Spelling suggestions: "subject:"contrôle nondestructif"" "subject:"contrôle nondestructiv""
51 |
Optimization of line scanning thermography of composite materials for aerospace industry using advanced modeling and analysis algorithmsKhodayar, Fariba 14 May 2024 (has links)
Ces dernières années, l'émergence de matériaux avancés et de méthodes de fabrication a conduit à la production de composants mécaniques qui fournissent de meilleures spécifications mécaniques avec un poids inférieur. Ces produits spéciaux sont utilisés dans les industries de haute technologie comme l'aérospatiale et l'armée. Par conséquent, la qualité du produit est essentielle pour obtenir un produit sécurisé. Les controles non destructifs (CND) sont l'une des méthodes les plus utilisées pour détecter les défauts internes de différents matériaux. Cette technique n'a pas d'effet négatif sur les spécimens. Les différentes techniques de tests non destructifs sont utilisées dans différents domaines pour assurer l'exactitude, vérifier l'intégrité, réduire les coûts de production et détecter les défauts. Diverses méthodes CND ont été introduites et développées pour détecter les défauts et les délaminages qui ont été utilisés en fonction de la taille et du type de défaut, du matériau et de la localisation des défauts. La thermographie par balayage linéaire (LST) est une technique de thermographie dynamique qui permet d'inspecter de grands composants de surfaces métalliques et de composites couramment utilisés dans l'industrie aérospatiale. En tant que technique de test et de controle non destructive (CND), la LST est une technique dynamique adaptée à l'inspection de composants aérospatiaux importants et complexes. La méthode LST robotisée présente des avantages par rapport aux approches statiques. La LST robotisé fournit une uniformité de chauffage et permet un traitement d'image qui améliore la probabilité de détection, permettant à un composant à grande échelle d'être inspecté sans perte de résolution. En utilisant l'approche LST, il est possible d'inspecter de grandes surfaces à des vitesses de balayage élevées. De plus, les résultats d'inspection sont immédiatement disponibles pour analyse pendant que le processus de numérisation se poursuit. / In the last decade, emerging of advanced materials and manufacturing methods leads to produce the mechanical components, which provide better mechanical specifications with lower weight. These special products are used in the high technology industries such as aerospace and military. Hence, the product quality is vital to achieve a secure product. Non-destructive Testing (NDT) is one of the popular methods, which is employed to detect the internal defects of different materials. This technique does not have any negative effect on the specimens. The various techniques of nondestructive testing are used in different fields to ensure accuracy, verify integrity, reduce production costs and detect defects. Various NDT methods were introduced and developed to detect the flaws and delamination which have been used according to defect size and type, material, and defect location. Line scan thermography (LST) is a dynamic thermography technique, which is used to inspect large components of metallic surfaces and composites, commonly used in the aerospace industry. As a nondestructive testing and evaluation (NDT&E) technique, LST is a dynamic technique suited to inspect large and complex aerospace components. The robotized LST method provides advantages in comparison to the static approaches. Robotized LST provides heating uniformity and allows image processing which enhances the detection probability, allowing a large-scale component to be inspected without the loss of resolution. Using the LST approach, it is possible to inspect large areas at high scan speeds. Also, the inspection results are immediately available for analysis while the scanning process continues. One of the important challenges in LST method is the number of parameters such as scanning speed, power, the distance between source and specimen, which affect the LST performance. The optimal values are dependent on the material structure, thermal specifications of the composite material, defect shape and infrared camera resolution. In order to determine the optimal parameters, the LST is simulated using a 3D finite element method (FEM). The main objective of this thesis is to maximize the detection depth and the signal-to-noise (SNR) value at maximum signal contrast as the criteria to evaluate the inspection quality and performance. A composition of the analytical model of LST thermography, 3D finite element approach and experimental data is employed to find the optimal LST parameters. The signal processing techniques that were initially developed to be applied on pulse thermography have been successfully implemented to enhance the detection probability.
|
52 |
Potentiel de la robotique pour l'inspection thermographique par chauffage inductifMokhtari, Mohammed-Yacine 29 May 2024 (has links)
La thermographie par courants de Foucault (ECT) est une méthode de thermographie active. L’excitation inductive génère des courants de Foucault dans les spécimens conducteurs. En présence de défauts, la circulation des courants est affectée par ces discontinuités produisant un changement dans la distribution de la température autour des défauts. Ces changements sont observés avec une caméra infrarouge. Dans ce travail, on présente une application robotique de la thermographie par courants de Foucault. Une interface robotique a été développée et tous les capteurs utilisés ont été intégrés à la plateforme. Des simulations ont été achevées avec COMSOL Multiphysics en variant différents paramètres. Des expériences ont été menées sur plusieurs spécimens (de différents matériaux) avec des défauts de différents types et tailles. La linescan thermographie est principalement étudiée et d’autres modes d’inspections ont été explorés. Les images résultantes sont reconstruites avec un algorithme dédié. Finalement, les résultats de la méthode sont comparés à ceux de la thermographie optique (par halogène) pour montrer les capacités de la méthode. / Eddy current thermography (ECT) is an active thermography method. The inductive excitation generates Eddy currents in electrically-conductive specimen. In a presence of defects, the eddy current flow is affected by these discontinuities leading to changes in the temperature distribution in the specimen around the defects. These changes are observed by an infrared camera. In this work, we present a robotic application of the method. A robotic interface is developed and all the sensors needed are integrated to the platform. Simulations are performed using COMSOL Multiphysics by varying different parameters. Experiments are realised on different specimens (made of different materials) with defects of different sizes. The linescan Eddy current thermography is studied and other modes are explored. The resulting images are reconstructed with a dedicated algorithm. Finally, the method’s results are compared to optical thermography to show the capability of the method.
|
53 |
Monitoring thermal variations in carbon capture by bruciteAksenova, Diana 28 September 2024 (has links)
L'augmentation rapide du niveau de concentration de dioxide de carbone dans l'air ambiant à la suite de diverses activités humaines est l'un des principaux défis environnementaux du XXIe siècle. Par conséquent, la résolution des problèmes d'émissions de carbone est l'une des principales tâches de la société moderne. Diverses technologies ont été développées et testées au cours des dernières décennies pour atténuer ce problème. La carbonatation minérale est reconnue comme l'une des technologies les plus sûres permettant de capturer et de stocker en permanence du carbone sous forme de carbonates thermiquement stables. La minéralisation passive du carbone par les résidus miniers en tant que processus naturel a lieu dans des conditions environnementales, partout où l'accès de l'air et de l'eau au tas de résidus miniers est possible. Le présent travail explore l'utilisation de la thermographie infrarouge comme méthode non destructive de surveillance du comportement exothermique au cours de la capture passive du carbone par la brucite. La configuration de carbonatation à deux cellules, consolidée avec une caméra infrarouge, a été conçue pour surveiller simultanément les variations thermiques de la surface du matériel dues à l'absorption de CO2 ainsi que le flux de chaleur échangé entre la brucite et son environnement. Les résultats montrent une influence significative de la température ambiante sur le système qui a contribué à l'échange thermique de la couche réactive avec l'environnement. La comparaison des profils de température entre les demi-cellules de référence et réactives montre des différences dans les variations thermiques par rapport à la température adiabatique à cause de l'influence de la température ambiante. L'élévation de température adiabatique par rapport aux profils de température de surface démontre une différence substantielle dans le taux de génération de chaleur de carbonatation en raison de l'échange de flux de chaleur avec l'environnement pendant le processus. / Rapid increment of the level of carbon concentration in ambient air in consequence of various human activities is one of the major environmental challenges of 21st century. Therefore, solving carbon emissions issues is one of the main tasks of the modern society. Variety of technologies have been developed and tested over the past decades to alleviate this concern. Mineral carbonation is recognized as one of the safest technologies that allows to capture and permanently store carbon in the form of thermally stable carbonates. Passive mineral carbonation by mining residues as a naturally occurring process takes place under environmental conditions anywhere where the air and water access to mining residue heap can be obtained. The present work explores the use of infrared thermography as a non-destructive method of monitoring exothermal behavior of passive carbon capture by brucite. Dual-cell carbonation setup consolidated with an infrared camera was designed in order to provide simultaneous monitoring of thermal variations on the surface of the material due to CO2 uptake as well as exchange of heat fluxes between brucite and its surroundings. The results show a significant influence of room temperature on the system that contributed to heat exchange of the reactive layer with the surrounding. The temperature profiles comparison between reference and reactive half-cells demonstrates striking differences in thermal variations than the adiabatic temperature due to the room temperature influence. Adiabatic temperature rise in comparison with surface temperature profiles demonstrates a substantial difference in carbonation heat generation rate due to heat fluxes exchange with surrounding during the process.
|
54 |
Infrared thermography for concrete infrastructure inspection : capabilities, minimum requirements, and advances in automated diagnosticPozzer, Sandra 13 December 2024 (has links)
Cette recherche explore l'utilisation de la thermographie infrarouge passive (IRT) pour la détection du délaminage dans les infrastructures civiles et l'intégration des données obtenues à partir de l'inspection visuelle et de l'IRT avec des technologies informatiques avancées pour faciliter la détection, l'interprétation et l'évaluation des dommages et augmenter la visualisation, l'accessibilité, l'interopérabilité et la réutilisabilité des résultats de l'inspection. La motivation de cette recherche découle des incertitudes actuelles entourant l'inspection des grandes infrastructures à l'aide de l'IRT passive. Les chercheurs, les entreprises d'inspection et les décideurs exécutifs sur le marché de la durabilité et de la gestion du cycle de vie des infrastructures sont confrontés à des incertitudes théoriques et pratiques dans l'élaboration d'une stratégie globale pour inspecter plusieurs composants des grandes infrastructures en béton, ainsi que dans la gestion des données qui en résultent. Il existe un désir de mieux comprendre l'utilisation de techniques avancées de contrôle non destructif (CND) et d'outils informatiques et d'explorer les avantages de la collaboration entre les industries pour la gestion du cycle de vie des structures civiles. Dans ce contexte, le problème de recherche implique la nécessité d'approches innovantes et normalisées pour améliorer la planification, la collecte, l'analyse, la numérisation et l'interopérabilité des données d'inspection par IRT passive pour les infrastructures civiles. L'objectif principal de la recherche était d'explorer l'utilisation de l'IRT passive comme méthode de détection des délaminages dans divers composants en béton des infrastructures civiles, en tenant compte des différents scénarios d'exposition solaire. De plus, l'étude visait à intégrer les données provenant des inspections par IRT passive avec des technologies informatiques avancées telles que la modélisation par éléments finis (MEF), l'IA et la modélisation des informations du bâtiment (BIM), pour améliorer la planification, le diagnostic, la visualisation, l'interprétation et l'interopérabilité des données d'inspection. Les objectifs spécifiques comprenaient l'évaluation de la faisabilité, de la sensibilité et des exigences minimales pour utiliser l'IRT passive pour détecter les délaminages, l'élaboration d'une procédure de planification d'enquête, l'amélioration des techniques de contraste thermique, l'utilisation de l'IA pour détecter semi-automatiquement les délaminages, et l'intégration des résultats de l'IRT avec BIM. La méthodologie impliquait des domaines de recherche interdisciplinaires et complexes, comprenant l'inspection du béton, la thermographie infrarouge, la simulation numérique, le traitement d'images, la photogrammétrie, l'intelligence artificielle, et la modélisation des informations du bâtiment. En outre, l'étude englobait la révision des normes existantes et des rapports de recherche, la construction d'échantillons de béton représentatifs pour preuve de concept et la validation de l'étude numérique, et plusieurs études de cas comprenant l'acquisition de données sur le terrain avec plusieurs dispositifs (drones, voitures et caméras portatives munies de capteurs visibles et infrarouges). Les campagnes de collecte de données ont commencé en avril 2021 et se sont terminées en juillet 2023, étant menées sur des sites expérimentaux et publics afin d'informer et de soutenir le projet de recherche. Les résultats du travail comprenaient : (i) une évaluation approfondie de l'efficacité de l'IRT pour inspecter les infrastructures en béton, y compris une preuve de concept détaillée et un protocole recommandé pour la collecte de données, (ii) la création d'un modèle numérique non linéaire vérifié et validé pour simuler des inspections par IRT passive, qui peut être utilisé pour déterminer les exigences minimales pour inspecter les délaminages dans les structures en béton extérieures en utilisant l'IRT passive, (iii) le développement d'approches et d'outils de détection de dommages multimodaux semi-automatisés adaptés au traitement de grands ensembles de données générés à partir d'inspections effectuées dans et au-delà du spectre visible, et (iv) le développement d'un modèle d'information numérique et collaboratif contenant des données d'inspection complètes et bien structurées, présentées dans un format standard et ouvert pouvant être partagé avec d'autres inspecteurs, ingénieurs, gestionnaires, chercheurs et utilisateurs à diverses fins. En améliorant la compréhension de l'utilisation potentielle de tests non destructifs avancés, c'est-à-dire l'IRT passive, aux côtés de technologies informatiques et d'information, ce projet fait progresser les pratiques de maintenance des infrastructures. Non seulement ces conclusions peuvent optimiser la durabilité des infrastructures, mais elles peuvent également faciliter l'évolution des pratiques traditionnelles de CND pour répondre aux exigences de l'Industrie 4.0, notamment la durabilité, la numérisation, l'interopérabilité et la transparence de l'information. / This research work explores the use of passive infrared thermography (IRT) for the detection of delamination in civil infrastructures. It aims to facilitate the detection, interpretation, and evaluation of damages and integrate the data obtained from visual and IRT inspection with advanced computational technologies to increase visualization, accessibility, interoperability, and reusability of the inspection results. The motivation for this research arises from the current uncertainties surrounding the inspection of large infrastructures using passive IRT. Researchers, inspection companies, and stakeholders in the infrastructure durability and life cycle management sector are faced with both theoretical and practical uncertainties in developing a comprehensive strategy for inspecting multiple components of large concrete infrastructures using passive IRT, as well as managing the resulting inspection data. There is a demand to better understand the use of advanced non-destructive testing (NDT) techniques and computational tools and explore the benefits of collaboration between industries for the life-cycle management of civil structures. In this context, the research problem entails the need for innovative and standardized approaches to enhance the planning, collection, analysis, digitalization, and interoperability of passive IRT inspection data for civil infrastructures. The main objective of the research was to explore the utilization of passive IRT as a method of detecting delamination in various concrete components of civil infrastructures, while accounting for different scenarios of solar exposure. Additionally, the study aimed to integrate data from passive IRT inspections with advanced computational technologies such as numerical simulation, artificial intelligence (AI), and Building Information Modeling (BIM), to improve planning, diagnosis, visualization, interpretation, and interoperability for inspection data. Specific objectives included assessing the feasibility, sensibility, and minimum requirements for utilizing passive IRT to detect delamination, devising a survey planning procedure, enhancing thermal contrast techniques, leveraging AI for semi-automated delamination detection, and integrating IRT planning and results with BIM. The methodology involved interdisciplinary and complex research domains, including concrete inspection, infrared thermography, numerical simulation, image processing, photogrammetry, artificial intelligence, and information modeling. Moreover, the study encompassed the review of existing standards and research works, the construction of concrete samples for proof of concept and validation of numerical studies, and the conduction of multiple case studies involving field data acquisition using various devices such as drones, vehicles, and handheld cameras equipped with visible and infrared sensors. The data collection campaigns started in April 2021 and were concluded in July 2023, being conducted at experimental and public sites to inform and support the research project. The findings of the work included: (i) a thorough evaluation of the capabilities of IRT for inspecting concrete infrastructure, including a detailed proof of concept and a recommended protocol for data collection, (ii) the creation of a verified and validated non-linear numerical model for simulating passive IRT inspections, which can be used to determine the minimum requirements for inspecting delamination in outdoor concrete structures using passive IRT, (iii) the development of semi-automated multimodal damage detection approaches and tools suitable for processing large datasets generated from passive IRT inspections of delamination in concrete structure, and (iv) the development of a digital and collaborative information model that contains comprehensive and well-structured inspection data, presented in a standard and open format that can be shared with other inspectors, engineers, managers, researchers, and users for various purposes. By enhancing the understanding of the potential use of advanced non-destructive testing, i.e., passive IRT, alongside computational and information technology, this project advances infrastructure maintenance practices. Not only can its findings optimize infrastructure durability, but they can also facilitate the evolution of traditional NDT practices to meet the demands of Industry 4.0, including sustainability, digitalization, interoperability, and information transparency.
|
55 |
Classement pour la résistance mécanique du chêne par méthodes vibratoires et par mesure des orientations des fibres / Mechanical grading of oak wood using vibrational and grain angle measurementsFaydi, Younes 11 December 2017 (has links)
En France, les feuillus constituent la part majoritaire du parc forestier, dont, notamment, le chêne de qualité secondaire. Ce dernier pourrait devenir une alternative à d’autres matériaux de construction. Cependant, en fonction des singularités relatives à chaque sciage, les performances mécaniques peuvent varier considérablement. Il est donc nécessaire de trier les sciages adaptés pour une application en structure. L’efficience des méthodes de classement du chêne apparaît comme une des problématiques majeures. Ce projet de recherche a pour but de développer des méthodes et moyens de mesure capables de classer convenablement le chêne de qualité secondaire et palier au classement visuel par un opérateur. Ce dernier sous-estime fortement les qualités du chêne mais reste fréquemment employé par les industriels faute d’alternative. Au cours de cette thèse, deux modèles de prédiction des propriétés mécaniques ont été développés pour classer par machine le chêne de qualité secondaire. Ces modèles se basent sur une large campagne expérimentale de contrôle non destructif, avec validation par essais destructifs. Le premier modèle est analytique, exploitant les cartographies d’orientation des fibres des sciages pour déterminer localement les résistances et modules élastiques, et en déduire les propriétés globales. Le second modèle est statistique, basé sur l’analyse des signaux vibratoires sous sollicitation longitudinale ou transversale. Les résultats obtenus montrent que la méthode vibratoire longitudinale, employée couramment en industrie dans le cas des résineux, n’est pas adaptée pour classer convenablement le chêne de qualité secondaire. A l’inverse, la méthode vibratoire transversale sur chant permet d’obtenir des rendements de classement pertinents mais nécessite des efforts de développement pour être industrialisée. Le modèle basé sur la mesure de l’orientation des fibres offre les meilleurs rendements et des résultats stables sur l’ensemble des classes étudiées. / Hardwoods are the majority in France, with a substantial amount of small, low grade oaks. This resource could be an alternative of typical construction materials. However, mechanical properties can change a lot depending on timber defects. Thus, it is necessary to verify the good quality of each board in order it can be used in structural applications. The efficiency of grading methods is one of principal challenges to promote the use of oak in structures. The present work aims to provide new grading machine solutions relative to low grade oak which could replace the traditional and downgrading method based on visual sorting by an operator.Indeed, two models have been developed during this thesis, based on nondestructive measurements following by destructive tests to validate them. The first one is an analytical model based on grain angle scanning measurements. From grain angle data maps, local values of modulus of elasticity and resistance were computed, then the global mechanical properties were computed. The second one is a statistical model based on the analysis of longitudinal and transversal vibrational measurements. The results show that the longitudinal vibrational method based on the first longitudinal eigen frequency, which is mostly employed in softwood industry, is not suited for oak grading. However, the efficiency of the methods based on transversal vibrations is pretty good but it needs additional efforts for industrial application. In this work, the model based on grain angle scanning offer the best and the more robust grading efficiency for all grades.
|
56 |
Architecture matérielle pour la reconstruction temps réel d'images par focalisation en tout point (FTP) / Hardware architecture for real-time imaging towards Total Focusing Method (TFM )Njiki, Mickaël 27 September 2013 (has links)
Le contrôle non destructif (CND) a pour but de détecter et de caractériser d’éventuels défauts présents dans des pièces mécaniques. Les techniques ultrasonores actuelles utilisent des capteurs multiéléments associés à des chaînes d’instrumentations et d’acquisitions de données multi capteurs en parallèles. Compte tenu de la masse de données à traiter, l’analyse de ces dernières est généralement effectuée hors ligne. Des travaux en cours, au Commissariat à l’Energie Atomique (CEA), consistent à développer et évaluer différentes méthodes d’imageries avancées, basées sur la focalisation synthétique. Les algorithmes de calculs induits nécessitent d’importantes opérations itératives sur un grand volume de données, issues d’acquisition multiéléments. Ceci implique des temps de calculs important, imposant un traitement en différé. Les contraintes industrielles de caractérisation de pièces mécaniques in situ imposent de réaliser la reconstruction d’images lors de la mesure et en temps réel. Ceci implique d’embarquer dans l’appareil de mesure, toute l’architecture de calcul sur les données acquises des capteurs. Le travail de thèse a donc consisté à étudier une famille d’algorithmes de focalisation synthétique pour une implantation temps réel sur un instrument de mesure permettant de réaliser l’acquisition de données. Nous avons également étudié une architecture dédiée à la reconstruction d’images par la méthode de Focalisation en Tout Point (FTP). Ce travail a été réalisé dans le cadre d’une collaboration avec l’équipe ACCIS de l’institut d’Electronique Fondamentale, Université de Paris Sud. Pour ce faire, notre démarche s’est inspirée de la thématique de recherche d’Adéquation Algorithme Architecture (A3). Notre méthodologie, est basée sur une approche expérimentale consistant dans un premier temps en une décomposition de l’algorithme étudié en un ensemble de blocs fonctionnels (calculs/transferts). Cela nous a permis de réaliser l’extraction des blocs pertinents de calculs à paralléliser et qui ont une incidence majeure sur les temps de traitement. Nous avons orienté notre stratégie de développement vers une conception flot de donnée. Ce type de modélisation permet de favoriser les flux de données et de réduire les flux de contrôles au sein de l’architecture matérielle. Cette dernière repose sur une plateforme multi-FPGA. La conception et l’évaluation de telles architectures ne peuvent se faire sans la mise en place d’outils logiciels d’aide à la validation tout au long du processus de la conception à l’implantation. Ces outils faisant partie intégrante de notre méthodologie. Les modèles architecturaux des briques de calculs ont été validés au niveau fonctionnel puis expérimental, grâce à la chaîne d’outils développée. Cela inclus un environnement de simulation nous permettant de valider sur tables les briques partielles de calculs ainsi que le contrôle associé. Enfin, cela a nécessité la conception d’outils de génération automatique de vecteurs de tests, à partir de données de synthèses (issues de l’outil simulation CIVA développé par le CEA) et de données expérimentales (à partir de l’appareil d’acquisition de la société M2M-NDT). Enfin, l’architecture développée au cours de ce travail de thèse permet la reconstruction d’images d’une résolution de 128x128 pixels, à plus de 10 images/sec. Ceci est suffisant pour le diagnostic de pièces mécaniques en temps réel. L’augmentation du nombre d’éléments capteurs ultrasonores (128 éléments) permet des configurations topologiques plus évoluées (sous forme d’une matrice 2D), ouvrant ainsi des perspectives vers la reconstruction 3D (d’un volume d’une pièce). Ce travail s’est soldé par une mise en œuvre validée sur l’instrument de mesure développé par la société M2M-NDT. / Non-destructive Evaluation (NDE) regroups a set of methods used to detect and characterize potential defects in mechanical parts. Current techniques uses ultrasonic phased array sensors associated with instrumentation channels and multi-sensor data acquisition in parallel. Given the amount of data to be processed, the analysis of the latter is usually done offline. Ongoing work at the French “Commissariat à l’Energie Atomique” (CEA), consist to develop and evaluate different methods of advanced imaging based on synthetic focusing. The Algorithms induced require extensive iterative operations on a large volume of data from phased array acquisition. This involves important time for calculations and implies offline processing. However, the industrial constraint requires performing image reconstruction in real time. This involves the implementation in the measuring device, the entire computing architecture on acquired sensor data. The thesis has been to study a synthetic focusing algorithm for a real-time implementation in a measuring instrument used to perform ultrasonic data acquisition. We especially studied an image reconstruction algorithm called Total Focusing Method (TFM). This work was conducted as part of collaboration with the French Institute of Fundamental Electronics Institute team of the University of Paris Sud. To do this, our approach is inspired by research theme called Algorithm Architecture Adequation (A3). Our methodology is based on an experimental approach in the first instance by a decomposition of the studied algorithm as a set of functional blocks. This allowed us to perform the extraction of the relevant blocks to parallelize computations that have a major impact on the processing time. We focused our development strategy to design a stream of data. This type of modeling can facilitate the flow of data and reduce the flow of control within the hardware architecture. This is based on a multi- FPGA platform. The design and evaluation of such architectures cannot be done without the introduction of software tools to aid in the validation throughout the process from design to implementation. These tools are an integral part of our methodology. Architectural models bricks calculations were validated functional and experimental level, thanks to the tool chain developed. This includes a simulation environment allows us to validate partial calculation blocks and the control associated. Finally, it required the design of tools for automatic generation of test vectors, from data summaries (from CIVA simulation tool developed by CEA) and experimental data (from the device to acquisition of M2M –NDT society). Finally, the architecture developed in this work allows the reconstruction of images with a resolution of 128x128 pixels at more than 10 frames / sec. This is sufficient for the diagnosis of mechanical parts in real time. The increase of ultrasonic sensor elements (128 elements) allows more advanced topological configurations (as a 2D matrix) and providing opportunities to 3D reconstruction (volume of a room). This work has resulted in implementation of validated measurement instrument developed by M2M -NDT.
|
57 |
Homogénéisation de grandeurs électromagnétiques dans les milieux cimentaires pour le calcul de teneur en eau / Prediction of cement-based materials' water content with the use of electromagnetic homogenization schemesGuihard, Vincent 13 September 2018 (has links)
La quantité et la distribution de l'eau interstitielle dans l'espace poral des milieux cimentaires sont des marqueurs fondamentaux de la durabilité des structures de Génie Civil en béton. La connaissance de ces grandeurs est également importante pour l'interprétation de certains essais non destructifs mis en œuvre pour évaluer les performances mécaniques des ouvrages ou détecter certains défauts. L'évaluation de la teneur en eau par méthode non-destructive requiert l'utilisation d'une grandeur intermédiaire telle que la permittivité diélectrique. La relation entre cette propriété électromagnétique et la teneur en eau dépend alors de la composition et donc de la formulation du béton. En électromagnétisme, les lois d'homogénéisation permettent de lier la permittivité effective d'un matériau hétérogène avec la permittivité intrinsèque et la fraction volumique de chaque hétérogénéité présente. Afin de pallier le temps important requis pour l'établissement d'une courbe de calibration expérimentale propre à chaque formulation, l'étude présentée propose la mise en place d'une démarche d'homogénéisation de la permittivité pour lier quantité d'eau présente dans un béton et permittivité macroscopique du matériau. Les travaux présentés rapportent la fabrication, la modélisation et l'utilisation de sondes coaxiales ouvertes pour la mesure de la permittivité complexe de matériaux solides et liquides. Le concept d'estimation de la teneur en eau par utilisation de lois d'homogénéisation est validé pour le cas d'un sable partiellement saturé en eau. Au vu des résultats prometteurs obtenus par modélisation analytique, des schémas d'homogénéisation sont combinés lors d'un processus de remontée d'échelle depuis celle des hydrates jusqu'à celle des granulats, en tenant compte de la morphologie de la microstructure. Les propriétés intrinsèques des principaux constituants d'un béton (granulats, hydrates, ciment anhydre) sont alors mesurées par sonde coaxiale et utilisées en données d'entrée du modèle construit. Une bonne cohérence est observée entre parties réelles de la permittivité simulées et mesurées, pour des échantillons de pâtes de ciment, mortiers et bétons. A la différence des lois expérimentales et empiriques, le modèle construit se caractérise par un temps de calcul quasi-instantané et peut être adapté d'une formulation de béton à une autre en fonction du type de ciment utilisé, de la nature et de la quantité de granulats ou encore de la porosité accessible à l'eau du matériau. / Prediction of delayed behavior in concrete can be significantly improved by monitoring the amount and spatial distribution of water within a concrete structure over time. Water content of cement-based materials can also be required to interpret non-destructive tests such as ultrasonic and radar measurements. Electromagnetic properties of heterogeneous and porous materials, such as dielectric permittivity, are closely related to water content. Measurement of these properties is thus a common non-destructive technique used to assess the moisture content, but a calibration curve is required to link the measured permittivity to the saturation degree. This curve can be determined experimentally, or from empirical models. However, the first approach is tedious and time consuming, while the second one is not adapted to concrete. Hence, this contribution proposes an alternative route, relying on electromagnetic homogenization schemes, to connect the macroscopic permittivity of cement-based materials with the water content of the structure. Therefore, different open-ended coaxial probes were designed, modelled and tested in order to perform complex permittivity measurements of both solids and liquids. The homogenization approach is first validated on unsaturated sand. Then, the permittivity of concrete components (aggregates, hydrates, interstitial liquid, anhydrous cement) was assessed by means of coaxial probe measurements. Finally, a specific combination of analytical homogenization laws taking into account the microstructure's morphology of the material is built. Results show that there is a good correlation between the model and measurements acquired on different cement pastes, mortars and concretes, at different saturation degrees. The model is characterized by a quasi-instantaneous calculation time and can be adapted to different concretes depending on cement type, nature and quantity aggregates or porosity.
|
58 |
Paramétrisation et classification de signaux en contrôle non destructif. Application à la reconnaissance des défauts de rails par courants de FoucaultOukhellou, Latifa 04 July 1997 (has links) (PDF)
Le travail présenté dans ce mémoire traite d'un dispositif embarqué de détection et de reconnaissance des défauts de rail débouchants. Une structure multicapteur à courants de Foucault permettant le contrôle non destructif de l'intégrité des rails en voie, sans contact et en condition d'exploitation commerciale est détaillée dans le premier chapitre. Les principales options de conception (mesures différentielles, bi-fréquences, blindages...) y sont décrites, et validées a posteriori par des essais sur site dans des conditions de mesure réelles. Une liste des classes de défauts détectables par le capteur a été établie (fissures, écaillages...) ainsi qu'une base de données représentative du site pour la mise au point des traitements haut niveau. La première phase des traitements concerne le mode de représentation des signaux complexes issus du capteur. Cette paramétrisation doit posséder un fort potentiel descriptif tout en restant insensible à certaines opérations sur les signaux définies comme des invariants du problème (retournement, homothéties, lift-off). Une procédure originale de paramétrisation des signatures dénommée "Descripteurs de Fourier Modifiés", a été mise au point et comparée à des paramétrisations de type autorégressive. Sur l'ensemble des paramètres d'une signature, une sélection doit ensuite être effectuée en termes de pertinence à la discrimination entre classes. Une méthode d'ordonnancement par orthogonalisation et des méthodes séquentielles constructive et destructive pour le classement des paramètres sont comparées. Différents critères d'arrêt permettent de choisir le nombre réduit de paramètres retenus; des résultats de mise en oeuvre sur la base de données de ces différentes méthodes sont présentés. Le dernier chapitre de ce mémoire traite de la classification neuronale supervisée à l'aide de réseaux de type perceptron multicouche ou de réseaux à fonctions radiales de base. Pour ces deux types de réseaux, des approches globales de classification (discrimination des K classes simultanément) et des approches par partition (problème de classification initial décomposé en sous-problèmes de classification) sont exposées. Des performances de classification sont données pour les deux approches et nous montrons la supériorité de l'approche par partition dans notre application en relation avec la faible dimension de la base de données.
|
59 |
Formulation intégrale surfacique des équations de Maxwell pour la simulation de contrôles non destructifs par courant de Foucault. Etude préliminaire à la mise en œuvre de la méthode multipôle rapide.Lim, Tekoing 28 April 2011 (has links) (PDF)
Pour simuler numériquement un contrôle non destructif par courants de Foucault (CND-CF), la réponse du capteur peut être modélisée via une approche semi-analytique par intégrales de volume. Plus rapide que la méthode des éléments finis, cette approche est cependant limitée à l'étude de pièces planes ou cylindriques (sans prise en compte des effets de bords) du fait de la complexité de l'expression de la dyade de Green pour des configurations plus générales. Or, il existe une forte demande industrielle pour étendre les capacités de la modélisation CF à des configurations complexes (plaques déformées, bords de pièce...). Nous avons donc été amenés à formuler différemment le problème électromagnétique, en nous fixant comme objectif de conserver une approche semi-analytique. La formulation intégrale surfacique (SIE) permet d'exprimer le problème volumique en un problème de transmission équivalent à l'interface (2D) entre sous-domaines homogènes. Ce problème est ramené à la résolution d'un système linéaire (par la méthode des moments) dont le nombre d'inconnues est réduit du fait du caractère surfacique du maillage. Dès lors, ce système peut être résolu par un solveur direct pour de petites configurations. Cela nous a permis de traiter plusieurs seconds membres (ie. différentes positions de capteurs) pour une seule inversion de la matrice d'impédance. Les résultats numériques obtenus au moyen de cette formulation concernent des plaques avec la prise en compte des effets de bords tels que l'arête et le coin. Ils sont en accord avec des résultats obtenus par la méthode des éléments finis. Pour des configurations de grandes tailles, nous avons mené une étude préliminaire à l'adaptation d'une méthode d'accélération du produit matrice-vecteur intervenant dans un solveur itératif (méthode multipôle rapide, ou FMM) afin de définir les conditions dans lesquelles le calcul FMM fonctionne correctement (précision, convergence...) dans le contexte CND. Lors de l'assemblage du système linéaire, une attention particulière a été portée sur le choix des fonctions de bases (qui doivent respecter la conformité Hdiv) ainsi que sur l'évaluation des interactions proches (faiblement singulières).
|
60 |
Thermographie infrarouge de champs ultrasonores en vue de l'évaluation et du contrôle non destructifs de matériaux compositesKouadio, Thierry 08 July 2013 (has links) (PDF)
Les matériaux composites sont largement utilisés dans l'industrie en raison de leur bonne tenue mécanique et de leur faible densité. La diversité des domaines d'application des matériaux composites donne lieu à une grande variété de modes de sollicitation et d'endommagement. De ce fait, l'évaluation de leurs propriétés et le contrôle de leur état présentent un grand intérêt industriel. Dans ce travail, une nouvelle méthode d'évaluation et de contrôle non destructif dite par sonothermographie est explorée. Cette méthode est basée sur l'analyse du champ thermique induit par des ondes ultrasonores de puissance dans les matériaux absorbants tels que les composites. Deux applications complémentaires sont étudiées, d'une part l'évaluation des propriétés thermiques du matériau et d'autre part le contrôle non destructif de structures par thermographie infrarouge. Dans ce cadre, le problème direct de la sonothermographie est résolu numériquement à partir d'un modèle par éléments finis. Ce modèle permet de simuler le champ thermique induit par la propagation d'ondes ultrasonores dans un matériau absorbant dont les propriétés sont connues. Les simulations réalisées permettent de montrer l'applicabilité de la sonothermographie à la détection de défauts. Une nouvelle approche de caractérisation thermique est également développée. Cette approche basée sur la formulation faible de l'équation de conduction de la chaleur permet une estimation robuste de la diffusivité thermique du matériau à partir du champ thermique induit par les ondes ultrasonores de puissance. Des résultats expérimentaux sont présentés pour le cas de plaques minces.
|
Page generated in 0.0691 seconds