• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 44
  • 38
  • 24
  • 20
  • 18
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 335
  • 172
  • 85
  • 81
  • 74
  • 70
  • 68
  • 65
  • 57
  • 54
  • 44
  • 43
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Design and Implementation of a Radiation Hardened GaN Based Isolated DC-DC Converter for Space Applications

Turriate, Victor Omar 19 November 2018 (has links)
Power converters used in high reliability radiation hardened space applications trail their commercial counterparts in terms of power density and efficiency. This is due to the additional challenges that arise in the design of space rated power converters from the harsh environment they need to operate in, to the limited availability of space qualified components and field demonstrated power converter topologies. New radiation hardened Gallium Nitride (GaN) Field Effect Transistors (FETs) with their inherent radiation tolerance and superior performance over Silicon Power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are a promising alternative to improve power density and performance in space power converters. This thesis presents the considerations and design of a practical implementation of the Phase Shifted Full Bridge DC-DC Isolated converter with synchronous rectification for space applications. Recently released radiation hardened GaN FETs were used in the Full Bridge and synchronous rectifier power stages. A survey outlining the benefits of new radiation hardened GaN FETs for space power applications compared to current radiation hardened power MOSFETs is included. In addition, this work presents the overall design process followed to design the DC-DC converter power stage, as well as a comprehensive power loss analysis. Furthermore, this work includes details to implement a conventional hard-switched Full Bridge DC-DC converter for this application. An efficiency and component stress comparison was performed between the hard-switched Full Bridge design and the Phase Shifted Full Bridge DC-DC converter design. This comparison highlights the benefits of phase shift modulation (PSM) and zero voltage switching (ZVS) for GaN FET applications. Furthermore, different magnetic designs were characterized and compared for efficiency in both converters. The DC-DC converters implemented in this work regulate the output to a nominal 20 V, delivering 500 W from a nominal 100 V DC Bus input. Complete fault analysis and protection circuitry required for a space-qualified implementation is not addressed by this work. / MS / Recently released radiation-hardened Gallium Nitride (GaN) Field Effect Transistors (FETs) offer the opportunity to increase efficiency and power density of space DC-DC power converters. The current state of the art for space DC-DC power conversion trails their commercial counterparts in terms of power density and efficiency. This is mainly due to two factors. The first factor is related to the additional challenges that arise in the design of space rated power converters from the harsh environment they need to operate in, to the limited availability of space qualified components and field demonstrated converter topologies. The second factor lies in producing reliable radiation hardened power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). GaN FETs not only have better electrical performance than power MOSFETs, they have also demonstrated inherent tolerance to radiation. This results in less structural device changes needed to make GaN FETs operate reliably under high radiation compared to their MOSFETs counterparts. This work outlines the design implications of using newly released radiation hardened GaN FETs to implement a fixed frequency isolated Phase Shifted Full Bridge DC-DC converter while strictly abiding to the design constraints found in space-power converter applications. In addition, a one-to-one performance comparison was made between the soft-switched Phase Shift modulated Full Bridge and the conventional hard-switched Full Bridge DC-DC converter. Finally, different magnetic designs were evaluated in the laboratory to assess their impact on converter efficiency.
182

High Efficiency DC-DC Converter for EV Battery Charger Using Hybrid Resonant and PWM Technique

Wan, Hongmei 11 September 2012 (has links)
The battery charger plays an important role in the development of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs).This thesis focuses on the DC-DC converter for high voltage battery charger and is divided into four chapters. The background related to EV battery charger is introduced, and the topologies of isolated DC-DC converter possibly applied in battery charge are sketched in Chapter 1. Since the EV battery charger is high voltage high power, the phase-shifted full bridge and LLC converters, which are popularly used in high power applications, are discussed in detail in Chapter 2. They are generally considered as high efficiency, high power density and high reliability, but their prominent features are also limited in certain range of operation. To make full use of the advantages and to avoid the limitation of the phase-shifted full bridge and LLC converters, a novel hybrid resonant and PWM converter combining resonant LLC half-bridge and phase shifted full-bridge topology is proposed and is described in Chapter 3. The converter achieves high efficiency and true soft switching for the entire operation range, which is very important for high voltage EV battery charger application. A 3.4 kW hardware prototype has been designed, implemented and tested to verify that the proposed hybrid converter truly avoids the disadvantages of LLC and phase-shifted full bridge converters while maintaining their advantages. In this proposed hybrid converter, the utilization efficiency of the auxiliary transformer is not that ideal. When the duty cycle is large, LLC converter charges one of the capacitors but the energy stored in the capacitor has no chance to be transferred to the output, resulting in the low utilization efficiency of the auxiliary transformer. To utilize the auxiliary transformer fully while keeping all the prominent features of the previous hybrid converter in Chapter 3, an improved hybrid resonant and PWM converter is proposed in Chapter 4. The idea has been verified with simulations. The last chapter is the conclusion which summaries the key features and findings of the two proposed hybrid converters. / Master of Science
183

<b>SCALABLE MULTI INPUT MULTI OUTPUT DC BUCK CONVERTER USING MULTISTAGE AND MULTIPHASE TECHNIQUES</b>

Khalifa Ahmed Alremeithi (14661221) 18 July 2024 (has links)
<p dir="ltr">The demand for renewable energy and electric vehicles (EVs) is increasing, necessitating efficient energy conversion and management solutions. The thesis addresses the critical challenge of dynamically converting multiple Direct Current (DC) inputs to multiple DC outputs while maintaining efficiency and scalability. The primary objective is to design and test a Multi Input Multi Output (MIMO) DC converter, focusing on verifying its scalability and load efficiency. The research investigates hardware requirements, the implementation of multiphase circuits, and the balancing of power between various inputs through multistage cycling. The study hypothesizes that multistage cycling balances the output power between inputs, and multiphase configurations can scale the converter without affecting efficiency. Methods include examining existing converters, simulating multistage circuits, and fabricating a prototype. Key deliverables include a working prototype demonstrating scalability and efficiency. Results indicate that the MIMO DC converter performs efficiently with multiple inputs and outputs, achieving over 90% efficiency. The use of Gallium Nitride (GaN) transistors and synchronous buck converter topology proves effective in minimizing losses and enhancing stability. The research holds significant value in advancing renewable energy and DC converter technology, promoting sustainability and efficient energy management. Future work should explore advanced filtration circuits, higher voltage testing, and more complex configurations to further enhance the converter's capabilities.</p>
184

Design And Analysis Of A New Buck-Boost Converter With A Low-Side Switch

Awidah, Abdullah 01 June 2024 (has links) (PDF)
This work explores the design, simulation, construction, and analysis of a novel Non-isolated DC-DC Buck-Boost converter which has the advantage of incorporating a low-side switch compared to the traditional buck-boost which requires a high-side switch. This allows the use of a low-side driver which further simplifies the design and operation of the converter. The proposed Buck-Boost converter was constructed to provide -24 V output from an input range of 12V-18V with 15V nominal input at 10W maximum output power utilizing 500kHz switching frequency. Findings from simulations and hardware tests verify that the converter effectively provides the desired -24 V output at varying loads with less than 3% ripple. At the nominal input voltage, the efficiency of the converter reaches 82.37% at full load and peak efficiency of 88.5% at 20% load. Moreover, the input voltage ripple of the proposed non-isolated converter reached 8.4% at full load, due to the pulsating nature of the input current. Overall, results verify the feasibility of the proposed non-isolated Buck-Boost converter as an alternative solution for the conventional buck-boost with the advantage of a low side switch while maintaining a low component count.
185

Energy extraction using maximum energy harvesting control as a refinement over maximum power point tracking on an energy harvesting backpack

Gaydarzhiev, Venceslav 01 January 2007 (has links)
The growing need and desire for the harvesting of energy from everyday mechanical interactions impose a challenge on the current design of such systems. Often their nature indicates slow response times and unsteady AC voltages. The objective of this work is to present a new method of designing and controlling an oscillating energy harvesting system using a cutting-edge algorithm for fast determination of the optimal operating condition. In this thesis, an energy harvesting backpack, which captures energy from the interaction between the user and the spring decoupled load, is being introduced. The new control strategy, Maximum Energy Harvesting Control (MEHC), is developed and applied to the aforementioned system to evaluate its improvement over the basic Maximum Power Point Tracking (MPPT) algorithm. MEHC algorithm can also be used in many different applications, ranging from ocean wave to sports shoes energy harvesting.
186

AVERAGE-VALUE MODELING OF HYSTERESIS CURRENT CONTROL IN POWER ELECTRONICS

Chen, Hanling 01 January 2015 (has links)
Hysteresis current control has been widely used in power electronics with the advantages of fast dynamic response under parameter, line and load variation and ensured stability. However, a main disadvantage of hysteresis current control is the uncertain and varying switching frequency which makes it difficult to form an average-value model. The changing switching frequency and unspecified switching duty cycle make conventional average-value models based on PWM control difficult to apply directly to converters that are controlled by hysteresis current control. In this work, a new method for average-value modeling of hysteresis current control in boost converters, three-phase inverters, and brushless dc motor drives is proposed. It incorporates a slew-rate limitation on the inductor current that occurs naturally in the circuit during large system transients. This new method is compared with existing methods in terms of simulation run time and rms error. The performance is evaluated based on a variety of scenarios, and the simulation results are compared with the results of detailed models. The simulation results show that the proposed model represents the detailed model well and is faster and more accurate than existing methods. The slew-rate limitation model of hysteresis current control accurately captures the salient detail of converter performance while maintaining the computational efficiency of average-value models. Validations in hardware are also presented.
187

LLC Resonant Current Doubler Converter

Chen, Haoning (William) January 2013 (has links)
The telecommunications market is one of the large rapidly growing fields in today’s power supply industry due to the increasing demand for telecom distributed power supply (DPS) systems. The half-bridge LLC (Inductor-Inductor-Capacitor) resonant converter is currently the most attractive topology for the design and implementation of 24V/48V DC telecom power converters. The current doubler rectifier (CDR) converter topology was invented and described in the early 1950s which can offer the unique characteristic of halving the output voltage while doubling the output current compared to a standard rectifier. In this thesis, the current doubler converter topology with its unique characteristic is evaluated as a complementary solution to improve the LLC resonant converter performance, especially for the low output voltage and high output current telecommunication applications. A novel half-bridge LLC resonant current doubler converter (LLC-CDR) is proposed in this thesis which can offer several performance benefits compared to conventional LLC-standard rectifier design . The unique characteristics of the LLC-CDR topology can offer significant improvements by transformation of a 48V converter into a 24V converter with the same power density. This thesis introduces a new SPICE-based simulation model to analyse the operation of this novel LLC-CDR converter circuit design. This model can be used to define the critical component parameters for the LLC -CDR circuit output inductor values. It can also be used to predict the circuit overall performance under different load conditions. Both time-domain based transient simulation analysis and frequency-domain based AC analysis provided by this simulation model showed favourable results in comparison to bench measurement results on a prototype. The model provides a valuable insight to reveal some of the unique characteristics of this LLC -CDR topology. It demonstrates a proof of concept that the conventional LLC resonant converter can be easily redesigned for low voltage, high current applications by using the LLC-CDR topology without requiring a new design for the LLC resonant stage components and the power transformer. A new magnetic integration solution was proposed to significantly improve the overall performance in the LLC-CDR topology that had not been published before. The LLC-CDR converter hardware prototypes with two output inductors coupled and uncoupled configurations were extensively modelled, constructed and bench tested.Test results demonstrated the suitability of an integrated coupled inductors design for the novel LLC-CDR converter application. The integrated coupled inductors design can significantly improve the LLC-CDR converter frequency-domain based AC simulation analysis results. In addition, these results also illustrate the potential benefit of how the magnetic integration design in general could reduce the magnetic component size, cost, and weight compared to the uncoupled inductors design. Finally, a hardware prototype circuit was constructed based on a commercial 1800 W single phase telecom power converter to verify the operation of this novel half bridge LLC-CDR topology. The converter prototype successfully operated at both no load and full load conditions with the nominal output voltage halved from 48VDC to 24VDC, and doubled the output current to match the same output power density. It also demonstrates that the efficiency of this novel half bridge LLC –CDR is 92% compares to 90% of EATON’s commercial 24VDC LLC resonant converter, which can fulfill the research goals.
188

Analysis and Implementation of Fine-grained Distributed Maximum Power Point Tracking in Photovoltaic Systems

Poshtkouhi, Shahab 19 December 2011 (has links)
This thesis deals with quantifying the merits of Distributed Maximum Power Point Tracking (DMPPT), as well as providing solutions to achieve DMPPT in PV systems. A general method based on 3D modeling is developed to determine the energy yield of PV installations exploiting different levels of DMPPT granularity. Sub-string-level DMPPT is shown to have up to 30% more annual energy yield than panel-level DMPPT. A Multi-Input-Single-Output (MISO) dc-dc converter is proposed to achieve DMPPT in parallel-connected applications. A digital current-mode controller is used to operate the MISO converter in pseudo-CCM mode. For series-connected applications, the virtualparallel concept is introduced to utilize the robustness of the parallel connection. This concept is demonstrated on a three-phase boost converter. The topology offers reduced output voltage ripple under shading which increases the life-time of the output capacitor. The prototypes yield output power benefits of up to 46% and 20% for the tested shading conditions.
189

Tracking maximum power point of photovoltaic modules under non-uniform solar irradiance / Fotovoltinio modulio didžiausios galios taško nustatymas veikiant netiesinei saulės apšvietai

Rimkus, Lukas 16 June 2014 (has links)
This master work was focused on modelling and investigation of a photovoltaic module which operates in non-uniform solar irradiance and temperature changes which is typical to Lithuanian climate. 60 polycrystalline silicon cells were used to model photovoltaic module. Matlab®/Simulink® was used for modelling and calculating the whole system. To generate solar insolation curve, the latitude, longitude of the geographic place and a number of days in a year have to be selected. Buck-boost DC-DC converter and hill-climbing maximum power point tracking algorithm was used to produce maximum power point of the photovoltaic module. Modeled system has reached 93.95 % of maximum power from the photovoltaic module. Structure: introduction, review of maximum power point algorithms, system modelling, research results, conclusions, references. The thesis consists of: 60 pages, 41 figures, 16 tables, 37 references. Appendixes included. / Šiame magistro darbe buvo sumodeliuotas ir ištirtas fotovoltinio modulio veikimas, veikiant Lietuvoje būdingiems saulės apšvietos ir temperatūros pokyčiams. Fotovoltinį modulį sudaro 60 polikristalinių silicio celių sujungtų nuosekliai sistema. Modeliavimui ir skaičiavimas atlikti buvo naudojamas Matlab®/Simulink® programinės įrangos paketas. Įvedus vietos ilgumą, platumą ir pasirinkus metų dieną sugeneruojama saulės apšvietos kreivė paros bėgyje. Išgauti maksimalią galią iš fotovoltinio elemento buvo pasirinkta „buck-boost“ tipo įtampos keitiklis ir „Kalno-kilimo“ didžiausios galios taško algoritmas. Naudojant pasirinkto tipo įtampos keitiklį ir algoritmą galima pasiekti iki 93,95 % maksimalios galios. Darbą sudaro 7 dalys: įvadas, maksimalios galios algoritmų literatūros apžvalga, sistemos modeliavimas, maksimalios galios algoritmo sudarymas, rezultatai, išvados, literatūros sąrašas. Darbo apimtis 60 puslapiai, 2 priedai, 41 iliustracijų 16 lentelių, 37 bibliografiniai šaltiniai.
190

Projeto de controladores PID com índice de desempenho H&#8734; com mitigação seletiva de harmônicos / Design of PID controllers with H&#8734; performance index and for selective harmonic mitigation

Magossi, Rafael Fernando Quirino 28 January 2019 (has links)
Os controladores Proporcional+Integral+Derivativo (PID) são largamente empregados na indústria devido à sua estrutura contendo ações integral e derivativa e por possuir ordem fixa. Na literatura, encontram-se vários métodos para a sua sintonia. Nesse trabalho é apresentada uma forma de obter a sintonia do PID utilizando o índice de desempenho H&#8734; de forma não-iterativa. Essa sintonia é feita utilizando-se a representação em espaço de estado na forma canônica controlável. No entanto, como trata-se de um controlador de ordem fixa, variações na planta podem interferir de forma significativa no desempenho desejado e precisam ser compensadas. Assim, propõe-se também uma adaptação dos parâmetros do PID de modo a manter a função de transferência de malha fechada o mais próximo possível da nominal utilizada na sintonia. Para isso, modela-se a estrutura de controle como um sistema linear sobre-determinado com restrições lineares, advindos de conjuntos estabilizantes baseados no conceito de assinatura Hurwitz, e utiliza-se um método de otimização quadrática para obter os parâmetros do controlador. Para circunvir o conservadorismo da norma H&#8734;, um método para mitigar apenas o efeito de algumas harmônicas na saída do sistema também é proposto, restringindo-se a sensibilidade do sistema que é representada por elipses no lugar geométrico dos ganhos estabilizantes do PID. Simulações no software Matlab, Simulink e PSIM foram utilizadas para validar os modelos e metodologias propostas. Resultados experimentais demonstraram a eficácia do método para mitigação de harmônicos em um conversor CC&#8211;CC do tipo boost. / Proportional + integral + derivative (PID) controllers are widely used in the industry due to their structure containing integral and derivative actions and for having a fixed order. In the literature, there are several methods for PID tuning. In this work it is presented a way to obtain PID tuning using a non-iterative H&#8734; design. This tuning is done using the state-space representation in the controllable canonical form. However, because it is a fixed-order controller, plant variations can significantly interfere with the desired performance and need to be compensated. Thus, it is also proposed to adapt the PID parameters so as to keep the closed-loop transfer function as close as possible to the nominal used in the tuning. For this, the control structure is modeled as an over-determined linear system with linear constraints, derived from stabilizing sets based on the Hurwitz signature concept, and a quadratic optimization method is used to obtain the controller parameters. In order to circumvent the conservatism of the norm H&#8734;, a method to mitigate only the effect of selected harmonics on the output of the system is also proposed, constraining the sensitivity function of the system which is represented by ellipses in the stabilizing gains locus of the PID. Simulations in Matlab, Simulink and PSIM softwares were used to validate the proposed models and methodologies. Experimental results demonstrated the effectiveness of the harmonic mitigation method in a boost DC&#8211;DC converter.

Page generated in 0.0383 seconds