• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kvalitetsjämförelse av markmodeller skapade med digital fotogrammetri : En jämförelse av mätosäkerhet på markmodeller med bilder ifrån olika UAVs / Quality comparison of surface models created by digital photogrammetry : An accuracy comparison of terrain models using photos from two different UAV models

Sebastian, Olsson January 2022 (has links)
In recent years, the technical progress of Unmanned Aerial Vehicles (UAV) has increased rapidly. This has made it economically possible for tasks where one earlier needed helicopters or airplanes. By equipping UAVs with high-quality cameras, the utility has expanded. With detailed photos from a UAV together with digital photogrammetry, special software can be used to create point clouds, 3D-models, elevation models and ortomosaics over smaller geographic areas.  Due to the easy access and that the use of UAVs has increased among private users, the Swedish transport agency has set up rules that determine how UAVs should be used. In these regulations, UAVs are separated into different groups from A1 to A3 based on the weight of the aircraft. The regulations make it illegal to fly a UAV heavier than 250 g over people who are not informed about the flight. Since there are several industries where it could be interesting to fly over people, DJI has manufactured a UAV-model called DJI Mini 2. This UAV weighs 249 g and can therefore be flown over people. In this project, two different flights have been carried out. One with the DJI Mini 2 weighing 249 g and one with the DJI Mavic 2 Pro weighing just under 1 kg. During the flight, overlapping pictures were captured and orthomosaic and elevation models were created from those. The purpose of the project was to investigate if the same accuracy can be achieved with a mini-UAV as with a larger UAV. The study also investigated whether the models were accurate enough to use as a ground model along roads and railroads.  In the Dronelink software, two different flight routs were created over Örsholmens IP in the east­ern part of Karlstad, Sweden. Dronelink created the flightpath based on the UAVs different specifications and the overlap between images that were acquired. A geodetic control network was created using GNSS-technology. Five points were measured twice with 45 minutes in between and calculated in SBG GEO. The next day, a surveying total station was established centrally between the points in the geodetic control network. Thereafter 19 ground control points were measured, and 398 ground points distributed in 20 different control profiles. After the points were measured, the flights were carried out. A total of two flights by each UAV model were made the same day. Then the flight with the best results were used for further processing.  The photos taken were processed in Agisoft Metashape. In the software, point clouds, elevation models and orthomosaic were created. The elevation model was then compared to the measured control profiles. The orthomosaic was used to compare the ground control points.  The results showed that the elevation model created with Mavic 2 Pro was within the SIS tolerance on all different types of surfaces to be used for modelling along roads and railways. The elevation model from the DJI Mini 2 was withing the tolerance on grass and asphalt but not on gravel sur­face. The mean deviation on gravel was -1,37 cm outside the tolerance. The planar comparison showed that both models were withing the tolerance to achieve HMK level 3 standard. / Den tekniska utvecklingen av obemannade flygfarkoster har de senaste åren utvecklats i snabb takt. Flygfarkosterna som ofta benämns UAV (Unmanned Aerial Vehicle) har gjort det möjligt att till en låg kostnad genomföra uppdrag som tidigare krävt helikopter eller flygplan. Genom att utrusta en UAV med en högkvalitativ kamera så ökar dess användningsområde. Med hjälp av detaljerade digi­tala bilder tagna med UAV, och digital fotogrammetri i specialprogramvaror kan punktmoln, 3D-modeller, höjdmodeller och ortomosaik över mindre geografiska områden framställas.  På grund av att UAV-användningen ökat snabbt så har Transportstyrelsen tagit fram ett regelverk för hur en UAV får användas. I detta regelverk så delas olika UAV-modeller in i grupper från A1 till A3 baserat på vikten. Regelverket gör att en UAV som är tyngre än 250 g inte får flygas över männi­skor som inte är informerade om att flygningen pågår.  Eftersom det i flera branscher kan vara intressant att flyga över platser där människor rör sig fritt så har DJI tillverkat en UAV-modell som heter DJI Mini 2. Denna UAV väger 249 g och får därför flygas över människor. I detta projekt har två olika flygningar gjorts med DJI Mini 2 som väger 249 g och med Mavic 2 Pro som väger knappt 1 kg. Under flygningen togs överlappande bilder och höjdmodeller och ortomosaik skapades från dessa. Syftet med arbetet är att undersöka om lika hög noggrannhet kan uppnås med en mini-UAV som med en större modell. Studien undersökte även om modellerna uppnår kraven i SIS-TS 21144:2016 och HMK för att få användas till att skapa markmodell längs väg och järnväg.  I programvaran Dronelink så skapades två flygrutter över Örsholmens IP i den östra delen av Karl­stad. Dronelink skapade rutterna baserat på de olika UAV-specifikationerna och bildöverlappet som valdes för flygningarna. På platsen skapades ett nytt stomnät med hjälp av GNSS-teknik. Fem punk­ter mättes in två gånger med 45 minuters mellanrum och beräknades i SBG GEO. Dagen efter eta­blerades en totalstation centralt mellan punkterna mot stomnätet. Därefter mättes 19 markstöd in och 398 punkter fördelat i 20 olika kontrollprofiler. Efter att punkterna var inmätta genomfördes flygningarna. Totalt gjordes två flygningar med de olika UAV-modellerna på samma dag. Därefter valdes de flygningar som visade bäst resultat för vidare bearbetning.  Bilderna som togs bearbetades i programvaran Agisoft Metashape och punktmoln, höjdmodell och ortomosaik genererades. Höjdmodellen användes sedan för att jämföras mot de inmätta kontrollprofilerna. Ortomosaiken jämfördes med de inmätta kontrollpunkterna.   Resultatet visade att höjdmodellen som skapades med Mavic 2 Pro var inom SIS-TS 21144:2016 toleranserna på samtliga underlag för att få användas för modellskapande på väg och järnväg. Höjdmodellen som skapades med DJI Mini 2 var inom toleransen på gräs och asfalt men inte på grusunderlag. Medelavvikelsen på grus var -1,37 cm utanför toleransen. Vid jämförelsen i plan vi­sade resultatet att båda modellerna var inom HMKs toleranser för att uppnå HMK-standardnivå 3.
2

Objekthöjders betydelse för bildövertäckning vid UAV-fotografering / The object heights significance for image overlap in UAV-photogrammetry

Johnsson, Fredrik January 2018 (has links)
Det finns ett fåtal studier som berör objekthöjders betydelse för bildövertäckning vid UAV-fotografering. Därför är det intressant att undersöka hur objekthöjder, bildövertäckningar, och flyghöjder påverkar varandra samt hur de gemensamt påverkar kvaliteten på data. Syfte är att undersöka hur bildövertäckningen, och flyghöjder påverkar kvaliteten på ortofoton och digitala ytmodeller. Samt undersöka hur objekthöjder påverkar bildövertäckningen. Kriteriet för studieområdet var att det skulle finnas ett högt objekt. Studien utfördes därför i Inre hamn i Karlstad som omfattar Löfbergsskrapan på ca 42 m. Studien avser UAVs som begränsas enligt Transportstyrelsens regler (TSFS 2017:110). Målet var att presentera referenstabeller till företag eller privatpersoner som samlar in mätdata med UAV. Data samlades in på flyghöjderna; 120 m och 90 m, med bildövertäckningarna; 60/60 %, 80/80 %, och 90/90 %. Höjddata för Löfbergsskrapan mättes in med Satlab GNSS. Resultatet visade att bildövertäckningen 60/60 % inte var användbart inom ett område med maximal objekthöjd 42 m. Det behövdes ≥80/80 % bildövertäckning för att få en bra markupplösning. I studien undersöktes även hur mycket bildövertäckningen kan förändras när objekt ligger under markytans plan. Resultatet visar att bildövertäckningen ökar när objektet eller ytan avviker tillräckligt mycket ifrån markytans plan och minskar om det går tillräckligt högt ovanför markytan. Slutsatsen föreslår att bildövertäckningen ska vara minst 80/80 % för flyghöjderna 120 m och 90 m. De inställningarna innebär att byggnader på ca 42 m höjd ska representeras med 2-3 cm markupplösning i ortofoton och digitala ytmodeller samt omfatta en resursvänlig metod. Slutsatsen menar att förändringen av bildövertäckningen varierar mellan 10-50 % när markytan ligger ca 42 m lägre än starthöjden för en UAV. / There are a few available studies purely focusing on the object heights significance on image overlap in UAV-photogrammetry. Therefore, it is interesting to examine how object heights, image overlaps, and altitudes affect each other and how they jointly affect data quality. The purpose is to examine how image overlap, and altitude affect the quality of orthophotos and digital elevation models. And also examine how object heights affect image overlap. The study area was selected with the criterion of including a high rise building. Therefore, the study area was Inre hamn in Karlstad City covering Löfbergsskrapan, a 42 m high coffee roasting house. The study refers to UAVs restricted according to rules set by Transportstyrelsen (TSFS 2017:110). The objective was to present useful reference tables for companies and individuals working with UAV-data. Data was collected on the altitudes; 120 m and 90 m with an image overlap of; 60/60 %, 80/80 %, and 90/90 %. Elevation values was collected with Satlab GNSS. Results showed that using an image overlap of 60/60 % for both altitudes was not viable in an area covering an object of 42 m high. The image overlap should be at least ≥80/80 % to cover objects of 42 m high. The objective was also to examine how image overlap differ when an object is below ground level. Results showed that image overlap increases when an object or surface differ 42 m from ground level and decreases if the object is above ground level. The conclusion suggests that in order to include objects of 42 m high in an area the image overlap should be at least 80/80 % for both altitudes (120 m and 90 m). With those settings the ground resolution in orthophotos and digital elevations models should be 2-3 cm. It was also estimated that the image overlap may alter from settings anywhere between 10-50 % when ground level is 42 m below the point of departure of the UAV.
3

Vývoj bezpilotního prostředku pro autonomní mise / The Development of Autonomous Unmanned Aircraft

Hamáček, Vojtěch January 2021 (has links)
The aim of this thesis is to modify commercially produced drone DJI Matrice 100 and replace its original control unit by open source Pixhawk and its accessories. Subsequently, it deals with the selection of suitable open source firmware for Pixhawk and its configuration on the device. Another part is dedicated to the possibilities of using the Robotic Operating System (ROS) and its Mavros libraries on the onboard computer Raspberry Pi. By using Mavros, it examines the possibilities of drone flight control, both in the simulation environment and in the real environment.
4

Utvärdering av lägesosäkerheter i ortofoton framtagna med hjälp av DJI Phantom 4 RTK / Evaluation of position uncertainties in orthophotos developed with a DJI Phantom 4 RTK

Larsson, Johan, Stark, Marcus January 2019 (has links)
Flygfotografering med Unmanned Aircraft System (UAS) är i jämförelse med traditionell fotogrammetri effektivare, billigare och säkrare vilket har medfört att denna teknik föredras av många aktörer. Ett tidskrävande arbete som varit svårt att kringgå är att etablera flygsignaler på marken som används för att georeferera och kontrollera flygbilderna med. Under 2018 presenterade UAS-tillverkaren DJI sin nya quadcopter med integrerad Real-Time Kinematic (RTK)-modul. I samband med detta kan kontinuerliga och noggranna positioner levereras via Nätverks-RTK (NRTK) och behovet av markstödpunkter reduceras. I denna studie undersöktes lägesosäkerheterna i plan för ortofoton som framställdes med hjälp av en DJI Phantom 4 RTK där flygbilderna georefererades med begränsat antal eller utan markstödpunkter. Lägesosäkerheterna beräknades och kontrollerades enligt Handbok i mät- och kartfrågor (HMK) – Ortofoto, vilket är ett stöddokument inom ämnet. Vid framställning av ett ortofoto krävs även en digital terrängmodell (DTM) eller en digital ytmodell (Digital Surface Model, DSM) och kvaliteten av denna har stor inverkan på ortofotots kvalitet. I denna studie kontrollerades och utvärderades därför en del av den DSM som användes vid ortofotoframställning för respektive uppsättning enligt den tekniska specifikationen SIS-TS 21144:2016. Resultatet från studien visar att ett ortofoto går att framställas utan markstödpunkter och samtidigt klara kraven på specificerad lägesosäkerhet enligt HMK-standardnivå 3. Den sammanlagda lägesosäkerheten beräknades till 0,029 m vilket är 5 mm högre i jämförelse med ett ortofoto som baserats på traditionell georefereringsmetod, dvs. med markstödpunkter. Kravet på kvalitet i höjddata uppfylldes också för ortofotoframställning trots att en systematisk effekt i höjd uppkom. Denna effekt påverkade inte ortofotots koordinater i plan då standardosäkerheterna i höjd var låga. Resultatet visade att om två markstödpunkter adderades i vardera änden av området, kunde de systematiska effekterna i höjd minimeras och det var då möjligt att skapa en DSM som uppfyller kraven för detaljprojektering (noggrannhetsklass 1–3) enligt SIS-TS 21144:2016. / Aerial photography with UAS is in comparison with traditional photogrammetry more efficient, cheaper and safer which has led to this technology being preferred by many performers. A time-consuming job that has been difficult to avoid is to establish signals at the ground that are used for georeferencing and evaluate the results. In 2018, the UAS manufacturer DJI presented its new quadcopter with integrated Real-Time Kinematic (RTK) module. This allows continuous and accurate positions delivered via Network RTK (NRTK) and the need of ground control points can be reduced. In this study, investigations of the position uncertainties in orthophotos produced using a DJI Phantom 4 RTK carried out where the aerial images were georeferenced with limited numbers or without ground control points. The position uncertainties were calculated and controlled according to the Swedish HMK – Ortofoto (Orthophoto) which is a document within the subject. When producing an orthophoto, a digital terrain model (DTM) or a digital surface model (DSM) is also required and the quality of this has a great impact on the result. Therefore, a part of the DSM used for orthophoto production for each set was checked and evaluated according to the Swedish technical specification, SIS-TS 21144:2016. The result of the study shows that an orthophoto can be produced without ground control points and at the same time meet the requirements for specified position uncertainty according to HMK standard level 3. The total position uncertainty was calculated to be 0,029 m, which is 5 mm higher compared to the orthophoto based on the traditional georeferencing method, i.e. with ground control points. The requirement for quality in height data was also met for orthophoto production even though a systematic effect in height occurred. This effect did not affect the plane coordinates in the orthophoto because of the low standard uncertainties in height. The result showed that if two ground control points were added at each end of the area, the systematic effects were minimized, and it was possible to produce a DSM that fulfils the requirements for accuracy class 1-3 according to SIS-TS 21144:2016.
5

Forecasting UAS capability with a five-year timeframe

Dahlström, Anton January 2023 (has links)
During the war in Ukraine, technical and tactical innovation in the deployment of commercial drones for IRS and strike missions, and artillery spotting have been witnessed. This study aims to create a better understanding of evolving UAS capability and create a use-case forecasting UAS capability in five years. The research uses a combination of empirical data through two case studies in combination with interviews, collecting the perspective of four researchers and experts in the fields. The forecasted UAS capability use-case describes a multilayer use of aerial platforms of different sizes, performances, and specifications, which makes aerial IRS and strike capability available at lower tactical levels. Other aspects in the use-case are artificial intelligence that supports data processing in networking surveillance, command and control system, and autonomous navigation. Implications for UAS capability in an electronic warfare environment and implications for countermeasure deployments are discussed. The results presented in the study are generic and should be complemented with further studies, which through scenario-based research can create clear recommendations to specific actors linked to UAS capability. / Under kriget i Ukraina har tekniska och taktiska innovationer bevittnats när det gäller användande av kommersiella drönare för IRS och bekämpningsuppdraguppdrag, och eldledning av artilleri. Syftet med studien är att bidra till bättre förståelse för utvecklingen av UAS-förmåga och att skapa ett användningsfall där UAS-förmåga om fem år beskrivs. Studien tillämpar empirisk data genom två fallstudier, i kombination med intervjuer som inkluderar perspektivet från fyra forskare och experter inom området. Det prognostiserade användningsfallet för UAS-förmåga beskriver en flerskiktsanvändning av flygplattformar av olika storlek, prestanda och specifikationer, vilket gör flyg- IRS och slagförmåga tillgänglig på lägre taktisk nivå. Andra aspekter i användningsfallet är artificiell intelligens som stödjer databehandling i ett nätverksövervaknings- och kommando- och kontrollsystem, samt autonom navigering. Implikationer för UAS-kapacitet i en elektronisk krigföringsmiljö och implikationer för utplacering av motåtgärder diskuteras. Resultaten presenterade i studien är generiska och bör kompletteras med ytterligare studier, som genom scenariobaseradforskning kan skapa tydligare rekommendationer till specifika aktörer kopplade till UAS-förmåga.
6

Georeferering av ortofoto med UAV : En jämförelsestudie mellan direkt och indirekt georeferering

Abdi, Joan, Joel, Johansson January 2020 (has links)
UAV (Unmanned Aircraft Vehicle) har revolutiontionerat ortofotoframställningen med sitt bidrag till ökad säkerhet, lägre kostnader samt effektivare arbetsgång vid framställning av ortofoton. Den traditionella flygfotogrammetrin med flygplan och utplacering av flygsignaler har varit den givna metoden i många år. Att flyga med UAV istället för flygplan sparar tid och pengar däremot är utplacering och inmätning av flygsignaler fortfarande tidskrävande och därför kostsamt. Företaget DJI har tagit fram en ny UAV med namnet DJI Phantom 4 RTK vilken stödjer möjligheten att använda satellitbaserad positionering för direkt georeferering. Den här studien har jämfört två olika georefereringsmetoder för framställning av ortofoton med UAV: direkt georeferering med NRTK (satellitbaserad positionering och nätverks-RTK) samt indirekt georeferering med olika antal markstödspunkter. Studien utfördes vid Högskolan i Gävle på en yta av åtta hektar. En undersökning av avvikelser i plan och höjd resulterade i acceptabla värden enligt de riktlinjer som följdes i HMK – Ortofoto (2017) samt de kontroller som genomfördes enligt SIS-TS 21144:2016. RMS-värdet i plan för den indirekta georefereringsmetoden ligger på 0,0102m. För den direkta georefereringsmetoden ligger RMS-värdet i plan vid användning av markstödpunkter mellan 0,0132 och 0,0148 m. Slutligen för den direkta georefereringsmetoden utan markstödpunkter är RMS-värdet i plan på 0,0136 m. RMS i höjd ligger inom intervallet 0,008-0,025 m. Det som redovisas i studien visar att en accepterad kvalitet av ortofoton går att erhålla baserat på de RMS-värden i plan och höjd med samtliga georefereringsmetoder som testats. Efter genomförda kontroller och utvärdering av de resultat kan det konstateras att de olika georefereringsmetoderna skiljer inte mycket åt varandra kvalitetsmässigt.Dock är den direkta georefereringsmetoden utan markstödpunkter mycket effektivare ur ett tidsperspektiv. Phantom 4 RTK är ny på marknaden och det behöver utföras mer forskning för att få en större insikt av dess potential. Dock krävs det mer forskning kring direkt georeferering för utvärdering av orotofotons kvalitet. / UAV (Unmanned Aircraft Vehicle) has revolutionized the creation of orthophotos with its contribution to increased safety, lower costs and more effective ways when making orthophotos. The traditional aerial photogrammetry with airplanes and placement of flight signals has been the standard method for years. To fly with UAV instead of an airplane is cheaper and saves time, however, the placement and measurements of flight signals is still time consuming and therefore expensive. The company DJI has developed a new UAV called Phantom 4 RTK that supports satellite based technology for direct georeferercing. This study compared two different measuring methods when producing orthophotos with UAV: direct georeferencing with NRTK (Network Real Time Kinematic) and indirect georeferencing when using different number of Ground Control Points (GCP). The study was conducted at the University of Gävle over an area of eight hectares. An investigation of the deviation in plane and height resulted in acceptable units based on the guidelines that were followed in HMK – Ortofoto and the controls that were followed from SIS- TS 21144:2016. The RMS value in plane for the indirect georeferencing method is 0,0102 m. For the direct georeferencing method the RMS value in plane when using ground control points is between 0,0132 and 0,0148 m. At last the RMS value for the direct georeferencing method without ground control points is 0,0136m. The RMS value in height is between the intervals 0,008-0,025 m. The data presented in this study show that an accepted quality in the orthophotos can be acquired based on the RMS values in plane and height for every georeferencing that was tested. After accomplished controls and evaluation the results show that the different georeferencing methods doesn´t differantiate too much from each other based on their quality. However, the direct georeferencing method with ground control points is more effective from a time perspective. Phantom 4 RTK is new on the market and more research is necessary in order to understand the potential of this technology and its posibility to integrate into society. More research is recquired for the direct georeferencing method in order to evaluate the quality of orthophotos.
7

Létající robot pro práci v exteriéru / Exterior flying service robot

Macek, Jakub January 2016 (has links)
This thesis focuses on the design of the hexacopter construction for photographic purposes with maximum load of 4 kg. When constructing a hexacopter it is necessary to take into account a number of factors. For the actual construction the correct dimensioning of the supporting frame is important as well as the locomotor system. The main concept of this thesis includes three-axis gimbal for camera control. The verification of the structure strength was performed using FEM analysis. This work describes also the selection of individual components and their wiring. The end is dedicated to safety and different procedures for reducing operation risks.

Page generated in 0.0244 seconds