• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 1
  • Tagged with
  • 43
  • 43
  • 33
  • 21
  • 19
  • 18
  • 18
  • 18
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo numérico e design construtal de escoamentos laminares bifurcados em forma de Y

Sehn, Alysson January 2018 (has links)
Este trabalho tem como propósito investigar como a variação geométrica de determinados parâmetros envolvidos na construção de uma geometria bifurcada de seção circular, em forma de Y, afeta a resistência ao escoamento, tanto de fluidos newtonianos como não newtonianos. As geometrias estudadas foram construídas utilizando-se o princípio do Design Construtal. Os parâmetros variados foram a relação entre os comprimentos dos dutos pais e filhos, a relação entre os diâmetros dos mesmos dutos, e o ângulo central da estrutura em forma de Y. Para as relações geométricas lineares foram utilizados os valores de 0,5; 0,6; 0,7; 0,8; 0,9 e 1, enquanto para os ângulos, foram utilizados os valores de 155°, 135°, 115°, 95°, 75°, 45°, 25° e 10°. Os fluidos utilizados foram do tipo newtoniano e não newtoniano, dentre estes últimos, foram estudados fluidos pseudoplásticos e dilatantes. O trabalho foi realizado através de simulações numéricas, implementadas com a utilização do software comercial Ansys Fluent, o qual resolve as equações governantes através do método dos volumes finitos. As malhas utilizadas foram do tipo poliédrica. Os resultados indicam que há uma diferença em relação ao que se espera da literatura para as relações entre os diâmetros e os comprimentos. A Lei Hess-Murray indica que estas relações ótimas seriam de 2-1/3 para as relações entre os diâmetros e comprimentos. No presente trabalho, foram determinadas relações entre os diâmetros próximas de 0,6, e entre os comprimentos, iguais a 1. Os ângulos ótimos ficaram localizados no intervalo entre 100° e 135°. / This work aims to investigate how the geometric variation of certain parameters involved in the construction of a bifurcated Y-shaped circular cross-section geometry affects the flow resistance of both Newtonian and non-Newtonian fluids. The geometries studied were constructed using the Constructal Design principle. The parameters were the relationship between the lengths of the daughter and parent ducts, the relationship between the diameters of the same ducts, and the central angle of the Y-shaped structure. For the linear geometric relations, values of 0.5; 0.6; 0.7; 0.8; 0.9 and 1 where used, for the angles, the values of 155 °, 135 °, 115 °, 95°, 75 °, 45 °, 25 ° and 10 ° were used. The fluids used were of the Newtonian and non-Newtonian type, among the latter, pseudo plastic and dilatant fluids were studied. The work was carried out through numerical simulations, implemented with the commercial software Ansys Fluent, which solves the governing equations through the finite volume method. The meshes used were of the polyhedral type. The results indicate that there is a difference in relation to what is expected from the literature for the relationships between diameters and lengths. The Hess-Murray Law indicates that these optimal relations would be 2-1/3 for the relationships between diameters and lengths. In the present work, relationships between the diameters close to 0,6 were found and s equal to 1 between the lengths. The optimum angles were located in the range between 100 ° and 135 °.
12

Constructal design de aleta retangular inserida em cavidade com superfície superior deslizante sob efeito de convecção mista / Constructal design of rectangular fin intruded into mixed convection lid-driven cavity flows

Machado, Bruno de Souza January 2014 (has links)
O presente trabalho apresenta um estudo numérico do escoamento laminar em cavidade quadrada aletada sob o efeito de convecção mista. O escoamento proposto é assumido bidimensional, laminar e permanente. Objetiva-se através do “Constructal Design” a obtenção de geometria ótima da aleta de forma a maximizar a transferência de calor entre o fluido que escoa no interior da cavidade e a aleta aquecida cuja base está localizada no centro da base da cavidade. Para isto é fixada a relação das dimensões externas da cavidade (H/L) = 1 e variada a relação entre altura e comprimento da aleta (H1/L1) para otimização da troca térmica. A área da aleta apresenta 5% da área total da cavidade e este valor é mantido fixo. O fluido que escoa no inteiror da cavidade possui as propriedades termofísicas do ar para Pr = 0,7. A variação das forças de empuxo no escoamento é realizada através do uso de diferentes números de Rayleigh no intervalo Ra= 10³ a 106. As diferentes magnitudes das forças inerciais serão aplicadas ao escoamento através da variação do número de Reynolds variando entre ReL = 10 e 1000. Para solução numérica das equações de conservação de massa, quantidade de movimento e energia é utilizado o método de volumes finitos (VFM), programa comercial Fluent®, sendo o acoplamento entre velocidade e pressão realizado através do algoritmo SIMPLEC e a discretização espacial pelo método upwind de primeira ordem. Os resultados apresentam um acréscimo significativo na transferência de calor entre a aleta e o fluido a medida que o número de Rayleigh aumenta. Considerando o caso de maior influência do mecanismo de transferência de calor por convecção mista houve um aumento de 779% em comparação com o mesmo caso considerando apenas convecção forçada, o que comprova a importância da convecção natural na maximização da transferência de calor entre cavidade e fluido para os casos analisados. / The present work shows a numerical study of laminar flow inside C-shaped lid-driven square cavity under mixed convection effect. The flow is assumed to be two-dimensional, laminar and permanent. The main objective of this work is by means of Constructal Design to maximize the heat transfer between the fluid and the heated central fin intruded in the bottom of the cavity. The aspect ratio of the cavity is fixed and the fin aspect ratio (H1/L1) varies from 0.1 to 10 ranges in order to maximize heat transfer. The ratio area between fin and cavity (H/L) = 1 is kept fixed at 5%. The thermophysical properties of fluid the air are set at Pr = 0,71. To vary the magnitude of buoyancy forces the Rayleigh number is ranged between Ra=10³ and 106.The inertial forces of flow are ranged by the use of different Reynolds numbers between ReL=10 and 1000. In order to solve the proposed problem, the commercial software Fluent® based on finite volume method was used to solve mass, momentum and energy equations, making the pressure-velocity couple using SIMPLEC method and the spatial discretization using first order upwind scheme. The results showed a significant increase of heat transfer between fin and fluid as consequence of Rayleigh number increase. Considering the mixed convection most influenced case, an increase of 779% was sense in comparison with the same case with forced convection mechanism only, which makes evident the importance of natural convection in the maximization of heat transfer inside cavity in the analized cases.
13

Design construtal de caminhos de condução assimétricos trifurcados

Fagundes, Tadeu Mendonça January 2016 (has links)
O presente trabalho utiliza o método Design Construtal para desenvolver o estudo numérico de uma configuração de caminhos de alta condutividade de geometria trifurcada que minimiza a resistência ao fluxo de calor, quando a área do caminho trifurcado é mantida constante. O objetivo deste trabalho é o estudo da influência da geometria sobre o desempenho térmico do sistema bem como a otimização do mesmo, assim obtendo uma configuração que minimiza a resistência térmica para cada condição imposta. São apresentadas as considerações e hipóteses utilizadas para a análise, obtendo a equação do calor regente e as condições de contorno do problema, bem como a função objetivo. Para a solução numérica da equação da condução do calor, é utilizado o software MATLAB ®, especificamente as ferramentas PDETOOL, Partial Differential Equations Tool, e GA, Algoritmo Genético. A resistência térmica é minimizada para cada grau de liberdade. A cada nível de otimização, a influência do grau de liberdade em questão é estudada, obtendo um mapeamento da importância de cada grau de liberdade sobre o sistema trifurcado. Também são obtidas as configurações ótimas para diferentes frações de área. Posteriormente, é estudado o comportamento da configuração ótima do sistema para diferentes temperaturas do final das bifurcações do sistema, mostrando que, para as temperaturas estudadas neste trabalho, a configuração ótima não se altera, apenas a resistência térmica, com a alteração na temperatura do sumidouro direito sendo mais influente sobre essa, seguida do sumidouro central e, por fim, do sumidouro esquerdo. Finalmente, este trabalho mostra, com esses resultados, que a geometria ótima é aquela que melhor distribui as imperfeições do sistema, de acordo com o princípio da ótima distribuição das imperfeições e, também, possui robustez quanto às pequenas imperfeições inseridas no sistema. / The present work employs Constructal Design method to develop a numerical study of a triforked high conductivity pathway that minimizes the heat flow resistance when the triforked pathway area is kept constant. The objective of this work is the study of the influence of the geometry over the thermal performance of the system as well as the optimization of the latter, thus obtaining a configuration that minimizes the thermal resistance for each imposed condition. The considerations and hypothesis for the analysis are shown, obtaining a reigning heat equation and boundary conditions for the system, as well as the objetctive function (minimization of the maximum temperature). For the numerical solution of the heat conduction equation, it is utilized MATLAB ® software, specifically the PDETOOL, Partial Differential Equations Tool, and GA, Genetic Algorithm, toolboxes. The thermal resistance is minimized for every degree of freedom. In each level of optimization, the influence of the degree of freedom in question is studied, obtaining a mapping of the importance of each degree of freedom over the performance of the triforked pathway. Optimal configurations are also obtained for different area fractions. Posteriorly, the behavior of the optimal geometry is studied for different temperatures of the branches of the system. Results show that, for the temperatures studied in this work, the optimal configuration does not change, only the thermal resistance, with the increase of temperature of the right sink being more influential over it, followed by the temperature of the middle sink and, at last, the temperature of the left sink. Finally, this work shows, with these results, that the optimal geometry is the one that better distributes the imperfections of the systems, which is in accordance to the principle of the optimal distribution of imperfections, while possessing a certain robustness over small imperfections inserted in the system.
14

Otimização geométrica de cavidades e caminhos de alta condutividade empregando Design Construtal e algoritmos genéticos

Estrada, Emanuel da Silva Diaz January 2016 (has links)
No presente trabalho propõe-se empregar algoritmos genéticos em associação com o design construtal para a otimização de geometrias em problemas de transferência de calor. O objetivo principal de todos os estudos deste trabalho é minimizar a máxima temperatura que ocorre no domínio computacional. Investigou-se, inicialmente, uma cavidade isotérmica em forma de Y inserida em um sólido retangular com geração de calor uniforme a uma taxa volumétrica constante, onde foi feita uma comparação e validação do algoritmo genético frente à busca exaustiva para poucos graus de liberdade. Após, foi feita uma otimização usando somente algoritmos genéticos considerando todos os quatro graus de liberdade do problema e diferentes valores para suas restrições geométricas. O estudo seguinte foi feito considerando a mesma geometria anteriormente discutida, porém considerou-se as paredes da cavidade Y com uma condição de contorno convectiva. Da mesma forma anterior, foi feita uma validação do algoritmo genético frente à busca exaustiva e na sequência uma otimização de todos os quatro graus de liberdade e diferentes valores do parâmetro convectivo a, empregando somente algoritmos genéticos. No terceiro caso, estudou-se um caminho assimétrico em forma de V de um material de alta condutividade. A geometria tem sua base recebendo um fluxo de calor constante e o remove através das extremidades de dois braços ligados a um sumidouro de calor. Otimizou-se a forma pelo método exaustivo considerando quatro graus de liberdade e uma restrição constante . Após, usou-se algoritmos genéticos para otimizar a geometria considerando os mesmos graus de liberdade e diferentes valores para a restrição de ocupação do material condutivo. Similarmente ao caso da cavidade convectiva em forma de Y, por fim, estudou-se a otimização geométrica de um corpo cilíndrico onde cavidades convectivas retangulares com dois pares de braços são inseridas. Realizaram-se otimizações de até sete graus de liberdade e também se estudou a influência de um parâmetro convectivo e das frações de ocupação das áreas do corpo e braços da cavidade. Deste estudo, concluiu-se que quanto maior o número de cavidades, menores são as máximas temperaturas que ocorrem no domínio. Destaca-se, também, a dependência do parâmetro convectivo, que influenciou na forma da melhor geometria encontrada. Para todos os estudos feitos, os resultados mostraram que a busca por meio de algoritmos genéticos levou a uma redução significativa do número de simulações necessárias para obter a geometria ótima com resultados concordantes aos obtidos com busca exaustiva. Além disso, foi possível estender o estudo para problemas com mais graus de liberdade, restrições e propriedades térmicas. Conclui-se que o melhor design é altamente dependente dos graus de liberdade e restrições, este sendo alcançado de acordo com o princípio construtal da ótima distribuição das imperfeições. / In this work, we propose employing genetic algorithms in association with constructal design for geometry optimization in heat transfer problems. The main objective of all studies is to minimize the maximum temperature that occurs in the computational domain. It was investigated initially an isothermal Y-shaped cavity intruded into a rectangular solid conducting wall with heat generation uniformly at a volumetric rate, where a comparison and validation of genetic algorithm against exhaustive search for few degrees of freedom was made. Then, an optimization is performed by means of genetic algorithms considering all four degrees of freedom of the problem and different values for geometric constraints. The following study has been done considering the same geometry as previously discussed, but it is considered the walls of the Y-cavity with a convective boundary condition. Thus, a dimensionless heat transfer parameter to study (a) was added. Similarly, foregoing study, a genetic algorithm validation was performed comparing to the exhaustive search. After, all four degrees of freedom and different values of a parameter only using genetic algorithms were optimized. In the next investigation, an asymmetric V-shaped pathway of high conductivity material was studied. This geometry receives a constant heat transfer rate in its base and removes it by the end of the two branches that are in touch with the heat sink. The shape was optimized by exhaustive approach considering four degree of freedom and a constraint. After, we used genetic algorithms to optimize the geometry considering the same degrees of freedom and different values for the restriction. Finally, similar to the case of the Y-shaped convective cavity, rectangular convective cavities with two pairs of arms inserted into a cylindrical solid body were optimized. Optimizations of up to seven degrees of freedom were performed and the influence of the convective parameter and of the area fractions of the body and arms of the cavity, were also investigated. From this study, it was concluded that the higher the number of cavities, the lower the maximum temperatures occurring in the domain. Also, the dependence of the convective parameter, influenced in the form of the best geometry, is highlighted. For all studies carried out, the results showed that the search using genetic algorithms led to a significant reduction of the number of simulations required to obtain the optimal geometry. Moreover, it was possible to extend the study where it was considered other degrees of freedom, constraints and thermal properties. We concluded that the best design is highly dependent of degrees of freedom and constraints, and this has been achieved according to the constructal principle of optimal distribution of imperfections.
15

Constructal design de aleta retangular inserida em cavidade com superfície superior deslizante sob efeito de convecção mista / Constructal design of rectangular fin intruded into mixed convection lid-driven cavity flows

Machado, Bruno de Souza January 2014 (has links)
O presente trabalho apresenta um estudo numérico do escoamento laminar em cavidade quadrada aletada sob o efeito de convecção mista. O escoamento proposto é assumido bidimensional, laminar e permanente. Objetiva-se através do “Constructal Design” a obtenção de geometria ótima da aleta de forma a maximizar a transferência de calor entre o fluido que escoa no interior da cavidade e a aleta aquecida cuja base está localizada no centro da base da cavidade. Para isto é fixada a relação das dimensões externas da cavidade (H/L) = 1 e variada a relação entre altura e comprimento da aleta (H1/L1) para otimização da troca térmica. A área da aleta apresenta 5% da área total da cavidade e este valor é mantido fixo. O fluido que escoa no inteiror da cavidade possui as propriedades termofísicas do ar para Pr = 0,7. A variação das forças de empuxo no escoamento é realizada através do uso de diferentes números de Rayleigh no intervalo Ra= 10³ a 106. As diferentes magnitudes das forças inerciais serão aplicadas ao escoamento através da variação do número de Reynolds variando entre ReL = 10 e 1000. Para solução numérica das equações de conservação de massa, quantidade de movimento e energia é utilizado o método de volumes finitos (VFM), programa comercial Fluent®, sendo o acoplamento entre velocidade e pressão realizado através do algoritmo SIMPLEC e a discretização espacial pelo método upwind de primeira ordem. Os resultados apresentam um acréscimo significativo na transferência de calor entre a aleta e o fluido a medida que o número de Rayleigh aumenta. Considerando o caso de maior influência do mecanismo de transferência de calor por convecção mista houve um aumento de 779% em comparação com o mesmo caso considerando apenas convecção forçada, o que comprova a importância da convecção natural na maximização da transferência de calor entre cavidade e fluido para os casos analisados. / The present work shows a numerical study of laminar flow inside C-shaped lid-driven square cavity under mixed convection effect. The flow is assumed to be two-dimensional, laminar and permanent. The main objective of this work is by means of Constructal Design to maximize the heat transfer between the fluid and the heated central fin intruded in the bottom of the cavity. The aspect ratio of the cavity is fixed and the fin aspect ratio (H1/L1) varies from 0.1 to 10 ranges in order to maximize heat transfer. The ratio area between fin and cavity (H/L) = 1 is kept fixed at 5%. The thermophysical properties of fluid the air are set at Pr = 0,71. To vary the magnitude of buoyancy forces the Rayleigh number is ranged between Ra=10³ and 106.The inertial forces of flow are ranged by the use of different Reynolds numbers between ReL=10 and 1000. In order to solve the proposed problem, the commercial software Fluent® based on finite volume method was used to solve mass, momentum and energy equations, making the pressure-velocity couple using SIMPLEC method and the spatial discretization using first order upwind scheme. The results showed a significant increase of heat transfer between fin and fluid as consequence of Rayleigh number increase. Considering the mixed convection most influenced case, an increase of 779% was sense in comparison with the same case with forced convection mechanism only, which makes evident the importance of natural convection in the maximization of heat transfer inside cavity in the analized cases.
16

Entropy Minimisation and Structural Design for Industrial Heat Exchanger Optimisation

Koorts, Johannes Marthinus January 2015 (has links)
In this dissertation, entropy generation minimisation techniques are used to numerically investigate the minimum entropy generation due to heat transfer and fluid friction in a number of different heat exchangers. Twenty-seven different industrial-types of heat exchangers with power ratings ranging between 100 and 800 kW were analyzed. This was done due to their large energy consumption and inefficiencies associated with their operation. Through numerical optimisation it was possible to conclude that the main variables that affected entropy generation were the steam inlet temperature, followed by the tube-side diameter for the given sample set. The main mechanism contributing to entropy generation was the effect of fluid friction, although this was only the case at smaller tube diameters. By using the principles of entropy generation minimization the entropy generated of each heat exchanger could be reduced by between 2% and 64%. By using the principles of the entropy generation minimisation technique, the optimal diameter could be determined that yielded results within 1% of the global minimum entropy generation. / Dissertation (MEng)--University of Pretoria, 2015. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
17

Projeto construtal de complexos caminhos condutivos para o arrefecimento de corpos submetidos à geração de calor

Beckel, Cassia Cris January 2016 (has links)
Problemas de resfriamento de circuitos, presentes nas indústrias de eletrônicos e miniaturizados, têm sido amplamente estudados com o propósito de desenvolver mecanismos capazes de reduzirem a taxa de falha nos equipamentos devido às altas temperaturas. O presente trabalho utiliza o método Design Construtal associado com algoritmos de otimização, busca exaustiva e algoritmo genético, para realizar o estudo numérico de corpos sólidos com geração de calor uniforme onde são inseridos caminhos altamente condutivos em forma de “Y”, “Y-Y”, duplo “Y-Y” e “T”. O objetivo principal das otimizações realizadas consiste em minimizar a resistência ao fluxo de calor, quando as áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes, variando-se os comprimentos e espessuras dos caminhos condutivos. Para a solução numérica da equação da difusão do calor com as condições de contorno estabelecidas em cada caso, foi utilizado o PDETool do software MatLab. A formulação para o caminho condutivo em forma de “Y” apresenta a construção de volumes elementares, mantendo a mesma condutividade térmica para todo o caminho condutivo. Na configuração em forma de duplo “Y – Y” foi utilizado o método de busca exaustiva associado ao algoritmo genético (GA). Nas simulações realizadas com o caminho condutivo em forma de “T”, a configuração apresenta combinações de condutividade térmica diferentes para a base e para a parte superior, enfatizando que a geometria depende das condições impostas pelo ambiente. Para o caso com um volume elementar, a configuração em forma de “Y” degenera-se gerando um caminho condutivo em forma de “U” e com dois volumes, a variação ocorre no comprimento dos ramos do caminho condutivo. Para a configuração com quatro volumes, a configuração ótima tem a forma de “X”. No caso do caminho em forma de “T”, a configuração que minimiza a máxima temperatura em excesso tem a forma de um “I”. Como previsto no princípio da ótima distribuição das imperfeições, a geometria ótima para os casos estudados é aquela que melhor distribui as imperfeições do sistema. / Problems that embody cooling of circuits that appears in electronics and miniaturized industries, have been widely studied to develop mechanisms capable of reducing the failure rate of the equipment due to high temperatures. The present work applies the Constructal Design method associated with optimization algorithms, exhaustive search and genetic algorithm, to perform the numerical study of solid bodies with uniform heat generation in which are inserted high-conducting pathways with “Y”, “Y–Y”, double “Y–Y” and “T” shapes. The main goal of the performed optimizations consists in minimizing the resistance to the heat flux when the occupied areas of high and low conductivity materials are maintained constant, varying the lengths and thickness of conductive paths. For the numerical solution of the heat diffusion equation with the boundary conditions established in each case, it was used the PDETool from MatLab software. The formulation for the conductive pathway with "Y" shape presents the construction of elementary volumes, maintaining the same thermal conductivity across the entire conductive pathway. In the configuration in double “Y–Y” form it was used exhaustive search method associated with genetic algorithm (GA). In the simulations performed with the T-shaped conductive pathway, the configuration provides combinations of different thermal conductivity for the base and the top, emphasizing that the geometry depends on the conditions imposed by the environment. For the case with one elementary volume, the Y-shaped configuration degenerates producing a conductive pathway with U-shape; and with two volumes, the variation occurs in the length of branches of the conductive pathway. For the configuration with four volumes, the optimum configuration has the form of “X”. In the case of T-shaped pathway, the configuration that minimizes the maximal excess of temperature is I-shaped. As predicted by the principle of optimal distribution of the imperfections, the optimal geometry for the cases studied is the one that promotes the best distribution of the imperfections of the system.
18

Estudo numérico da maximização da densidade de transferência de calor do escoamento laminar sobre cilindros de seção transversal elíptica utilizando o método Design Construtal

Razera, Andre Luis January 2016 (has links)
Este trabalho tem como propósito investigar através do método Design Construtal a influência do espaçamento (S0) entre cilindros de seção transversal elíptica na maximização da densidade de transferência de calor em um escoamento externo sob efeito de convecção forçada. A razão de aspecto (r) entre os eixos vertical e horizontal dos cilindros elípticos também é um parâmetro avaliado. O estudo proposto é assumido bidimensional, incompressível, laminar e permanente. O regime de escoamento é dirigido por uma diferença de pressão ΔP, que se mantém através do domínio e é governada pelo número de Bejan (Be). Foram avaliados escoamentos com quatro diferentes números de Bejan, Be = 102, 103, 5.103, 104. O fluido que escoa através do domínio possui as propriedades termofisicas definidas pelo número de Prandtl, Pr = 0,72. O método Design Construtal, associado à busca exaustiva, foi empregado para determinar as restrições, graus de liberdade e o objetivo na avaliação geométrica do sistema A solução numérica das equações de conservação de massa, quantidade de movimento e energia foram resolvidas baseadas no método de volumes finitos, através do código comercial de dinâmica dos fluidos computacional FLUENT®. As geometrias e malha do domínio computacional foram desenvolvidas no pacote GAMBIT®. Como resultados, obteve-se que os casos ótimos apresentaram resultados consideravelmente melhores do que as demais configurações, onde se obteve ganhos de desempenho na densidade de transferência de calor de 50% a 97% em relação às configurações de menor desempenho estudadas. Além disso, foi possível verificar que o sistema adapta sua geometria ótima para cada condição de escoamento, a fim de proporcionar a melhor arquitetura de fluxo para atender ao objetivo térmico de maximizar a transferência de calor em um menor espaço físico, atendendo os princípios da Teoria Construtal. / This work investigates, through the Construtal Design method, the influence of the spacing (S0) between cylinders with elliptic cross in the maximization of the heat transfer density in an external flow with forced convection. The aspect ratio (r) between the vertical and horizontal axes of the elliptical cylinders is also evaluated. The proposed study is assumed twodimensional, incompressible, laminar and permanent. The flow regime is directed by a pressure difference ΔP, which is governed by the Bejan number (Be). The flows were evaluated for different values of the Bejan number, Be = 102, 103, 5.103, 104. The fluid flowing through the domain has its thermophysical properties defined by Prandtl number, Pr = 0.72. The Construtal Design method, associated with the exhaustive search, was used to determine the restrictions, degrees of freedom and objective in the geometric evaluation of the system. The numerical solution of the mass conservation, momentum and energy equations is solved based on the finite volume method, using the commercial fluid dynamics software FLUENT ®. The geometries and mesh of the computational domain were developed in the GAMBIT® package. The results show that the optimal cases performs considerably better than the other configurations, with an increase in the heat transfer density of 50% to 97% in comparison to the performance of lower level cases studied. In addition, it was possible to verify that the system adapts its optimal geometry to every flow condition in order to provide a better flow architecture that meets the thermal objective of maximizing a heat transfer in a smaller physical space in agreement with the principles of the Constructal Theory.
19

Projeto construtal de complexos caminhos condutivos para o arrefecimento de corpos submetidos à geração de calor

Beckel, Cassia Cris January 2016 (has links)
Problemas de resfriamento de circuitos, presentes nas indústrias de eletrônicos e miniaturizados, têm sido amplamente estudados com o propósito de desenvolver mecanismos capazes de reduzirem a taxa de falha nos equipamentos devido às altas temperaturas. O presente trabalho utiliza o método Design Construtal associado com algoritmos de otimização, busca exaustiva e algoritmo genético, para realizar o estudo numérico de corpos sólidos com geração de calor uniforme onde são inseridos caminhos altamente condutivos em forma de “Y”, “Y-Y”, duplo “Y-Y” e “T”. O objetivo principal das otimizações realizadas consiste em minimizar a resistência ao fluxo de calor, quando as áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes, variando-se os comprimentos e espessuras dos caminhos condutivos. Para a solução numérica da equação da difusão do calor com as condições de contorno estabelecidas em cada caso, foi utilizado o PDETool do software MatLab. A formulação para o caminho condutivo em forma de “Y” apresenta a construção de volumes elementares, mantendo a mesma condutividade térmica para todo o caminho condutivo. Na configuração em forma de duplo “Y – Y” foi utilizado o método de busca exaustiva associado ao algoritmo genético (GA). Nas simulações realizadas com o caminho condutivo em forma de “T”, a configuração apresenta combinações de condutividade térmica diferentes para a base e para a parte superior, enfatizando que a geometria depende das condições impostas pelo ambiente. Para o caso com um volume elementar, a configuração em forma de “Y” degenera-se gerando um caminho condutivo em forma de “U” e com dois volumes, a variação ocorre no comprimento dos ramos do caminho condutivo. Para a configuração com quatro volumes, a configuração ótima tem a forma de “X”. No caso do caminho em forma de “T”, a configuração que minimiza a máxima temperatura em excesso tem a forma de um “I”. Como previsto no princípio da ótima distribuição das imperfeições, a geometria ótima para os casos estudados é aquela que melhor distribui as imperfeições do sistema. / Problems that embody cooling of circuits that appears in electronics and miniaturized industries, have been widely studied to develop mechanisms capable of reducing the failure rate of the equipment due to high temperatures. The present work applies the Constructal Design method associated with optimization algorithms, exhaustive search and genetic algorithm, to perform the numerical study of solid bodies with uniform heat generation in which are inserted high-conducting pathways with “Y”, “Y–Y”, double “Y–Y” and “T” shapes. The main goal of the performed optimizations consists in minimizing the resistance to the heat flux when the occupied areas of high and low conductivity materials are maintained constant, varying the lengths and thickness of conductive paths. For the numerical solution of the heat diffusion equation with the boundary conditions established in each case, it was used the PDETool from MatLab software. The formulation for the conductive pathway with "Y" shape presents the construction of elementary volumes, maintaining the same thermal conductivity across the entire conductive pathway. In the configuration in double “Y–Y” form it was used exhaustive search method associated with genetic algorithm (GA). In the simulations performed with the T-shaped conductive pathway, the configuration provides combinations of different thermal conductivity for the base and the top, emphasizing that the geometry depends on the conditions imposed by the environment. For the case with one elementary volume, the Y-shaped configuration degenerates producing a conductive pathway with U-shape; and with two volumes, the variation occurs in the length of branches of the conductive pathway. For the configuration with four volumes, the optimum configuration has the form of “X”. In the case of T-shaped pathway, the configuration that minimizes the maximal excess of temperature is I-shaped. As predicted by the principle of optimal distribution of the imperfections, the optimal geometry for the cases studied is the one that promotes the best distribution of the imperfections of the system.
20

Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calor

Horbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.

Page generated in 0.0876 seconds