elemento comprimido e seu enrijecedor de borda, alterando a forma inicial da seção transversal. Portanto, as normas mais atuais têm apresentado procedimentos para avaliar a resistência de barras com base na flambagem por distorção, como o procedimento simplificado da norma australiana AS/NZS 4600:1996, proposto por HANCOCK e que foi também adotado pela recente norma brasileira NBR 14762:2001, o método direto de resistência, recentemente proposto para incorporação à especificação do AISI (American Iron and Steel Institute) e a GBT (Generalized Beam Theory).Nesse trabalho é feita uma abordagem dos procedimentos propostos para a avaliação da flambagem por distorção em barras submetidas à compressão centrada e à flexão, comparando-se os resultados obtidos pelo procedimento da norma brasileira, pela análise elástica via método das faixas finitas - MFF e pela análise via método dos elementos finitos - MEF, admitindo barras sem e com imperfeições iniciais. É feita também uma abordagem com relação aos outros procedimentos internacionais para a avaliação do fenômeno. / Cold-formed steel members present, in many cases, an elevated width/thickness ratio (thin-walled members), which probably lead up to the local buckling, which is characterized by a plate buckling, and also may lead up to another buckling mode, called distortional buckling, not considered on the design of hot-rolled members, but which may result critical in cold-formed members, specially in the ones with edge stiffeners and made with high strength steel. Such phenomena is characterized by the instability of the group formed by the compression flange and its stiffener, changing the initial shape of the cross section. Nowadays, codes present procedures to evaluate member’s resistance also due to distortional buckling, as the simplified method in the Australian code, AS/NZS 4600:1996, proposed by HANCOCK, which was adopted by the new Brazilian code, NBR 14762:2001, the Direct Strenght Method, recently proposed as an AISI (American Iron and Steel Institute) Draft, and the GBT (Generalilzed Beam Theory).This work talks about procedures proposed to evaluate distortional buckling in members under compression and bending, comparing results obtained by the method showed in the brazilian code, by numerical Finite Strip Method elastic analisys - FSM, and by Finite Element Method analisys – FEM, on members with and without initial imperfections. It is also done an explanation related to other international procedures to evaluate the phenomena.
82

Cold-Formed Steel Bolted Connections without Washers on Oversized and Slotted Holes

Sheerah, Ibraheem 05 1900 (has links)
The use of the cold-formed steel sheet bolted connections without washers is so significant; however, the North American Specifications for the Design of Cold Formed Steel Structural Members, NASPEC, doesn't provide provisions for such connections. The bearing failure of sheet and the shear failure of sheet were considered in this study. For the sheet shear strength, it was found that the NASPEC (2007) design provisions can be used for oversized holes in both single and double shear configurations and for the double shear connections on short slotted holes. For the sheet bearing strength, a new design method was proposed to be used for low and high ductile steel sheets. The method was compared with the NASPEC and the University of Waterloo approach. Washers were still required for single shear connections on short slotted holes. Besides, connections using ASTM A325 bolts yielded higher bearing strength than connections using ASTM A307 bolts.
83

Nominal Shear Strength and Seismic Detailing of Cold-formed Steel Shear Walls using Steel Sheet Sheathing

Chen, Yujie 08 1900 (has links)
In this research, monotonic and cyclic tests on cold-formed steel shear walls sheathed with steel sheets on one side were conducted to (1) verify the published nominal shear strength for 18-mil and 27-mil steel sheets; and (2) investigate the behavior of 6-ft. wide shear walls with multiple steel sheets. In objective 1: this research confirms the discrepancy existed in the published nominal strength of 27-mil sheets discovered by the previous project and verified the published nominal strength of 18 mil sheet for the wind design in AISI S213. The project also finds disagreement on the nominal strength of 18-mil sheets for seismic design, which is 29.0% higher than the published values. The research investigated 6-ft. wide shear wall with four framing and sheathing configurations. Configuration C, which used detailing, could provide the highest shear strength, compared to Configurations A and B. Meanwhile, the shear strength and stiffness of 2-ft. wide and 4-ft. wide wall can be improved by using the seismic detailing.
84

Cold-Formed Steel Bolted Connections Using Oversized and Slotted Holes without Washers

Xu, Ke 08 1900 (has links)
In cold-formed steel (CFS) construction, bolted connections without washers for either oversized or slotted holes may significantly expedite the installation process and lower the cost. However, the North American Specification (AISI S100, 2007) for the Design of Cold-Formed Steel Structural Members requires washers to be installed in bolted connections with oversized or slotted holes. A research project (Phase 1) sponsored by American Iron and Steel Institute (AISI) was recently completed at the University of North Texas (UNT) that investigated the performance and strength of bolted CFS connections with oversized and slotted holes without using washers. The research presented in this thesis is the Phase 2 project in which the bolted CFS connections were studied in a broader respect in terms of the failure mechanism, the material thickness, and the hole configurations. Single shear and double shear connections without washers using oversized holes, oversized combined with standard or slotted holes were experimentally examined. Combined with Phase 1 results, the Phase 2 gives a comprehensive evaluation of the behavior and strength of bolted CFS connections with oversized and slotted holes without using washers. Revisions to the existing AISI North American Specification requirements for bolted connections are proposed to account for the reduction in the connection strength caused by the oversized and slotted hole configurations without washers. Specific LRFD and LSD resistance factors and ASD safety factors for different hole configurations in terms of the new proposed methods were presented.
85

High Fidelity Modeling of Cold-Formed Steel Single Lap Shear Screw Fastened Connections

Kalo, Rita 19 March 2019 (has links)
Cold-formed steel connections are commonly fastened using self-tapping self-drilling screws. The behavior of these connections can differ based on the screw manufacturer or the cold-formed steel product used, both of which have a large selection available for use in industry. Because of their popularity and the many possible variations of these connections, researchers have frequently tested screw connections to characterize their behavior. However, repeatedly conducting this type of experiment is time consuming and expensive. Therefore, the purpose of this work was to create finite element models that can successfully predict the behavior of single lap shear screw connections, a common connection type used in cold-formed steel framing. These models were created using the finite element program Abaqus/CAE. To validate these models, test results from Pham and Moen (2015) were used to compare the stiffness, strength, and failure mode of multiple connections. A parametric study is also conducted to determine the influence of contact parameters on the behavior of the model. The results showed that all models consistently had good agreement with the connection stiffness and that most of the models also had good agreement with the peak load and failure mode of the v tests. These results were also compared to the design equations available for screw connections from the American Iron and Steel Institute (AISI). This comparison revealed that the models are more successful at predicting screw connection behavior than AISI, and thus work is required to improve the accuracy of AISI’s design equations. The eventual goal of this work is to develop a procedure to build and validate models without requiring test data. This work continuing in the future can lead to recommendations to improve AISI’s design equations and to implement the behavior of the connections into large cold-formed steel framing models such as diaphragms or shear walls.
86

QUANTIFICATION OF THERMAL BRIDGING EFFECTS IN COLD-FORMED STEEL WALL ASSEMBLIES

Kapoor, Divyansh 08 April 2020 (has links)
Thermal bridging can be defined as the phenomenon where a structural element spanning the building envelope acts like a thermal pathway which collects and moves energy (heat) from the interior to the exterior of the structure. CFS construction, due to the high thermal conductivity of steel with respect to its surrounding structural components and repetitive nature of framing, is highly prone to thermal bridging. Thermal bridging significantly alters the thermal performance of wall assemblies. Hence, the objective of this research project was to quantify the magnitude of energy loss through cold-formed steel (CFS) stud wall assemblies at a component level to lay the groundwork for future works that promote sustainable, energy-efficient, and improved building design recommendations. Therefore, a parametric evaluation was performed using ISO 10211:2007, Annex A, conforming heat transfer software Blocon Heat3 version 8 to generate the data required for analysis. 80 unique wall assemblies and the impact of selected parameters on the overall thermal transmittance of the wall assembly were studied as part of the parametric evaluation. The key variables of the study are steel thickness, stud depth, stud spacing, cavity insulation R-value, external insulation thickness (R-value), and fastener diameter and length. Based on the results of the analysis, effects of increasing stud and track thickness, depth, and stud spacing have been discussed in the form of trends in overall heat flow and linear thermal transmittance coefficient values. Additionaly, effects of increasing external insulation have been discussed by addressing changes in heat flow.
87

Innovative Cold-Formed Steel Shear Walls with Corrugated Steel Sheathing

Mahdavian, Mahsa 05 1900 (has links)
This thesis presents two major sections with the objective of introducing a new cold-formed steel (CFS) shear wall system with corrugated steel sheathings. The work shown herein includes the development of an optimal shear wall system as well as an optimal slit configuration for the CFS corrugated sheathings which result in a CFS shear wall with high ductility, high strength, high stiffness and overall high performance. The conclusion is based on the results of 36 full-scale shear wall tests performed in the structural laboratory of the University of North Texas. A variety of shear walls were the subject of this research to make further discussions and conclusions based on different sheathing materials, slit configurations, wall configurations, sheathing connection methods, wall dimensions, shear wall member thicknesses, and etc. The walls were subject to cyclic (CUREE protocol) lateral loading to study their deformations and structural performances. The optimal sit configuration for CFS shear walls with corrugated steel sheathings was found to be 12×2 in. vertical slits in 6 rows. The failure mode observed in this shear wall system was the connection failure between the sheathing and the framing members. Also, most of the shear walls tested displayed local buckling of the chord framing members located above the hold-down locations. The second section includes details of developing a Finite Element Model (FEM) in ABAQUS software to analyze the lateral response of the new shear wall systems. Different modeling techniques were used to define each element of the CFS shear wall and are reported herein. Material properties from coupon test results are applied. Connection tests are performed to define pinching paths to model fasteners with hysteretic user-defined elements. Element interactions, boundary conditions and loading applications are consistent with full scale tests. CFS members and corrugated sheathings are modeled with shell elements, sheathing-to-frame fasteners are modeled using nonlinear springs (SPRING2 elements) for monotonic models and a general user defined element (user subroutine UEL) for cyclic models. Hold-downs are defined by boundary conditions. A total of three models were developed and validated by comparing ABAQUS results to full scale test results.
88

The Design and Development of Lightweight Composite Wall, Roof, and Floor Panels for Rigid Wall Shelter

Artman, Jeremy J 05 1900 (has links)
This thesis presents a research effort aimed at developing a stronger, lighter, and more economic shelter using rigid wall panels. Reported herein is insulation research, wall and roof panel design and testing, floor section modeling and strength calculations, and cost and weight calculations. Beginning stages focus on developing solid wall and roof panels using cold-formed steel corrugated sheathing and members, as well as polyurethane spray foam for insulation. This research includes calculating uniform load density, to determine the overall strength of the panel. The next stage focuses on the flexural strength of the wall and roof panels, as well as finalizing the floor design for the shelter. This includes determining maximum flexural strength required to meet the standards set by the project goal. Direct strength method determined the correct thickness of members to use based on the dimension selected for the design. All Phases incorporated different connection methods, with varied stud spacing, to determine the safest design for the new shelters. Previous research has shown that cold-formed steel corrugated sheathing performs better than thicker flat sheathing of various construction materials, with screw and spot weld connections. Full scale shear wall tests on this type of shear wall system have been conducted, and it was found that the corrugated sheathing had rigid board behavior before it failed in shear buckling in sheathing and sometimes simultaneously in screw connection failures. Another aspect of the research is on the insulation of the wall panels. Research was conducted on many different insulation options for the mobile facilities. Specifically, insulation made of lightweight material, is non-combustible, added rigidity to the structure, and has high thermal properties. Closed cell polyurethane spray foam was selected for full-scale testing in this research. Closed cell polyurethane adds extra rigidity, is lighter than common honeycomb insulation, and has a higher R-value. Several polyurethane foam companies were studied for this research, and promising products were identified. The research focuses on the impacts of the polyurethane foam to the structural performance of the wall panels. Both shear and 4-point bending tests were completed to investigate the strength and behavior of the cold-formed steel framed wall panels with polyurethane foam insulation. Comparing the cost and weight of the current shelter, and the new design is reported herein. The material studies, specimen details, and test results are reported in this thesis.
89

Experimental and Analytical Studies of the Behavior of Cold-Formed Steel Roof Truss Elements

Nuttayasakul, Nuthaporn 01 December 2005 (has links)
Cold-formed steel roof truss systems that use complex stiffener patterns in existing hat shape members for both top and bottom chord elements are a growing trend in the North American steel framing industry. When designing cold-formed steel sections, a structural engineer typically tries to improve the local buckling behavior of the cold-formed steel elements. The complex hat shape has proved to limit the negative influence of local buckling, however, distortional buckling can be the controlling mode of failure in the design of chord members with intermediate unbraced lengths. The chord member may be subjected to both bending and compression because of the continuity of the top and bottom chords. These members are not typically braced between panel points in a truss. Current 2001 North American Specifications (NAS 2001) do not provide an explicit check for distortional buckling. This dissertation focuses on the behavior of complex hat shape members commonly used for both the top and bottom chord elements of a cold-formed steel truss. The results of flexural tests of complex hat shape members are described. In addition, stub column tests of nested C-sections used as web members and full scale cold-formed steel roof truss tests are reported. Numerical analyses using finite strip and finite element procedures were developed for the complex hat shape chord member in bending to compare with experimental results. Both elastic buckling and inelastic postbuckling finite element analyses were performed. A parametric study was also conducted to investigate the factors that affect the ultimate strength behavior of a particular complex hat shape. The experimental results and numerical analyses confirmed that modifications to the 2001 North American Specification are necessary to better predict the flexural strength of complex hat shape members, especially those members subjected to distortional buckling. Either finite strip or finite element analysis can be used to better predict the flexural strength of complex hat shape members. Better understanding of the flexural behavior of these complex hat shapes is necessary to obtain efficient, safe design of a truss system. The results of these analyses will be presented in the dissertation. / Ph. D.
90

Prediction of Lateral Restraint Forces in Sloped Z-section Supported Roof Systems Using the Component Stiffness Method

Seek, Michael Walter 04 September 2007 (has links)
Z-sections are widely used as secondary members in metal building roof systems. Lateral restraints are required to maintain the stability of a Z-section roof system and provide resistance to the lateral forces generated by the slope of the roof and the effects due to the rotation of the principal axes of the Z-section relative to the plane of the roof sheathing. The behavior of Z-sections in roof systems is complex as they act in conjunction with the roof sheathing as a system and as a light gage cold formed member, is subject to local cross section deformations. The goal of this research program was to provide a means of predicting lateral restraint forces in Z-section supported roof systems. The research program began with laboratory tests to measure lateral restraint forces in single and multiple span sloped roof systems. A description of the test apparatus and procedure as well as the results of the 40 tests performed is provided in Appendix II. To better understand the need for lateral restraints and to provide a means of testing different variables of the roof system, two types of finite element models were developed and are discussed in detail in appended Paper I. The first finite element model is simplified model that uses frame stiffness elements to represent the purlin and sheathing. This model has been used extensively by previous researchers and modifications were made to improve correlation with test results. The second model is more rigorous and uses shell finite elements to represent the Z-section and sheathing. The shell finite element model was used to develop a calculation procedure referred to as the Component Stiffness Method for predicting the lateral restraint forces in Z-section roof systems. The method uses flexural and torsional mechanics to describe the behavior of the Z-section subject to uniform gravity loads. The forces generated by the system of Z-sections are resisted by the "components" of the system: the lateral restraints, the sheathing and Z-section-to-rafter connection. The mechanics of purlin behavior providing the basis for this method are discussed in appended Paper II. The development of the method and the application of the method to supports restraints and interior restraints are provided in appended papers III, IV and V. / Ph. D.

Page generated in 0.0511 seconds