• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude explicite de quelques n-champs géométriques

Benzeghli, Brahim 03 June 2013 (has links) (PDF)
Dans [PRID], Pridham a montré que tout n-champs d'Artin M admet une présentation en tant que schéma simplicial X. → M, telle que le schéma simplicial X satisfait à certaines propriétés notées par G.Pn,k de [GROTH]. Dans la présentation (...→ X2 → X1 → X0 → M), le schéma X1 représente une carte pour X0 x MX0. Donc, la lissité de X0 → M est équivalente à la lissité des deux projections ә0,ә1 : X1 → X0. Ce sont les deux premières parties de la condition de Grothendieck-Pridham, notées G.P1,0 et G.P1,1. Dans [BENZ12] nous avons introduit un n-champ d'Artin M des éléments de Maurer-Cartan d'une dg-catégorie. On a construit une carte, et on a déjà fait la preuve des premières conditions de lissité explicitement. Pour tout n et tout 0 ≤ k ≤ n Pridham considère un schéma noté MatchΛkn(X) avec un morphisme Xn → MatchΛkn(X). On construira explicitement le schéma simplicial de Grothendieck-Pridham X, on montrera la lissité formelle de cette carte précédente, ainsi que M est un n-champ géométrique.
2

Sur les catégories triangulées bien engendrées

Porta, Marco 01 February 2008 (has links) (PDF)
Cette thèse explore la relation entre les catégories de modules sur les catégories différentielles graduées (abrégées DG) petites, d'une part, et les catégories triangulées bien engendrées d'autre part. Dans la première partie, on construit la catégorie dérivée $\alpha$-continue D_\alpha A d'une catégorie DG $\alpha$-cocomplète petite A, où $\alpha$ est un cardinal régulier. Cette construction jouit d'une propriété très intéressante, qui est la clef pour démontrer le théorème principal de la thèse. Les catégories D_\alpha A s'avèrent être les prototypes des catégories triangulées algébriques à engendrement $\alpha$-compact. On entend par algébrique, équivalente, en tant que catégorie triangulée à la catégorie stable d'une catégorie de Frobenius. Le résultat principal établit que les catégories algébriques bien engendrées sont précisément celles qui sont des localisations de la catégorie dérivée d'une catégorie DG petite. Ce résultat rappelle beaucoup un théorème de Gabriel et Popescu de 1964, qui caractérise les catégories abéliennes de Grothendieck comme des localisations de catégories de modules sur des anneaux. Il donne aussi une réponse positive à une question de Drinfeld qui demandait si toutes les catégories triangulées bien engendrées sont des localisations de catégories triangulées à engendrement compact, pour la classe des catégories triangulées algébriques. Dans la deuxième partie, on étudie les catégories DA et D_\alpha A en utilisant la structure projective de catégories de modèles de Quillen présente sur la catégorie des DG modules. On introduit la sous-catégorie des DG modules cofibrants homotopiquement $\alpha$-compacts et on montre que sa catégorie homotopique est précisément la catégorie dérivée $\alpha$-continue D_\alpha A. Cela nous permet de donner une deuxième preuve, complètement différente du résultat-clef de la première partie.
3

Sur le groupe de Cremona et ses sous-groupes

Usnich, Alexandr 05 November 2008 (has links) (PDF)
Ce travail peut être divisé en trois partie: 1. Théorie des groupes. Il s'agit ici d'une étude de la structure du groupe T de Thompson. On explique la notion de la mutation linéaire par morceaux et on obtient la nouvelle présentation de ce groupe en termes des génerateurs et relations. 2. Géometrie birationnelle. On étudie en détail le groupe de Cremona qui est un groupe des automorphismes birationnels du plan projectif. En particulier on s'interesse à son sous-groupe Symp des elements qui préserve le crochet de Poisson dit logarithmique, aussi bien qu'à un sous-groupe H engendré par SL(2,Z) et par les mutations. On construit des limites projectives des surfaces sur lesquelles ces groupes agissent régulièrement, et on en déduit les répresentations linéaires de ces groupes dans les limites inductives des groupes de Picard des surfaces. 3. Algèbre homologique. A partir d'une variété algébrique on construit une catégorie triangulée qui ne dépend que de sa classe birationnelle. En utilisant la technique de quotient de dg-catégories, on calcule explicitement cette catégorie pour les surfaces rationnelles. Comme consequence on obtient l'action du groupe de Cremona sur une algébre non-commutative par les automorphismes extérieures. On donne les applications de ces résultats aux formules des mutations des variables non-commutatives.
4

Catégories faiblement enrichies sur une catégorie monoïdale symétrique

Bacard, Hugo 22 June 2012 (has links) (PDF)
Dans cette thèse nous développons une théorie de catégories faiblement enrichies . Par 'faiblement' on comprendra ici une catégorie dont la composition de morphismes est associative à homotopie près; à l'inverse d'une catégorie enrichie classique où la composition est strictement associative. Il s'agit donc de notions qui apparaissent dans un contexte homotopique. Nous donnons une notion de catégorie enrichie de Segal et une notion de catégorie enrichie co-Segal; chacune de ces notions donnant lieu à une structure de catégorie supérieure. L'une des motivations de ce travail était de fournir une théorie de catégories linéaires supérieures, connues pour leur importance dans des différents domaines des mathématiques, notamment dans les géométries algébriques commutative et non-commutative. La première partie de la thèse est consacrée à la notion de catégorie enrichie de Segal. Nous définissons une telle catégorie enrichie comme morphisme (colax) de 2-catégories satisfaisant certaines conditions dites conditions de Segal . Le fil rouge de notre démarche est la définition de monoïde à homotopie près donnée par Leinster. Les monoïdes de Leinster correspondent précisément aux catégories enrichies de Segal avec un seul objet; ici on suit la coutume en théorie des catégories qui consiste à identifier un monoïde avec l'espace des endomorphismes d'un objet. Notre contribution ici est donc une généralisation des travaux de Leinster. Nous montrons comment notre formalisme couvre le cas des catégories de Segal classique, les monoïdes de Leinster et surtout apporte une définition de DG-catégorie de Segal. Les catégories enrichies 'classiques' sont des catégorie enrichies sur une catégorie monoïdale. L'École australienne a étudié la notion plus générale de catégorie enrichie lorsqu'on remplace 'monoïdale' par '2-catégorie'. Notre formalisme généralise de manière naturelle le cas australien en ajoutant de l'homotopie dans la 2-catégorie sur laquelle on enrichit. Les principaux résultats de la thèse sont dans la deuxième partie qui porte sur les catégories enrichies co-Segal. Nous avons introduit ces nouvelles structures lorsqu'on s'est aperçu que les catégories enrichies de Segal ne sont pas faciles à manipuler pour faire une théorie de l'homotopie. En effet il semble devoir imposer une condition supplémentaire qui est trop restrictive dans beaucoup de cas. Ces nouvelles catégories s'obtiennent en 'renversant' la situation du cas Segal, d'où le préfixe 'co' dans 'co-Segal'. Nous définissons une catégorie co-Segal comme morphisme (lax) de 2-catégories satisfaisant des conditions co-Segal . Ces structures se révèlent plus souples à manipuler et notamment pour faire de l'homotopie. Notre résultat principal est l'existence d'une structure de modèles au sens de Quillen sur la catégorie des précatégories co-Segal; avec comme particularité que les objets fibrants sont des catégories co-Segal. Cette structure de modèle s'obtient comme localisation de Bousfield et repose sur des méthodes initialement développées par Jardine et Joyal.
5

Étude explicite de quelques n-champs géométriques / Non disponible

Benzeghli, Brahim 03 June 2013 (has links)
Dans [PRID], Pridham a montré que tout n-champs d'Artin M admet une présentation en tant que schéma simplicial X. → M, telle que le schéma simplicial X satisfait à certaines propriétés notées par G.Pn,k de [GROTH]. Dans la présentation (…→ X2 → X1 → X0 → M), le schéma X1 représente une carte pour X0 x MX0. Donc, la lissité de X0 → M est équivalente à la lissité des deux projections ә0,ә1 : X1 → X0. Ce sont les deux premières parties de la condition de Grothendieck-Pridham, notées G.P1,0 et G.P1,1. Dans [BENZ12] nous avons introduit un n-champ d'Artin M des éléments de Maurer-Cartan d'une dg-catégorie. On a construit une carte, et on a déjà fait la preuve des premières conditions de lissité explicitement. Pour tout n et tout 0 ≤ k ≤ n Pridham considère un schéma noté MatchΛkn(X) avec un morphisme Xn → MatchΛkn(X). On construira explicitement le schéma simplicial de Grothendieck-Pridham X, on montrera la lissité formelle de cette carte précédente, ainsi que M est un n-champ géométrique. / In [PRID], Pridham has shown that any Artin n-stack M has a presentation as a simplicial scheme X. → M such that the simplicial scheme X satisfies certain properties denoted G.Pn,k of [GROTH]. In the presentation (…→ X2 → X1 → X0 → M), the scheme X1 represents a chart for X0 x MX0. Thus, the smoothness of X0 → M is equivalent to the smoothness of the two projections ә0,ә1 : X1 → X0. These are the first two parts of the Grothendieck-Pridham condition, denoted G.P1,0 and G.P1,1. In [BENZ12] we introduced an Artin n-stack M of Maurer-Cartan elements of a dg-category. We constructed a chart, and have already proven the first smoothness conditions explicitly. For any n and any 0 ≤ k ≤ n Pridham considers a scheme denoted MatchΛkn(X) with a morphism Xn → MatchΛkn(X). We will construct explicitly the Grothendieck-Pridham simplicial scheme and show the smoothness of the preceding map, therefore M is a geometric n-stack.

Page generated in 0.0545 seconds