• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mitigating VR Cybersickness Caused by Continuous Joystick Movement

Aditya Ajay Oka (16529664) 13 July 2023 (has links)
<p>When users begin to experience virtual reality (VR) for the first time, they can be met with some degree of motion sickness and nausea, especially if continuous joystick locomotion is used. The symptoms that are induced during these VR experiences fall under the umbrella term cybersickness, and due to these uncomfortable experiences, these users can get a bad first impression and abandon the innovative technology, not able to fully appreciate the convenience and fascinating adventures VR has to offer. As such, this project compares the effects of two cybersickness mitigation methods (Dynamic Field of View (FOV) and Virtual Reference Frame), both against each other and combined, on user-reported cybersickness symptoms to determine the best combination to implement in commercial applications to help create more user-friendly VR experiences. The hypothesis is that combining the FOV reduction and the resting frame methods can mitigate VR cybersickness more effectively without hindering the user’s experience and the virtual nose method is more potent at mitigating cybersickness compared to dynamic FOV. To test these hypotheses, an experimental game was developed for the Meta Quest 2 with five levels: a tutorial level and four maze levels (one for each scenario). The participants were asked to complete the tutorial level until they got used to the virtual reality controls, and then they were instructed to complete the maze level twice with one of the following conditions for each run: no method, dynamic field of view only, virtual nose only, and dynamic field of view and virtual nose combined. After completing each maze trial, the participants were asked to complete a simulator sickness questionnaire to get their thoughts on how much sickness they felt during the test. Upon concluding the testing phase with 36 participants and compiling the data, the results showed that while the subjects preferred the dynamic FOV method even though they were able to complete the trials significantly faster with the virtual nose method, it is inconclusive regarding which method is truly more effective. Furthermore, the results showed that it is also inconclusive if the scenario with both methods enabled is significantly better or worse than either method used separately.</p>
2

Implementation and Analysis of Co-Located Virtual Reality for Scientific Data Visualization

Jordan M McGraw (8803076) 07 May 2020 (has links)
<div>Advancements in virtual reality (VR) technologies have led to overwhelming critique and acclaim in recent years. Academic researchers have already begun to take advantage of these immersive technologies across all manner of settings. Using immersive technologies, educators are able to more easily interpret complex information with students and colleagues. Despite the advantages these technologies bring, some drawbacks still remain. One particular drawback is the difficulty of engaging in immersive environments with others in a shared physical space (i.e., with a shared virtual environment). A common strategy for improving collaborative data exploration has been to use technological substitutions to make distant users feel they are collaborating in the same space. This research, however, is focused on how virtual reality can be used to build upon real-world interactions which take place in the same physical space (i.e., collaborative, co-located, multi-user virtual reality).</div><div><br></div><div>In this study we address two primary dimensions of collaborative data visualization and analysis as follows: [1] we detail the implementation of a novel co-located VR hardware and software system, [2] we conduct a formal user experience study of the novel system using the NASA Task Load Index (Hart, 1986) and introduce the Modified User Experience Inventory, a new user study inventory based upon the Unified User Experience Inventory, (Tcha-Tokey, Christmann, Loup-Escande, Richir, 2016) to empirically observe the dependent measures of Workload, Presence, Engagement, Consequence, and Immersion. A total of 77 participants volunteered to join a demonstration of this technology at Purdue University. In groups ranging from two to four, participants shared a co-located virtual environment built to visualize point cloud measurements of exploded supernovae. This study is not experimental but observational. We found there to be moderately high levels of user experience and moderate levels of workload demand in our results. We describe the implementation of the software platform and present user reactions to the technology that was created. These are described in detail within this manuscript.</div>

Page generated in 0.114 seconds