• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Logging and Analysis of Internet of Things (IoT) Device Network Traffic and Power Consumption

Frawley, Ryan Joseph 01 June 2018 (has links)
An increasing number of devices, from coffee makers to electric kettles, are becoming connected to the Internet. These are all a part of the Internet of Things, or IoT. Each device generates unique network traffic and power consumption patterns. Until now, there has not been a comprehensive set of data that captures these traffic and power patterns. This thesis documents how we collected 10 to 15 weeks of network traffic and power consumption data from 15 different IoT devices and provides an analysis of a subset of 6 devices. Devices including an Amazon Echo Dot, Google Home Mini, and Google Chromecast were used on a regular basis and all of their network traffic and power consumption was logged to a MySQL database. The database currently contains 64 million packets and 71 gigabytes of data and is still growing in size as more data is collected 24/7 from each device. We show that it is possible to see when users are asking their smart speaker a question or whether the lights in their home are on or off based on power consumption and network traffic from the devices. These trends can be seen even if the data being sent is encrypted.
2

Face Tracking User Interfaces Using Vision-Based Consumer Devices

Villaroman, Norman 19 March 2013 (has links) (PDF)
Some individuals have difficulty using standard hand-manipulated input devices such as a mouse and a keyboard effectively. For such users who at the same time have sufficient control over face and head movement, a robust perceptual or vision-based user interface that can track face movement can significantly help them. Using vision-based consumer devices makes such a user interface readily available and allows its use to be non-intrusive. Designing this type of user interface presents some significant challenges particularly with accuracy and usability. This research investigates such problems and proposes solutions to create a usable and robust face tracking user interface using currently available state-of-the-art technology. In particular, the input control in such an interface is divided into its logical components and studied one by one, namely, user input, capture technology, feature retrieval, feature processing, and pointer behavior. Different options for these components are studied and evaluated to see if they contribute to more efficient use of the interface. The evaluation is done using standard tests created for this purpose. The tests were done by a single user. The results can serve as a precursor to a full-scale usability study, various improvements, and eventual deployment for actual use. The primary contributions of this research include a logical organization and evaluation of the input process and its different components in face tracking user interfaces, a common library for computer control that can be used by various face tracking engines, an adaptive pointing input style that makes pointing using natural movement easier, and a test suite that can be used to measure performance of various user interfaces for desktop systems.
3

Implementation and Analysis of Co-Located Virtual Reality for Scientific Data Visualization

Jordan M McGraw (8803076) 07 May 2020 (has links)
<div>Advancements in virtual reality (VR) technologies have led to overwhelming critique and acclaim in recent years. Academic researchers have already begun to take advantage of these immersive technologies across all manner of settings. Using immersive technologies, educators are able to more easily interpret complex information with students and colleagues. Despite the advantages these technologies bring, some drawbacks still remain. One particular drawback is the difficulty of engaging in immersive environments with others in a shared physical space (i.e., with a shared virtual environment). A common strategy for improving collaborative data exploration has been to use technological substitutions to make distant users feel they are collaborating in the same space. This research, however, is focused on how virtual reality can be used to build upon real-world interactions which take place in the same physical space (i.e., collaborative, co-located, multi-user virtual reality).</div><div><br></div><div>In this study we address two primary dimensions of collaborative data visualization and analysis as follows: [1] we detail the implementation of a novel co-located VR hardware and software system, [2] we conduct a formal user experience study of the novel system using the NASA Task Load Index (Hart, 1986) and introduce the Modified User Experience Inventory, a new user study inventory based upon the Unified User Experience Inventory, (Tcha-Tokey, Christmann, Loup-Escande, Richir, 2016) to empirically observe the dependent measures of Workload, Presence, Engagement, Consequence, and Immersion. A total of 77 participants volunteered to join a demonstration of this technology at Purdue University. In groups ranging from two to four, participants shared a co-located virtual environment built to visualize point cloud measurements of exploded supernovae. This study is not experimental but observational. We found there to be moderately high levels of user experience and moderate levels of workload demand in our results. We describe the implementation of the software platform and present user reactions to the technology that was created. These are described in detail within this manuscript.</div>

Page generated in 0.0363 seconds