Spelling suggestions: "subject:"darboux"" "subject:"darbouxs""
21 |
Integrabilidade e dinâmica global de sistema diferenciais polinomiais definidos em R³ com superfícies algébricas invariantes de graus 1 e 2 / Integrability and global dynamics of polynomial differential systems defined in R³ with invariant algebraic surfaces of degrees 1 and 2Reinol, Alisson de Carvalho [UNESP] 05 July 2017 (has links)
Submitted by Alisson de Carvalho Reinol null (alissoncarv@gmail.com) on 2017-07-18T15:03:51Z
No. of bitstreams: 1
tese_alisson_final.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-07-19T14:22:46Z (GMT) No. of bitstreams: 1
reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5) / Made available in DSpace on 2017-07-19T14:22:46Z (GMT). No. of bitstreams: 1
reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5)
Previous issue date: 2017-07-05 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho, consideramos aspectos algébricos e dinâmicos de alguns problemas envolvendo superfícies algébricas invariantes em sistemas diferenciais polinomiais definidos em R³. Determinamos o número máximo de planos invariantes que um sistema diferencial quadrático pode ter e estudamos a realização e integrabilidade de tais sistemas. Fornecemos a forma normal para sistemas diferenciais com quádricas invariantes e estudamos de forma mais detalhada a dinâmica e integrabilidade de sistemas diferenciais quadráticos com um paraboloide elíptico como superfície algébrica invariante. Por fim, estudamos as consequências dinâmicas ao se perturbar um sistema diferencial, cujo espaço de fase é folheado por superfícies algébricas invariantes. Para tal, consideramos o sistema diferencial quadrático conhecido como sistema Sprott A, que depende de um parâmetro real a e apresenta comportamento caótico mesmo sem ter pontos de equilíbrio, tendo, assim, um hidden attractor para valores adequados do parâmetro a. Provamos que, para a=0, o espaço de fase desse sistema é folheado por esferas concêntricas invariantes. Utilizando a Teoria do Averaging e o Teorema KAM (Kolmogorov-Arnold-Moser), provamos que, para a>0 suficientemente pequeno, uma órbita periódica orbitalmente estável emerge de um equilíbrio do tipo zero-Hopf não isolado localizado na origem e que formam-se toros invariantes em torno desta órbita periódica. Concluímos que a ocorrência de tais fatos tem um papel importante na formação do hidden attractor. / In this work, we consider algebraic and dynamical aspects of some problems involving invariant algebraic surfaces in polynomial differential systems defined in R³. We determine the maximum number of invariant planes that a quadratic differential system can have and we study the realization and integrability of such systems. We provide the normal form for differential systems having an invariant quadric and we study in more detail the dynamics and integrability of quadratic differential systems having an elliptic paraboloid as invariant algebraic surface. Finally, we study the dynamic consequences of perturbing differential system whose phase space is foliated by invariant algebraic surfaces. For this we consider the quadratic differential system known as Sprott A system, which depends on one real parameter a and presents chaotic behavior even without having any equilibrium point, thus having a hidden attractor for suitable values of parameter a. We prove that, for a=0, the phase space of this system is foliated by invariant concentric spheres. By using the Averaging Theory and the KAM (Kolmogorov-Arnold-Moser) Theorem, we prove that, for a>0 sufficiently small, an orbitally stable periodic orbit emerges from a zero-Hopf nonisolated equilibrium point located at the origin and that invariant tori are formed around this periodic orbit. We conclude that the occurrence of these facts has an important role in the formation of the hidden attractor. / FAPESP: 2013/26602-7
|
22 |
Supersymmetric transformations and the inverse problem in quantum mechanicsSparenberg, Jean-Marc 28 January 1999 (has links)
<p align="justify">Les transformations de supersymétrie (ou de Darboux) sont appliquées à l'étude du problème inverse, c'est à dire à la construction d'un potentiel d'interaction à partir de données de collisions, en mécanique quantique. En effet, ces transformations permettent de construire de nouveaux potentiels à partir d'un potentiel donné. Leur formalisme est étudié en détail, ainsi que celui correspondant à l'itération de deux telles transformations (paires de transformations).</p><p><p align="justify">La présence d'états liés rend le problème inverse ambigu :plusieurs potentiels ayant des spectres liés différents peuvent avoir les mêmes propriétés pour la description des collisions; de tels potentiels sont dits équivalents en phase. Une décomposition originale du problème inverse est proposée pour gérer efficacement cette ambiguïté :dans un premier temps, un potentiel est construit à partir des données de collision (ce qui constitue le problème inverse proprement dit); dans un second temps, tous les potentiels équivalents en phase au potentiel ainsi obtenu sont construits. Avant ce travail, il était connu que ces deux aspects du problème inverse pouvaient être traités à l'aide de paires de transformations de supersymétrie.</p><p><p align="justify">En ce qui concerne la construction de potentiels équivalents, nous étendons les méthodes existantes à des catégories de potentiels très utilisées en physique nucléaire, à savoir les potentiels optiques (ou complexes), les potentiels en voies couplées et les potentiels dépendant linéairement de l'énergie. En utilisant une paire de transformations permettant d'enlever un état lié, nous comparons les propriétés physiques des potentiels nucléaires profonds (c'est à dire possédant des états liés interdits par le principe de Pauli) et peu profonds. Des calculs dans des modèles à trois corps du noyau à halo d'6He et de la collision 16O+17O à basse énergie n'ont pas révélé d'importantes différences entre ces familles de potentiels. D'autres types de transformations permettent d'ajouter des états liés à énergie et normalisation arbitraires. Cependant, dans le cas à plusieurs voies, leur utilisation est compliquée par la possibilité d'avoir des états liés dégénérés et non dégénérés. Une étude préliminaire à deux voies montre que ces deux types d'états peuvent être traités par supersymétrie.</p><p><p align="justify">En ce qui concerne le problème inverse proprement dit, nous montrons que l'utilisation de transformations simples (plutôt que de paires) permet une meilleure compréhension des méthodes existantes, tant pour l'inversion à moment cinétique orbital fixe que pour l'inversion à énergie fixe. De plus, l'utilisation de transformations simples mène dans certains cas à de nouvelles catégories de potentiels. Ainsi, nous construisons un nouveau potentiel d'interaction nucléon nucléon pour l'onde 1S; ce potentiel possède une singularité en r 2 à l'origine. La possibilité de construire des potentiels profonds par inversion est brièvement discutée. Pour les voies couplées, une étude bibliographique révèle certaines propriétés contradictoires des méthodes existantes, mais une analyse complète reste à faire.</p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
23 |
A transformação de Darboux-Bianchi para superfícies isotérmicas em R³.Canevari, Samuel da Cruz 15 April 2004 (has links)
Made available in DSpace on 2016-06-02T20:28:22Z (GMT). No. of bitstreams: 1
DissSCC.pdf: 580893 bytes, checksum: 668c123be16c687965e925ea0bd5d17b (MD5)
Previous issue date: 2004-04-15 / Universidade Federal de Minas Gerais / In this work we develop the transformation theory for isothermic surfaces in Euclidean space IR3 due to Darboux and Bianchi. As a consequence, we describe a method for constructing new solutions of the nonlinear
system of partial diferential equations associated to an isothermic surface in IR3 starting from a given one. / Neste trabalho apresentamos a teoria de transformações entre superfícies isotérmicas no espaço Euclidiano IR3 devida a Darboux e Bianchi.
Descrevemos, como consequência, um método de obter novas soluções do sistema não linear de equações diferenciais parciais associado a uma superfície isotérmica em IR3, a partir de uma dada.
|
24 |
[en] BEHAVIOR OF CURVATURE LINES OF A SURFACE IN EUCLIDEAN 3-SPACE CLOSE TO AN UMBILICAL POINT / [pt] COMPORTAMENTO DAS LINHAS DE CURVATURA DE UMA SUPERFÍCIE NO 3-ESPAÇO EUCLIDIANO PRÓXIMO A UM PONTO UMBÍLICOFERNANDA PY SILVA CORDEIRO 19 September 2019 (has links)
[pt] O objetivo desse trabalho é entender o comportamento das direções principais de uma superfície perto de um ponto umbílico isolado. Trataremos inicialmente dos pontos umbílicos de Darboux. Nesse caso temos, essencialmente, três comportamentos distintos das linhas de curvatura. Também falaremos sobre pontos umbílicos isolados em superfícies com curvatura média constante. Nesse contexto, temos infinitas possibilidades para o comportamento das linhas de curvatura. / [en] The objective of this work is to understand the behavior of principal directions of a surface near an isolated umbilical point. Initially, we will deal with a Darbouxian Umbilical Point. In this case, we essentially have
three distinct behaviors of curvature lines.We also discuss isolated umbilical points in surfaces with constant mean curvature. In this context, we have infinite possibilities for the behavior of curvature lines.
|
25 |
Centers and isochronicity of some polynomial differential systems / Centros e isocronicidade de alguns sistemas diferenciais polinomiaisFernandes, Wilker Thiago Resende 20 June 2017 (has links)
The center-focus and isochronicity problems are two classic problem in the qualitative theory of ordinary differential equations (ODEs). Although such problems have been studied during more than hundred years a complete understanding of them is far from be reached. Recently the computational algebra tools have been contributing significantly with the development of such problems. The aim of this thesis is to contribute with the studies of the center-focus and isochronicity problem. Using computational algebra tools we find conditions for the existence of two simultaneous centers for a family of quintic systems possessing symmetry. The studies of the simultaneous existence of two centers in differential systems is known as the bi-center problem. We investigate conditions for the isochronicity of centers for families of cubic and quintic systems and we study its global behaviour in the Poincaré disk. Finally, we study the existence of invariant surfaces and first integrals in a family of 3-dimensional systems. Such family is known as the May-Leonard asymmetric system and it appears in modelling, for instance it is a model for the competition of three species. / Os problemas do foco-centro e da isocronicidade são dois problemas clássicos da teoria qualitativa das equações diferenciais ordinárias (EDOs). Apesar de tais problemas serem investigados a mais de cem anos ainda pouco se sabe sobre eles. Recentemente o uso e desenvolvimento de ferramentas algebro-computacionais tem contribuído significativamente em seu avanço. O objetivo desta tese é colaborar com o estudo do problema do foco-centro e da isocronicidade. Utilizando ferramentas algebro-computacionais encontramos condições para a existência simultânea de dois centros em famílias de sistemas diferenciais quínticos com simetria. O estudo sobre a existência simultânea de dois centros é também conhecido como problema do bi-centro. Investigamos condições para a isocronicidade de centros para famílias de sistemas cubicos e quínticos e estudamos o comportamento global de suas órbitas no disco de Poincaré. Finalmente, tratamos da existência de superfícies invariantes e integrais primeiras para uma familia de sistemas 3-dimensionais encontrado entre outras situações na modelagem da competição entre três espécies e conhecido como sistema de May-Leonard.
|
26 |
Centers and isochronicity of some polynomial differential systems / Centros e isocronicidade de alguns sistemas diferenciais polinomiaisWilker Thiago Resende Fernandes 20 June 2017 (has links)
The center-focus and isochronicity problems are two classic problem in the qualitative theory of ordinary differential equations (ODEs). Although such problems have been studied during more than hundred years a complete understanding of them is far from be reached. Recently the computational algebra tools have been contributing significantly with the development of such problems. The aim of this thesis is to contribute with the studies of the center-focus and isochronicity problem. Using computational algebra tools we find conditions for the existence of two simultaneous centers for a family of quintic systems possessing symmetry. The studies of the simultaneous existence of two centers in differential systems is known as the bi-center problem. We investigate conditions for the isochronicity of centers for families of cubic and quintic systems and we study its global behaviour in the Poincaré disk. Finally, we study the existence of invariant surfaces and first integrals in a family of 3-dimensional systems. Such family is known as the May-Leonard asymmetric system and it appears in modelling, for instance it is a model for the competition of three species. / Os problemas do foco-centro e da isocronicidade são dois problemas clássicos da teoria qualitativa das equações diferenciais ordinárias (EDOs). Apesar de tais problemas serem investigados a mais de cem anos ainda pouco se sabe sobre eles. Recentemente o uso e desenvolvimento de ferramentas algebro-computacionais tem contribuído significativamente em seu avanço. O objetivo desta tese é colaborar com o estudo do problema do foco-centro e da isocronicidade. Utilizando ferramentas algebro-computacionais encontramos condições para a existência simultânea de dois centros em famílias de sistemas diferenciais quínticos com simetria. O estudo sobre a existência simultânea de dois centros é também conhecido como problema do bi-centro. Investigamos condições para a isocronicidade de centros para famílias de sistemas cubicos e quínticos e estudamos o comportamento global de suas órbitas no disco de Poincaré. Finalmente, tratamos da existência de superfícies invariantes e integrais primeiras para uma familia de sistemas 3-dimensionais encontrado entre outras situações na modelagem da competição entre três espécies e conhecido como sistema de May-Leonard.
|
27 |
Equações de Pfaff e a não existência de soluções algébricasGagliardi, Edson Martins 04 October 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-29T11:45:03Z
No. of bitstreams: 1
edsonmartinsgagliardi.pdf: 1001962 bytes, checksum: a18ae7643c8253581ca782eebf23bb84 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-29T19:17:43Z (GMT) No. of bitstreams: 1
edsonmartinsgagliardi.pdf: 1001962 bytes, checksum: a18ae7643c8253581ca782eebf23bb84 (MD5) / Made available in DSpace on 2017-05-29T19:17:43Z (GMT). No. of bitstreams: 1
edsonmartinsgagliardi.pdf: 1001962 bytes, checksum: a18ae7643c8253581ca782eebf23bb84 (MD5)
Previous issue date: 2012-10-04 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em 1979, J.P. Jouanolou em seu livro ”Equations de Pfaff Algébriques ”[12] apresenta
um resultado de densidade que diz que o conjunto de equações algébricas de Pfaff de grau m > 2 em P2 sem soluções algébricas é denso no conjunto das equações algébricas de
Pfaff.
Por se tratar de um resultado de densidade, era preciso garantir que o conjunto das
equações algébricas de Pfaff sem soluções algébricas não é vazio. Para isso, Jouanolou
apresenta, neste mesmo trabalho, um exemplo de equação de Pfaff sem solução algébrica.
Neste trabalho, estudamos o exemplo do Jouanolou, com base no artigo [23] de Zoladek. O autor traz uma abordagem mais analítica para este problema e apresenta uma
demonstração baseada em uma generalização do Teorema de Integração de Darboux, (ver
[4]), proposta pelo autor neste mesmo artigo. / In 1979, J.P.Jouanolou, in his book ”Equations de Pfaff Algébriques”[12], presents a
density’s result which says that the set of Pfaff’s algebraic equations of degree m > 2 in P2 without algebraic solutions is dense in the set of Pfaff’s algebraic equations.
As this is a result about density, it is necessary to ensure that the set of Pfaff’s algebraic
equations without algebraic solutions is not empty. In order to do it, Jouanolou presents
in the same paper an example of Pfaff’s equation without algebraic solution.
In this work, we study the example of Jouanolou, based on the Zoladek’s article [23].
The author brings a more analytical approach to this problem and presents one proof
based on a generalization of the Integration Theorem of Darboux (see [4]) proposed by
the author in the same article.
|
28 |
Analytic and algebraic aspects of integrability for first order partial differential equationsAziz, Waleed January 2013 (has links)
This work is devoted to investigating the algebraic and analytic integrability of first order polynomial partial differential equations via an understanding of the well-developed area of local and global integrability of polynomial vector fields. In the view of characteristics method, the search of first integrals of the first order partial differential equations P(x,y,z)∂z(x,y) ∂x +Q(x,y,z)∂z(x,y) ∂y = R(x,y,z), (1) is equivalent to the search of first integrals of the system of the ordinary differential equations dx/dt= P(x,y,z), dy/dt= Q(x,y,z), dz/dt= R(x,y,z). (2) The trajectories of (2) will be found by representing these trajectories as the intersection of level surfaces of first integrals of (1). We would like to investigate the integrability of the partial differential equation (1) around a singularity. This is a case where understanding of ordinary differential equations will help understanding of partial differential equations. Clearly, first integrals of the partial differential equation (1), are first integrals of the ordinary differential equations (2). So, if (2) has two first integrals φ1(x,y,z) =C1and φ2(x,y,z) =C2, where C1and C2 are constants, then the general solution of (1) is F(φ1,φ2) = 0, where F is an arbitrary function of φ1and φ2. We choose for our investigation a system with quadratic nonlinearities and such that the axes planes are invariant for the characteristics: this gives three dimensional Lotka– Volterra systems x' =dx/dt= P = x(λ +ax+by+cz), y' =dy/dt= Q = y(µ +dx+ey+ fz), z' =dz/dt= R = z(ν +gx+hy+kz), where λ,µ,ν 6= 0. v Several problems have been investigated in this work such as the study of local integrability and linearizability of three dimensional Lotka–Volterra equations with (λ:µ:ν)–resonance. More precisely, we give a complete set of necessary and sufficient conditions for both integrability and linearizability for three dimensional Lotka-Volterra systems for (1:−1:1), (2:−1:1) and (1:−2:1)–resonance. To prove their sufficiency, we mainly use the method of Darboux with the existence of inverse Jacobi multipliers, and the linearizability of a node in two variables with power-series arguments in the third variable. Also, more general three dimensional system have been investigated and necessary and sufficient conditions are obtained. In another approach, we also consider the applicability of an entirely different method which based on the monodromy method to prove the sufficiency of integrability of these systems. These investigations, in fact, mean that we generalized the classical centre-focus problem in two dimensional vector fields to three dimensional vector fields. In three dimensions, the possible mechanisms underling integrability are more difficult and computationally much harder. We also give a generalization of Singer’s theorem about the existence of Liouvillian first integrals in codimension 1 foliations in Cnas well as to three dimensional vector fields. Finally, we characterize the centres of the quasi-homogeneous planar polynomial differential systems of degree three. We show that at most one limit cycle can bifurcate from the periodic orbits of a centre of a cubic homogeneous polynomial system using the averaging theory of first order.
|
29 |
Extensions supersymétriques des équations structurelles des supervariétés plongées dans des superespacesBertrand, Sébastien 06 1900 (has links)
No description available.
|
30 |
Problème centre-foyer et applicationLaurin, Sophie 04 1900 (has links)
Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous
développons ainsi deux mécanismes permettant de conclure qu’un point singulier
monodromique dans ce système non-linéaire polynomial est un centre. Le premier
mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques
invariantes dans la construction d’une intégrale première. La deuxième
méthode analyse la réversibilité algébrique ou analytique du système. Un système
possédant une singularité monodromique et étant algébriquement ou analytiquement
réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss
généralisé avec récolte de proies. / In this thesis, we study the center-focus problem in a polynomial system. We describe two mechanisms to conclude that a monodromic
singular point in this polynomial system is a center. The first one is the method of Darboux. In this method, one uses invariant algebraic curves to build a first integral. The second method is the algebraic (and analytic) reversibility. A monodromic singularity, which is algebraically or analytically reversible at the
singular point, is necessarily a center.
As an application, in the last chapter, we consider the generalized Gause model
with prey harvesting and a generalized Holling response function of type III.
|
Page generated in 0.0313 seconds