• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 244
  • 72
  • 59
  • 26
  • 17
  • 10
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 542
  • 193
  • 176
  • 95
  • 72
  • 59
  • 57
  • 54
  • 42
  • 40
  • 37
  • 35
  • 34
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Production de forces par le cytosquelette d'actine : mécanismes et régulation par le micro-environnement / Force production in actin cytoskeleton : mechanisms and micro-environmental regulation

Vignaud, Timothée 15 November 2013 (has links)
Les travaux présentés se sont intéressés à la régulation des forces produites par le cytosquelette d'actine. Le rôle primordial joué par le microenvironnement a été au centre de nos investigations. L'étude de ces phénomènes a nécessité le développement de techniques innovantes. La première permet le contrôle en temps réel de la forme de la cellule. Elle utilise un laser UV pulsé pour modifier le microenvironnement adhésif de la cellule et contrôler les zones disponibles pour son étalement. La seconde est une amélioration d'une technique existante au sein du laboratoire. Il s'agit de produire des îlots de protéines d'adhésions, de forme contrôlée, sur un substrat déformable d'acrylamide. Ces supports permettent le contrôle de la taille de la cellule et de son organisation interne. En outre, l'élasticité de l'acrylamide permet la mesure des forces générées par la cellule. La dernière technique a combiné le patterning sur acrylamide avec l'ablation laser. Les forces produites au sein d'une structure particulière du cytosquelette ont ainsi pu être estimées. Deux grands mécanismes de régulation des forces ont pu être mis en évidence. L'utilisation de techniques de spectrométrie de masse, de mesure de forces et de biologie moléculaire a permis de mettre en évidence la coopération entre les différents types d'intégrines au niveau de l'adhésion cellulaire. Cette coopération permet un couplage entre l'architecture du cytosquelette et la quantité de moteurs moléculaires mettant en tension ces structures. Ces mécanismes sont primordiaux pour l'adaptation de la cellule à la rigidité de son environnement. Ce sont les structures d'actine qui produisent les forces qui seront transmises au niveau des adhésions. La corrélation entre la taille de ces structures et les forces générées est encore mal caractérisée. La relation entre taille des fibres de stress et répartition des forces au sein de la cellule a pu être étudiée et suggère que la force produite par une fibre de stress augmente avec sa longueur. Une étude systématique de la contractilité des cellules, sur des patterns de différentes tailles, a permis de montrer la relation entre la taille des fibres de stress et la force générée. Une relation biphasique a ainsi été mise en évidence. Quand la taille de la cellule augmente, la force générée au sein des fibres de stress commence par augmenter avant de diminuer au delà d'une longueur critique. Cette longueur correspond également à la taille maximale observée sur des cellules libres de s'étaler sans contraintes. Les résultats obtenus suggèrent que cette chute de force est liée à une augmentation excessive du ratio myosine/actine qui ne permet plus une production de force efficace. Le mécanisme pourrait faire intervenir le désassemblage des structures d'actine par la myosine ou la quantité insuffisante d'actine pour permettre un travail efficace des moteurs moléculaires. La rencontre de ces deux mécanismes permet de définir le champ des possibles pour la cellule en terme de contractilité. Le mécanisme de chute de forces observé n'a pas pu être expliqué à ce jour mais nous travaillons activement pour qu'il le soit dans les mois à venir. Ce phénomène aura sans doute un grand rôle à jouer dans l'intégrité mécanique des tissus et les phénomènes de migration. La chute de force au delà de la longueur critique permet en effet de déstabiliser les adhésions et pourrait être à l'origine de la rétraction de la cellule dans la migration ou du détachement d'une cellule de ces voisines dans le cas d'un tissu sous forte contraintes. Ce détachement protégerait ainsi la cellule d'un déchirement sous l'effet de forces trop importantes. / Our work has been focused on the regulation of the forces generated by the actin cytoskeleton. We have more precisely studied the role of the cellular microenvironment in this process. It was necessary to overcome some technical challenges to study these mechanisms. We developed two new techniques. The first one allows for the dynamic control of cell shape. A pulsed UV laser is used to modify the adhesive microenvironment around the cell and to create new area available for cell spreading. The second technique is an improvement of an existing technique from the laboratory. It consists in producing ECM protein islands on a elastic acrylamide substrate. This substrate provides the control of cell shape and internal organization. Plus, the elasticity of the substrate is compatible with traction forces measurements. The last technique combines acrylamide micropatterning and laser ablation of intracellular actin structures. Thus, the forces produced by a particular intracellular structure can be estimated. Two keys mechanisms of force regulation were shown. The use of mass spectrometry, traction force microscopy and molecular biology made it possible to study the interaction between different integrins in the adhesion complex. Cooperation was shown. It allows for the coupling between the architecture of the cytoskeleton and the amount of molecular motors in action. This process is necessary for the adaptation of cell forces to substrate stiffness. Actin structures are the one responsible for force production. This force can then be transmitted to the environment through adhesions.. The link between the length of actin fibers and the force produced was more precisely studied. The results showed a correlation between stress fibers length and the force generated inside it. This was true only above a certain critical value. After that, the force was rather decreasing with increasing fiber length. This critical length corresponds to the maximal length of cell axis on infinite 2D substrate. Our main hypothesis is that a too high myosin/actin ratio will block the proper force production/transmission within the fiber. Disassembly of actin by myosin or limited pool of actin are the two explanations we are currently following. The combination of these two-regulation process put brakes on force production by the cell. Above a certain length, the force produced is decreasing. This decreases in turn the strength of the adhesions anchored to these fibers. This will destabilize the adhesions and causes cell retraction The interplay between the regulation by the adhesion and the production of forces within the fiber set some limits on the level of forces produced by the cell. These processes are likely to be modified in a pathological context and can lead to tumor formation. They also protect the cell from being destroyed by stretching. If the length/stretch is too high, the cell will decrease its forces and detach from neighboring cells. This provide a system protecting the cell from being destroyed by massive deformations within the body
372

Exploration par simulations numériques de l'auto-organisation du cytosquelette sous conditions géométriquement contrôlées / Exploration of the cytoskeleton auto-organisation under geometric constraints by numerical simulations

Letort, Gaelle 22 September 2015 (has links)
Le cytosquelette joue un rôle essentiel dans de nombreux processus cellulaires (division, adhésion, migration, morphogenèse..). Un de ses principaux constituants, les filaments d'actine, des polymères semi flexibles polarisés, forme des réseaux dont les architectures spécifiques permettent au cytosquelette de réaliser ses fonctions physiologiques. Un enjeu majeur en biologie cellulaire est de comprendre comment les cellules peuvent former une telle variété d'organisations à partir de la même entité de base, les monomères d'actine. Nous avons découvert récemment que limiter la nucléation des filaments d'actine à des géométries définies suffit à contrôler la formation de différentes organisations (Reymann et al, 2010). Néanmoins, les paramètres principaux permettant d'expliquer comment ces contraintes géométriques déterminent l'organisation collective des filaments n'ont pas été identifiés. Pour comprendre les lois physiques régissant ce phénomène, j'ai développé des simulations numériques du système expérimental en utilisant le logiciel Cytosim. J'ai pu ainsi montrer que la géométrie, les interactions stériques entre filaments, leurs propriétés mécaniques, et l'efficacité de la nucléation sont les paramètres clés contrôlant la formation de structures. Cette étude propose une base solide pour comprendre l'organisation cellulaire de l'actine en identifiant un système minimal de composants suffisant pour simuler l'émergence de différentes organisations d'actine (réseau branché, faisceaux de filaments parallèles ou antiparallèles). Avec cet outil, nous pouvons à présent prédire, étant donnée une géométrie de nucléation, quelles structures en émergeront.Nous avons alors combiné nos deux méthodes in-vitro et in-silico pour étudier comment le couplage entre l'architecture des réseaux et leur composition biochimique contrôle la réponse contractile. La connectivité entre les filaments en est un facteur crucial. En effet, un réseau peu connecté se déforme seulement localement, et n'instaure pas de comportement global. Une structure fortement connectée est très rigide, les moteurs moléculaires ne peuvent donc pas la déformer efficacement. La contraction d'une structure n'est donc possible que pour des valeurs de connectivité intermédiaires. L'amplitude de cette contraction est alors déterminée par l'organisation des filaments. Ainsi nous avons pu expliquer comment l'architecture mais aussi la connectivité des réseaux gouverne leur contractilité.Finalement, les microtubules sont aussi des acteurs essentiels aux processus cellulaires. Étant longs et rigides, ils servent de senseurs de la forme cellulaire et organisent les organites. Leur distribution spatiale, facteur majeur pour l'organisation cellulaire, est contrôlée dans un grand nombre de types cellulaires par la position du centrosome, un organite qui nuclée la plupart des microtubules. La capacité du centrosome à trouver le centre de la cellule dans de nombreuses conditions physiologiques est particulièrement étonante. Il peut aussi adopter une position décentrée lors de processus cellulaires spécifiques. Des mécanismes pouvant potentiellement expliquer le positionnement du centrosome ont été proposés (Manneville et al., 2006; Zhu et al, 2010), mais ce phénomène reste dans sa plus grande partie inexpliqué. J'ai utilisé les simulations pour explorer différents mécanismes pouvant le contrôler selon différentes conditions. Ces résultats permettent de disposer d'une base théorique pour présumer des mécanismes intervenant dans un système donné. Ils peuvent aussi permettre de valider ou réfuter des hypothèses sur les phénomènes mis en jeu et aider à l'élaboration de nouveaux systèmes expérimentaux.Les simulations que j'ai développées aident ici à étudier des comportements spécifiques, en apportant de nouveaux éclairages sur les comportements collectifs du cytosquelette. Elles pourraient être utilisées comme un outil prédictif ou adaptées pour l'étude d'autres systèmes expérimentaux. / The cytoskeleton plays a crucial role in cellular processes, including cell division, adhesion, migration and morphogenesis. One of its main compenent, the actin filaments, a polarised semi-flexible polymer, contributes to these processes by forming specific collective architectures, whose structural organisations are essential to perform their functions. A major challenge in cell biology is to understand how the cell can form such a variety of organisations by using the same basic entity, the actin monomers. Recently we discovered that limiting actin nucleation to specific regions was sufficient to obtain actin networks with different organization (Reymann et al., 2010). However, our understanding of the general parameters involved in geometrically-driven actin assembly was limited. To understand mechanistically how spatially constraining actin nucleation determines the emergent actin organization, I performed detailed simulations of the actin filament system using Cytosim, a simulation tool dedicated to cytoskeleton system. I found that geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. This study sets the foundation for our understanding of actin cellular organization by identifying a reduced set of components that were sufficient to realistically reproduce in silico the emergence of the different types of actin organization (branched actin network, parallel or anti parallel actin bundles). We can now predict for any given nucleation geometry which structures will form.Being able to control the formation of specific structures in-vitro and in-silico, we used the combination of both methods to study how the interplay between actin network architecture and its biochemical composition affects its contractile response. We highlighted the importance of the connectivity between filaments in the structures. Indeed, a loosely connected network cannot have a global behavior, but undergoes only local deformations. A highly connected network will be too rigid to be efficiently deformed by molecular motors. Only for an intermediate range of network connectivity the structures will contract, with an amplitude that depends notably on actin filaments organisation. This work explains how architecture and connectivity govern actin network contractility.Finally, the microtubules are also essential actors of cellular processes. Being long and rigid, they serve as sensors of the cellular shape and can organize the position of organelles in the cytoplasm. Their spatial distribution in the cell is thus a crucial cellular feature. this distribution is determined in a vast number of cell types by the position of the centrosome, an organelle that nucleates the majority of microtubules. Quite strinkingly, the centrosome is able to find the center of the cell in a lot of different physiological conditions, but can nonetheless adopt a decentered position in specific cellular processes. How this positioning is controled is not yet fully understood, but a few potential mechanims have been proposed (Manneville et al., 2006; Zhu et al., 2010). I used the simulations to explore different mechanisms taht can explain the position of the centrosome under different conditions. These results offer theorical considerations as a basis to assess which mechanism might prevail in a specific experimental system and may help to design new experimental setups.The simulations that I developed helped to study some specific behavior, by giving new insights into cytoskeleton collective organisations. These simulations can be further used as predictive tool or adapted to other experimental systems.
373

Identification of potential therapeutic targets against trypanosomatid parasite related infections ; molecular and functional characterization of components of the flagellar pocket collar / Identification de cibles thérapeutiques potentielles contre les infections par les trypanosomatides ; caractérisation moléculaire et fonctionnelle des composants du collier de la poche flagellaire

Albisetti, Anna 08 December 2016 (has links)
Trypanosoma brucei, un parasite flagellé unicellulaire, est responsable de la trypanosomiase humaine africaine aussi connue comme la maladie du sommeil.Les microtubules (MTs) sous-pelliculaires, le quartet de MTs (MTQ), le flagelle (F) et le collier de la poche flagellaire (CPF) sont les principaux composants du cytosquelette dutrypanosome. À ce jour, une seule protéine du CPF, BILBO1, a été identifiée et caractérisée.Dans cette étude, nous montrons in vivo que BILBO1 forme des polymères capables deconstruire un échafaudage qui permet l’ancrage de protéines partenaires. Ainsi, un crible en double hybride chez la levure a identifié plusieurs protéines partenaires de BILBO1,notamment une nouvelle protéine appelée FPC4. Nous démontrons que FPC4 est une protéine spécifique des kinétoplastides, localisée au CPF mais aussi au hook-complex, une structure proche du CPF. L’interaction FPC4 – BILBO1 est démontrée in vitro et in vivo, etles domaines d'interaction identifiés. En outre, nous démontrons in vivo et in vitro que FPC4est une protéine associée aux microtubules. Nos données suggèrent fortement que FPC4est impliquée dans le processus de séparation des CPFs au cours du cycle cellulaire. Nos résultats mettent en évidence un lien étroit entre le MtQ et le CPF et l'implication probable duhook-complex. Enfin, nous mettons en évidence une structure analogue au hook-complex chez les Leishmanies. L’interaction BILBO1 – FPC4 représente une nouvelle cible thérapeutique et sera caractérisée plus avant. / Trypanosoma brucei, a unicellular flagellated parasite, is responsible for the human African trypanosomiasis also known as sleeping sickness. Sub-pellicular microtubules (MT), the MT quartet (MtQ), the flagellum (F) and the Flagellar Pocket Collar (FPC) are the main components of the T. brucei cytoskeleton. To date, only a single FPC protein, BILBO1, has been identified and characterized. In this study we demonstrate in vivo that BILBO1 forms polymers able to build a scaffold structure that anchors partner proteins. As such, a yeast-2-hybrid screen identified several BILBO1 interacting protein partners. We demonstrate that FPC4 is a kinetoplastid-specific protein, which is localized at the FPC and at the hook complex. Its specific interaction with BILBO1 has been demonstrated in vitro and in vivo, and the interacting domains identified. Furthermore, we demonstrate that FPC4 is a microtubule binding protein. Our data strongly suggest that FPC4 is involved in the separation of the old and the newly formed FPC during the cell cycle. Altogether, our results demonstrate a tight connection and interplay between the MtQ and the FPC and the likely involvement of an adjacent third structure, the hook complex. Finally, we highlight a structure similar to the hook-complex in Leishmania. The BILBO1 – FPC4 interaction represents a new therapeutic target and will be characterized further.
374

Etude de la dissémination de cellule à cellule du virus de la maladie de marek : Rôle des contacts cellulaires, du cytosquelette d'actine et des RhoGTPases / Study of Marek's disease virus cell-to-cell spread : role of cell contacts, actin cytoskeleton and RhoGTPases

Richerioux, Nicolas 01 June 2012 (has links)
Le virus de la maladie de Marek (MDV) est un α-herpèsvirus aviaire responsable de lymphomes chez la poule. En absence de virions libres détectables en culture cellulaire, il est couramment admis que ce virus se dissémine uniquement de cellule à cellule par un mécanisme non identifié à ce jour. Mon travail de thèse comprenait 3 parties. La première avait pour objectif d’étudier la contribution des contacts cellulaires et de possibles virions extracellulaires dans la dissémination de MDV. La seconde partie visait à étudier le rôle du cytosquelette d’actine dans la dissémination intercellulaire du MDV et l’implication des voies de signalisation des RhoGTPases. J’ai montré que l’activité de la voie Rho-ROCK favorise la dissémination du MDV au contraire de la voie Rac-PAK. Un possible lien entre la dissémination du MDV et les jonctions adhérentes, maintenues par l’activité de la voie Rho-ROCK, est discuté. Enfin, la troisième partie avait pour but le développement d’un nouveau test de dissémination entre cellules sur un cycle viral unique. Pour cela, j’ai construit un virus MDV rapporteur inductible et des lignées cellulaires aviaires exprimant une flippase. / Marek’s disease virus (MDV) is an avian α-herpesvirus which is responsible for lymphomas in chicken. In absence of detectable cell-free virions in cell culture, it is well admit that this virus only spread from cell-to-cell. The involved mechanisms remain unknown. My thesis work was divided in three parts. The objectives of the first one were to study the contribution of cell contacts and of potential extracellular infectious virions on MDV spread. The second part aimed at studying the role of the actin cytoskeleton in MDV intercellular spread and the involvement of RhoGTPase signaling pathways. I showed that the Rho-ROCK signaling pathway promotes the dissemination in contrast to the Rac-PAK signaling pathway. A possible link between MDV spread and adherens junctions, maintained by Rho-ROCK signaling, is discussed. The third and last part had the purpose to develop a new assay of MDV spread between cells on a single viral cycle. For this, I built an inducible reporter MDV virus and avian cell lines expressing a flippase.
375

Etude des atteintes morphofonctionnelles des synapses excitatrices dans la maladie d'Alzheimer : implication de la voie Cofiline-dépendante / Morpho-functional alterations of excitatory synapses in Alzheimer disease : involvment of the cofilin enzyme

Dollmeyer, Marc 16 December 2015 (has links)
La maladie d'Alzheimer (AD) est une pathologie neurodégénérative caractérisée par une atrophie cérébrale progressive associée à une mort neuronale. Plus récemment, il a été suggéré que la perte des fonctions cognitives survenant pendant la maladie s'explique principalement par une atteinte au niveau synaptique préalable à la mort neuronale. Ainsi il a été observé que le peptide β-amyloïde ou Aβ constituant des plaques séniles, l'un des deux marqueurs histologiques de la maladie, existe sous une forme soluble/oligomérique (Aβo), et cette conformation lui confère des propriétés synaptotoxiques. L'Aβo agit préférentiellement sur le compartiment post-synaptique des synapses excitatrices également appelées épines dendritiques, structures sub-cellulaires dont la forme est régie par un cytosquelette d'actine riche et dynamique. Parmi les nombreuses hypothèses émises pour expliquer la synaptotoxicité de l'Aβo, il a été suggéré que la disparition des épines était due à une dépolymérisation anormale des filaments d'actine par une enzyme : la cofiline. Pourtant des données récentes ont montré à l'inverse une phosphorylation/inactivation de la cofiline dans le cortex frontal de patients AD, mais aussi dans le cerveau de la lignée de souris APP/PS-1, modèle de AD. De plus, des analyses morphologiques des synapses de la région CA1 chez la souris APP/PS-1 ont montré une réduction de la densité d'épines, associée à une augmentation du volume des épines survivantes. Les variations de volume de la tête de l'épine sont des phénomènes très fréquents lors d'une induction de potentialisation à long terme, le corrélat électrophysiologique de la mémoire.. Au cours de ma thèse, nous avons cherché dans un premier temps à caractériser les altérations morphologiques des épines dendritiques chez la souris APP/PS-1 par microscopie électronique. Nous avons pu confirmer que dès 3 mois, les synapses excitatrices sont moins nombreuses, que les épines restantes sont plus larges, mais surtout, que l'épaisseur de la densité post-synaptique n'est plus proportionnelle à la surface de l'épine, ce qui suggère un découplage entre modifications morphologiques et fonctionnelles. Nous avons également mis en évidence la présence de spinules anormales sur les épines.En utilisant des cultures primaires de neurones corticaux, nous avons pu montrer qu'un traitement aigu avec de l'Aβo induit la formation de protrusions riches en actine filamenteuse ressemblant aux spinules observés chez les animaux transgéniques. En purifiant la fraction post-synaptique, nous avons montré que cette formation de protrusions est concomitante à une phosphorylation anormale de la cofiline induite par l'Aβo. Ainsi l'inactivation de la cofiline qui en résulte pourrait être à l'origine d'une stabilisation et donc d'un allongement des filaments d'actine synaptique conduisant à la formation des protrusions. Cette inactivation de la cofiline a également été retrouvée chez la souris APP/PS-1 et chez l'humain. En conclusion, l'ensemble des résultats de cette thèse montre que l'Aβo induit des déformations morphologiques des épines, qui se caractérisent par la formation de protrusions membranaires ressemblant à des spinules. Ces protrusions ne sont pas activité-dépendantes, mais proviennent plutôt d'une dérégulation de l'activité enzymatique de la cofiline par l'Aβo. / Alzheimer's disease (AD) is a neurodegenerative pathology associated with progressive cerebral atrophy linked to neuronal death. It has been recently suggested that loss of cognitive functions occurring during the disease was a consequence of synapse dysfunction and prior to neuronal death. Thus, it has been observed that Amyloïd-β peptide (Aβ), the main component of senile plaques, one histological marker of the disease, also exists as soluble/oligomeric Aβ (Aβo). This Aβ conformation is known to be synaptotoxic. Aβo acts preferentially on the post-synaptic compartment of excitatory synapses, also named dendritic spines, sub-cellular micro-domains containing dynamic and filamentous actin as their main cytoskeleton component. Among numerous theories explaining Aβo synaptotoxicity, it has been suggested that spine collapsing was due to an abnormal actin depolymerisation through Cofilin enzyme. Yet, recent evidences inversely showed Cofilin phosphorylation/inactivation in frontal cortex of AD patients and in the APP/PS-1 transgenic mice brain, an AD animal model. Moreover, synapse morphological analysis in the CA1 region of APP/PS-1 mice showed a reduction in spine density and an increase in spine head volume of remaining ones. Spine head volume variations are commonly occurring during induction of Long Term Potentiation, the electrophysiological correlate of memory.During my thesis, we firstly characterized APP/PS-1 mice dendritic spine morphological alterations using electron microscopy. We confirmed that even at 3 month-old, excitatory synapses are fewer, but also that remaining ones display larger surfaces. In addition, PSD thickness is not proportional to spine surface anymore, which suggests an uncoupling between functional and morphological modifications. We also demonstrated the presence of abnormal shaped spinules onto spines.Using primary cortical neuron cultures, we demonstrated that acute Aβo treatment induces the formation of filamentous actin enriched protrusions, resembling spinules observed in transgenic mice. By purifying post-synaptic protein fraction, we showed that protrusions formation is correlated to an abnormal Cofilin phosphorylation/inactivation by Aβo. Thus, resulting Cofilin inactivation could trigger actin filament stabilization, leading to protrusion formation. We also found Cofilin phosphorylation in APP/PS-1 mice and in AD brains. Taken together, these results show that Aβo triggers dendritic spine abnormal alterations, characterized by the formation of membrane protrusions ressembling spinules. These protrusions are not activity-dependant, but may instead originate from a disregulation of Cofilin enzymatic activity by Aβo.
376

Caracterização da interação entre o regulador espacial MinC e seu alvo FtsZ em Bacillus subtilis / Characterization of interaction between the spatial regulator for bacterial division MinC and its target FtsZ in Bacillus subtilis

Valdir Blasios Junior 14 August 2014 (has links)
A divisão celular bacteriana é orquestrada por FtsZ, uma proteína homóloga à tubulina eucariótica que possui a capacidade de polimerizar e gerar uma estrutura chamada de anel Z. O local onde esta estrutura citoesquelética contrátil é formada determina o futuro sítio de divisão. O complexo MinCD é um dos principais reguladores da posição da divisão, favorecendo a montagem do anel Z precisamente na região medial da bactéria. MinCD age como um inibidor sítio específico da polimerização de FtsZ, atuando preferencialmente nos polos celulares. MinC é a proteína do complexo que atua diretamente sobre FtsZ e inibe sua polimerização. Essa tese elucida a interação entre FtsZ e MinC e sugere o mecanismo exercido por MinC em Bacillus subtilis. Foi triada uma biblioteca de mutantes randômicos de FtsZ para identificação de mutantes resistentes à ação de MinC. Dentre estes, as substituições K243R e D287V, quando caracterizados usando espalhamento de luz e espectroscopia de fluorescência impediram a interação com MinC. Como as mutações estavam localizados em torno das hélices H-9 e H-10 no domínio C-terminal de FtsZ, concluímos que esta região representa o sítio de interação com MinC desta proteína. Como complemento ao mapeamento do sitio de ligação de MinC em FtsZ, identificamos a região de MinC que interage com FtsZ. Para tanto, escolhemos resíduos de MinC para mutagênese e caracterização. A escolha priorizou os resíduos conservados entre espécies Gram-positivas, experimentos de RMN, carga e exposição ao solvente dos mesmos. Dentre os resíduos de MinC mutados que afetaram sua capacidade de inibir a polimerização de FtsZ in vitro foram: Y8 e K12 (β-1), K15 (alça-2), H55 (β-3) , H84 (β-4) e K149 (C-terminal). Sendo assim, podemos concluir que a face de interação para FtsZ em MinC de B. subtilis é a única folha β do domínio N-terminal desta proteína. Com base nos sítios mapeados das duas proteínas experimentalmente, criamos um modelo in silico do complexo MinC-FtsZ por docking molecular. De acordo com o modelo gerado, MinC interage com a porção lateral de polímeros de FtsZ. Isto sugere que MinC atue na inibição da formação de feixes de filamentos de FtsZ, impedindo assim a formação de anéis Z funcionais. Esse mecanismo de ação do sistema Min é diferente do proposto para E. coli, no qual MinC interage com a face de polimerização FtsZ-FtsZ e impede a formação de protofilamentos de FtsZ. / Bacterial cell division is orchestrated by FtsZ, a protein homologous to eukaryotic tubulin that has the ability to polymerize and generate a cytoplasmic structure called the Z ring. The subcellular location where this cytoskeletal structure is formed determines the future division site. The MinCD complex is one of the main regulators of the position of cell division, driving the assembly of Z-ring precisely at the medial region of the cell. MinCD acts as a site-specific inhibitor of FtsZ polymerization, blocking Z ring formation at the cell poles. MinC is the protein of the complex that acts directly on FtsZ and inhibits its polymerization. This thesis elucidates the interaction between FtsZ and MinC and suggests the MinC mechanism in Bacillus subtilis. An ftsZ randomly mutagenized library was screened to identify mutants that are resistant to MinC action. Using right-angle light scattering and fluorescence spectroscopy we showed that substitutions K243R and D287V lost the interaction to MinC. These substituted residues clustered around the H-9 and H-10 helices in the C-terminal domain of FtsZ, thus, we conclude that this region is the binding site for MinC. In addition to mapping the MinC binding site on FtsZ, we also identified the FtsZ binding site in MinC. Based on residue conservation, NMR experiments and exposure to solvent, we chose residues of MinC for mutagenesis and characterization. The substituted residues that di srupted MinC ability to inhibit FtsZ polymerization in vitro were: Y8 and K12 (β-1), K15 (turn-2) , H55 (β-3), H84 (β-4) and K149 (C-terminal). Thus, we conclude that the binding site of MinC for FtsZ is located on the β only sheet at the N-terminal domain of MinC from B. subtilis. Finally, based on the binding sites of the two proteins mapped experimentally, we created a model of the complex between MinC and FtsZ by molecular docking. According to the generated model, MinC interacts with the lateral portion of FtsZ polymers. This indicates that MinC should inhibit assembly of higher order FtsZ polymers, thereby preventing the formation of a functional Z-ring. This mechanism of Min is different from that proposed in E. coli, in which MinC interacts with FtsZ polymerization interface and inhibits FtsZ protofilament formation.
377

Sinalização da MAPK/ERK na diferenciaçãao da oligodendroglia: efeitos de inibidores da MEK sobre a morfologia e distribuição de proteínas de oligodendrócitos/mielina in vitro / MARK/ERK signalling in oligodendroglia differentiation: MEK inhibitors effection distribution of oligodendrocytes/myelin proteins in vitro

Viviane Younes Rapozo 23 August 2009 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A via de sinalização da cinase regulada por fatores extracelulares, da família das proteínas cinases ativadas por mitógenos (MAPK/ERK) é importante tanto para a sobrevivência como para a progressão da diferenciação de oligodendrócitos. Neste trabalho, a via da MAPK/ERK foi avaliada na oligodendroglia in vitro com a utilização de inibidores da MEK. A morfologia celular, assim como a distribuição de proteínas foram analisadas em diferentes estágios de maturação da oligodendroglia. Culturas primárias de oligodendrócitos foram tratadas com os inibidores da MEK PD98059 ou U0126, aos 5 ou 11dias in vitro (div), por 30min, 24 ou 48h. A oligodendroglia foi distinguida com marcadores estágio-específicos: A2B5, 23nucleotídeo cíclico 3 fosfodiesterase (CNPase) e proteína básica de mielina (MBP), e classificada de acordo com sua morfologia em diferentes estágios de desenvolvimento. O tratamento aumentou significativamente o número de células com morfologia mais imatura e diminuiu o número de células maduras. Além disso, aumentou o número de células redondas e sem prolongamentos as quais não puderam ser classificadas em nenhum dos estágios de desenvolvimento da oligodendroglia. Os efeitos mais evidentes foram observados logo após o menor tempo de tratamento. Células redondas eram positivas para CNPase e MBP, porém não foram marcadas com A2B5 ou com NG2, indicando que seriam células maduras incapazes de estender ou manter seus prolongamentos. De fato, estas mudanças foram acompanhadas por alterações na distribuição de proteínas de oligodendrócitos como a MBP e a CNPase, assim como alterações em proteínas de citoesqueleto, como actina, tubulina e na cinase de adesão focal (FAK). A MBP foi observada nas células tratadas em um padrão de distribuição desorganizado e disperso, oposto ao padrão contínuo que é observado nas células das culturas controle. Além disso, o tratamento causou uma desorganização na distribuição da CNPase, actina e tubulina. Nas células das culturas controle, estas proteínas apresentam um padrão organizado compondo as estruturas de citoqueleto semelhantes a nervuras. Após um pequeno período de tratamento (30min), actina e tubulina apresentaram o mesmo padrão de marcação puntiforme que a CNPase apresentou. O tratamento também reduziu os pontos de adesão focal demonstrados pela FAK. Com o decorrer do tratamento, após 24 e 48h, actina e tubulina aparentavam estar se reorganizando em um padrão filamentar. Estes resultados indicam um efeito importante da via da MAPK/ERK na ramificação e alongamento dos prolongamentos dos oligodendrócitos, com possíveis consequências para a formação da bainha de mielina. / The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway is important for both long-term survival and timing of the progression of oligodendrocyte differentiation. In this work, the MAPK/ERK signaling in oligodendroglia was studied in vitro by using MEK inhibitors. Cell morphology and distribution of proteins were analyzed in different stages of maturation. Primary cultures of oligodendroglia were treated with the MEK inhibitors PD98059 or U0126, at 5 or 11div for 30min, 24 or 48h. Oligodendroglial cells were distinguished by using stage specific markers: NG2 proteoglycan, A2B5, 23nucleotide-cyclic 3phosphodiesterase (CNPase) and myelin basic protein (MBP), and classified according to their morphology into different developmental stages. Treatment significantly increased the number of cells with more immature morphologies and decreased the number of mature cells. Furthermore, it increased the number of rounded cells that could not be classified into any of the oligodendroglial developmental stages. The strongest effects were usually observed shortly after treatment. Rounded cells were CNPase/MBP positive and they were not stained by anti-NG2 or A2B5, indicating that they were mature cells unable either to extend and/or to maintain their processes. In fact, these changes were accompanied by alterations in the distribution of the oligodendroglial proteins MBP and CNPase, and alterations in cytoskeleton proteins, as actin, tubulin and the focal adhesion kinase (FAK). MBP was observed in a continuous distribution in cell body and processes in control cultures. Furthermore, in treated cultures a disorganized pattern of distribution of CNPase, actin and tubulin was observed. In control cultures, these proteins compose the cytoskeleton vein-like structures. By the other side, after a short time of MEK inhibition (30min), actin and tubulin showed the same punctual pattern observed in CNPase distribution. Treatment also caused a reduction of focal adhesion sites showed by FAK. As treatment progressed, after 24 and 48h, actin and tubulin seemed to be rearranged into a filament-like pattern. These data showed an effect of the MAPK/ERK pathway on oligodendroglial branching, with possible consequences for the formation of the myelin sheath.
378

Interação parasita-célula hospedeira: modificação de proteínas de Tripanosoma cruzi durante adesão à matriz extracelular / Parasite-host cell interaction: modifications of Trypanosoma cruzi proteins during the adhesion to extracelular matrix

Eliciane Cevolani Mattos 24 January 2014 (has links)
A doença de Chagas foi incialmente descrita em 1090 e após mais de 100 anos de investigações sobre essa doença, ainda pouco se sabe sobre os mecanismos ativados no parasita durante sua adesão e invasão à célula hospedeira. Glicoproteínas de massa molecular de 85kDa localizadas na membrana do parasita foram identificadas como principais elementos responsáveis pela interação com o hospedeiro. Essas proteínas também são capazes de se ligar a elementos da matriz extracelular (ECM) da célula hospedeira e esse evento parece ser crucial para modulação da adesão e invasão do parasita e consequente avanço da infecção. Embora diferentes elementos tenham sido identificados no hospedeiro como componentes da via de resposta a adesão ao parasita, as modificações induzidas pela sua ligação ao hospedeiro é ainda pouco conhecida. Modificações pós-traducionais de proteínas, incluindo a fosforilação, têm sido utilizadas por diferentes organismos na transdução de sinais extracelulares. Dessa forma, a identificação de proteínas diferencialmente fosforiladas durante a adesão de tripomastigotas de T. cruzi a ECM, fibronectina e laminina foi o objetivo dessa tese. Tripomastigotas foram incubados com ECM, fibronectina-, laminina- ou BSA- previamente aderidos em placas de cultura de células. Em seguida, os parasitas foram coletados e suas proteínas extraídas e separadas por 2D-PAGE. Os géis de eletroforese foram corados com Pro-Q Diamond (para identifiicação de proteínas fosforiladas) e posteriormente com coomassie colloidal (identificação de proteínas totais). Os spots com diferença significativa na coloração com Pro-Q Diamond (p< 0,05) foram identificados por LC-MS/MS. 54 spots foram diferencialmente fosforilados durante a adesão dos parasitas a ECM, dos quais 39 sofreram um aumento da intensidade de fosforilação e 15 uma redução. Já dos 43 spots diferencialmente fosforilados durante incubação com laminina, 16 aumentaram a fosforilação enquanto 27 sofreram redução da intensidade de fosforilação. Por fim, após incubação com fibronectina, dos 50 spots selecionados, 15 spots sofreram aumento da intensidade de fosforilação e 35 sofreram redução. Após identificação dos spots, as modificações por fosforilação/desfosforilação de proteínas de função desconhecida (hypothetical proteins), proteínas do citoesqueleto, proteínas do choque térmico (HSPs) e proteínas componentes do proteassomo do parasita foram as mais evidentes. A validação por immonoblotting de algumas proteínas identificadas indicou que a desfosforilação de proteínas do citoesqueleto junto com a fosforilação de proteínas do choque térmico são os principais eventos durante a resposta do parasita a adesão a ECM e a seus elementos. Além disso, a desfosforilação de ERK 1/2 observada indicou uma inativação dessa proteína em parasitas aderidos a fibronectina e laminina. Os resultados obtidos nessa tese sugerem uma provável relação entre modificações de proteínas do citoesqueleto e HSPs com a capacidade de internalização dos parasitas na célula hospedeira. / The Chagas disease was firstly described in 1909. After more than 100 years of investigation about this sickness much less is known about the mechanism triggered in the parasite during the adhesion and invasion to the host cell. 85kDa glycoproteins were identified as the major element responsible for the attachment to the host. In addition, these proteins are able to binding to extracellular matrix elements and host cytoskeletal proteins and it event appears to be an essential step in host cell invasion by T. cruzi. Although downstream signal modifications have been studied in host cells upon parasite binding, the molecular changes induced on the parasite by ligand binding are largely unknown. Since post-translational modification of proteins by phosphorylation is one of the most important mechanisms employed by organisms to transduce external signals, identification of proteins modified upon adhesion of T. cruzi trypomastigotes to ECM, laminin and fibronectin of the host cell was pursued. Trypomastigotes (Y strain) were incubated with ECM, laminin-, fibronectin- or BSA-coated surfaces, followed by 2D-PAGE stained with Pro-Q Diamond (phosphorylated protein detection) followed by colloidal coomassie stain (total protein identification). Proteins with significant differences in Pro-Q Diamond stain (p<0.05) were identified by LC-MS/MS. 54 spots were differentially phosphorylated during parasite adhesion to ECM, in which 39 spots have increased their phosphorylation level and 15 have decreased their phosphorylation. From the 43 spots presenting modification to the phosphorylation on incubation with laminin, 16 corresponded to cases of increase of phosphorylation and 27 to cases of dephosphorylation. After incubation with fibronectin: from the 50 spots selected, 15 corresponded to increase of phosphorylation and 35 to dephosphorylation. The results show phosphorylation/dephosphorylation modifications of unknown proteins, parasite cytoskeletal proteins (alpha and beta tubulin and paraflagellar-rod proteins), heat shock proteins and proteasome proteins. The validation by immunoblotting of proteins and their phosphorylation intensities indicates that cytoskeletal protein dephosphorylation in addition to heat shock proteins phosphorylation are the most important event during the trypomastigotes adhesion to the ECM. Looking for downstream signaling, dephosphorylation of ERK1/2 was also shown in trypomastigotes adhered to fibronectin or laminin, suggesting its inactivation. Thereby, those results suggest a possible correlation between cytoskeletal proteins and HSPs modification and the ability of parasite to internalize into host cells
379

O hormônio tiroideano induz reorganização do citoesqueleto dos somatotrofos de ratos hipotiroideos: potencial efeito sobre a estabilidade e tradução do mRNA do GH e secreção de GH. / Acute T3 administration induces reorganization of somatotroph\'s cytoskeleton of hypothyroid rats: potential effect on 6H mRNA stability and translation and 6H secretion.

Francemilson Goulart da Silva 03 April 2008 (has links)
O T3 aumenta a poliadenilação e estabilidade do GH mRNA. O citoesqueleto (Cy) participa da estabilidade e tradução de mRNAs, pois fatores, como o EF 1a, ligam alguns transcritos a ele, aumentando sua estabilidade e tradução. Cy também participa dos processos secretores celulares. Observamos que no hipotiroidismo (Tx), há um desarranjo do Cy nos somatotrofos que é revertido pela administração aguda de T3. Neste estudo avaliamos a ligação do EF 1a e do GH mRNA ao Cy e, deste aos polissomos, na hipófise, e a expressão do IGF-I mRNA hepático, em ratos controle e Tx tratados com T3 ou salina, e sacrificados após 30 min. Observamos redução da F-actina, da ligação do EF 1a e GH mRNA a ela, do GH mRNA nos polissomos, e da expressão de IGF-I mRNA hepático, nos ratos Tx, o que indicou redução da síntese e secreção do GH. A administração de T3 estimulou esses processos, aumentando a estabilidade, tradução do GH mRNA e a secreção de GH, o que ocorreu em paralelo ao rearranjo do Cy, indicando uma ação não genômica do T3. / T3 increases GH mRNA poly-A tail and stability. Cytoskeleton (Cy) plays a part on mRNA stability and translation, since factors, like EF 1a, can bind some transcripts to it, improving stability and translation efficiency. Cy is also involved in cellular secretory process. We showed that somatotropes Cy is disrupted in hypothyroidism (Tx), and rearranged by acute T3 treatment. In this study we investigated the binding of EF 1a and GH mRNA to Cy and of GH mRNA to polysomes in pituitary, as well as the liver IGF-I mRNA content, in control and Tx rats treated with T3 or saline, and killed 30 min thereafter. We observed that Tx reduced F-actin content, EF 1a and GH mRNA binding to it, GH mRNA recruitment to polysomes, in pituitary, and IGF-I mRNA expression in liver, which indicates that GH synthesis and secretion are impaired. Acute T3 treatment stimulated all these process, indicating that stability, translation of GH mRNA and GH secretion were restored. These events occurred in parallel to the Cy rearrangement, which strongly indicates a non genomic effect of T3.
380

A proteína FEZ1 e a formação dos núcleos multilobulados / FEZ1 and formation of the flower-like nuclei

Migueleti, Deivid Lucas dos Santos, 1988- 06 April 2012 (has links)
Orientador: Jorg Kobarg / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-21T03:42:39Z (GMT). No. of bitstreams: 1 Migueleti_DeividLucasdosSantos_M.pdf: 8057948 bytes, checksum: ef239a4533686a90e511e97afd0f97ba (MD5) Previous issue date: 2012 / Resumo: A proteína UNC-76 foi identificada como necessária para a fasciculação e elongação de axônios do verme Caenorhabditis elegans durante o desenvolvimento do sistema nervoso. A homóloga de mamíferos FEZ1 apresenta altos níveis de expressão em tecidos neuronais e camundongos knockout para o gene FEZ1 apresentam desvios de comportamento que remetem a desordens neurológicas. O papel de FEZ1 no desenvolvimento do sistema nervoso parece residir na sua associação com elementos do citoesqueleto e vias de sinalização (e.g., PKC?, E4B, DISC1) que conduzem o crescimento axonal e a polarização celular. Trabalhos do grupo mostram que FEZ1 é uma proteína multifuncional (hub), capaz de interagir com mais de 50 parceiros através de seus domínios coiled-coil. Além disso, a superexpressão de FEZ1 em células HEK293 provoca o aparecimento de núcleos multilobulados, um fenótipo comum em alguns tipos de leucemia. Nesse trabalho foi investigado o papel de FEZ1 nos mecanismos causadores dos núcleos multilobulados e as consequências funcionais de sua superexpressão na viabilidade celular, tentando extrapolar esse modelo para leucemias. Análises in silico de diversas leucemias mostraram que FEZ1 está superexpressa em LMAs e que isso pode se relacionar à ocorrência da fusão 11q23/MLL. A expressão de FEZ1 na linhagem leucêmica THP-1 foi detectada por Western blotting, mas, a expressão em PBMCs de pacientes ainda permanece sem provas empíricas. Para avaliar as consequências funcionais da superexpressão, uma linhagem com expressão estável e indutível foi obtida e utilizada em ensaios de proliferação e resistência a quimioterápicos. Porém, não foram observadas diferenças entre as linhagens expressando a fusão FLAG-FEZ1 e as que expressavam o FLAG tag apenas. Em um ensaio de IP-MS utilizando tais linhagens, foram identificadas proteínas cuja interação com FEZ1 pode ser modulada pela atividade de PKCs. Finalmente, a cotransfecção de FEZ1 inteira com coiled-coils C-terminais diminui a formação de núcleos multilobulados em quase 40%. A transfecção com o mutante FEZ1 nocys contendo 5 cisteínas mutadas não teve o mesmo efeito, mas, novos experimentos são necessários para determinar o potencial de sinergismo que esses dois componentes podem ter sobre a ocorrência desse fenômeno / Abstract: The protein UNC-76 was identified as necessary for fasciculation and elongation of axons of the worm Caenorhabditis elegans during development of the nervous system. The mammalian homologue FEZ1 is mostly expressed in neuronal tissues and FEZ1 knockout mice present behavior abnormalities that resemble neurological disorders. The role of FEZ1 in the development of the nervous system seems to lie in its association with cytoskeletal elements and signaling pathways (e.g., PKC?, E4B, DISC1) regulating axon outgrowth and cell polarization. The studies of our group have shown that FEZ1 is a hub, able to interact with more than 50 partners through its coiled-coil domains. Furthermore, overexpression of FEZ1 in HEK293 cells causes the appearance of flower-like nuclei, a common phenotype to certain types of leukemia. In this work the role of FEZ1 in the mechanisms of flower-like nuclei formation and functional consequences of its overexpression on cell viability were investigated, attempting to extrapolate this model for leukemias. In silico analysis of several leukemias showed that FEZ1 is overexpressed in AML patients and that this may relate to the occurrence of 11q23/MLL genetic fusion. FEZ1 expression in leukemic THP-1 cells was detected by Western blotting, but the expression in PBMCs of leukemic patients still lacks empirical evidence. To assess the functional consequences of overexpression, cell lineage with stable and inducible expression of FEZ1 was obtained and used in proliferative assays. However, it was not observed any differences between lineages expressing FLAG-FEZ1 fusion protein or FLAG tag alone. IP-MS assay using these lineages identified proteins whose interaction with FEZ1 could be modulated by the activity of PKCs. Finally, cotransfection of C-terminal coiled-coils and FEZ1 full-length decreases flower-like nuclei formation to nearly 40%. Transfection with FEZ1nocys mutant containing five substituted cysteines did not play the same, but further experiments are needed to determine the potential synergism these two components may have on this phenomenon / Mestrado / Genetica Animal e Evolução / Mestre em Genética e Biologia Molecular

Page generated in 0.0424 seconds