Spelling suggestions: "subject:"deacetylase"" "subject:"deacetylases""
171 |
SIP-428, a SIR2 Deacetylase Enzyme and Its Role in Biotic Stress Signaling PathwayThakuri, Bal Krishna Chand 01 December 2018 (has links) (PDF)
SABP2 (Salicylic Acid Binding Protein 2) plays a vital role in the salicylic acid signaling pathway of plants both regarding basal resistance and systemic acquired resistance against pathogen infection. SIP-428 (SABP2 Interacting Protein-428) is a Silent information regulator 2 (SIR2) like deacetylase enzyme that physically interacts with SABP2 in a yeast two-hybrid interaction and confirmed independently by a GST pull-down assay. We demonstrated that SIP- 428 is an NAD+ dependent SIR2 deacetylase enzyme. Transgenic tobacco plants silenced in SIP- 428 expression via RNAi showed enhanced basal resistance to microbial pathogens. Moreover, these SIP-428-silenced lines also exhibited a robust induction of systemic acquired resistance. In contrast, the transgenic tobacco lines overexpressing SIP-428 showed compromised basal resistance and failed to induce systemic acquired resistance. These results indicate that SIP-428 is likely a negative regulator of SA-mediated plant immunity. Experiments using a SABP2 inhibitor showed that SIP-428 likely functions upstream of SABP2 in the salicylic acid signaling pathway. It also indicates that SABP2 is dependent on SIP-428 for its role in the SA signaling pathway. Subcellular localization studies using confocal microscopy and subcellular fractionation showed that SIP-428 localized in the mitochondria. These results clearly show a role for SIP-428 in plant immunity.
|
172 |
The role of MMP10 in non-small cell Lung cancer, and pharmacological evaluation of its potential as a target for therapeutic intervention. Investigation of the role of MMP10 in the tumour microenvironment of non-small cell lung cancer using gene, protein and mass spectrometry approaches to determine MMP10’s potential in drug development strategiesBin Saeedan, Abdulaziz S.A. January 2014 (has links)
Non-Small Cell Lung Cancer (NSCLC), which accounts for 80% of all lung cancer cases, is associated with resistance to chemotherapy and poor prognosis. Exploitation of NSCLC-upregulated pathways that can either be targeted by novel therapeutics or used to improve the tumour-delivery of current chemotherapeutics are required. Among the matrix metalloproteinases (MMPs) that are essential for tumour development, MMP10 is a potential candidate as a therapeutic target based on its expression and contribution to NSCLC development. This research aims to explore the expression and functions of MMP10 in the tumour microenvironment of NSCLC and evaluate the potential of MMP10 as a target for therapeutic intervention. Herein, MMP10 expression at gene and protein levels were analysed in a panel of NSCLC cell lines using RT-PCR and Western blotting analysis. To determine MMP10 functional relevance, an in vitro angiogenesis assay using cell conditioned media was carried out. To identify specific peptide sequences for the design of prodrugs rationalised to be MMP10 activated, in vitro substrate cleavage studies were performed using a mass spectrometry approach to differentiate between MMP10 and the structurally similar MMP3. This study demonstrates that MMP10 is highly expressed in NSCLC and that high levels of MMP10 are associated with induction of angiogenesis, a crucial process supporting tumour growth. In addition to the achievement of having been able to differentiate between closely similar MMP3 and MMP10 through carefully monitoring the hydrolysis rate of compound 444259 (a known MMP substrate), data generated herein provides the basis for further studies to exploit MMP10 as a prodrug-activator. / Full text was made available at the end of the embargo period, 12th Dec 2019
|
173 |
Anticancer Activity and Mechanisms of Action of New Chimeric EGFR/HDAC-InhibitorsGoehringer, Nils, Biersack, Bernhard, Peng, Yayi, Schobert, Rainer, Herling, Marco, Ma, Andi, Nitzsche, Bianca, Höpfner, Michael 24 January 2024 (has links)
New chimeric inhibitors targeting the epidermal growth factor (EGFR) and histone deacetylases
(HDACs) were synthesized and tested for antineoplastic efficiency in solid cancer (prostate
and hepatocellular carcinoma) and leukemia/lymphoma cell models. The most promising compounds,
3BrQuin-SAHA and 3ClQuin-SAHA, showed strong inhibition of tumor cell growth at
one-digit micromolar concentrations with IC50 values similar to or lower than those of clinically
established reference compounds SAHA and gefitinib. Target-specific EGFR and HDAC inhibition
was demonstrated in cell-free kinase assays andWestern blot analyses, while unspecific cytotoxic
effects could not be observed in LDH release measurements. Proapoptotic formation of reactive
oxygen species and caspase-3 activity induction in PCa and HCC cell lines DU145 and Hep-G2 seem
to be further aspects of the modes of action. Antiangiogenic potency was recognized after applying
the chimeric inhibitors on strongly vascularized chorioallantoic membranes of fertilized chicken eggs
(CAM assay). The novel combination of two drug pharmacophores against the EGFR and HDACs in
one single molecule was shown to have pronounced antineoplastic effects on tumor growth in both
solid and leukemia/lymphoma cell models. The promising results merit further investigations to
further decipher the underlying modes of action of the novel chimeric inhibitors and their suitability
for new clinical approaches in tumor treatment.
|
174 |
MS-275 (ENTINOSTAT) PROMOTES SUSTAINED TUMOR REGRESSION IN THE CONTEXT OF BOOSTING ONCOLYTIC IMMUNOTHERAPYNguyen, Andrew 10 1900 (has links)
<p>We showed previously that histone deacetylase (HDAC) inhibition with MS-275 in the context of boosting oncolytic immunotherapy can drive heightened antitumor responses, leading to increased survival in mouse intracranial melanoma models. However, it is currently unclear how the co-administration of MS-275 directly impacts tumor growth. Here, we investigated the role of MS-275 in preventing the outgrowth of antigen-deficient tumor variants as a result of suboptimal treatment protocols. By adoptively transferring tumor antigen-specific memory T cells (Tm) that were expanded <em>in vivo</em> with recombinant Vesicular Stomatitis Virus (VSV-gp33), we observed complete regression of 5-day old, intradermal B16-gp33 tumors (B16-F10 overexpressing the LCMV GP33-41 epitope); however, the tumors relapsed within a month of treatment. Relapsing tumor explants were able to grow in mice that were prophylactically immunized with recombinant Adenovirus (Ad-gp33), indicating that the tumor could no longer be recognized. Strikingly however, there was zero tumor recurrence if MS-275 was co-administered with Tm and VSV-gp33, suggesting that MS-275 may prevent the emergence and/or escape of antigen loss variants. Such a benefit is lost if the administration of the drug is delayed as little as five days post VSV treatment, suggesting that its synergistic effects coincide with early immune responses and oncolytic activity. Furthermore, transplantation studies of relapsing tumor explants showed that combination treatment was unable to provide tumor protection, confirming that the mechanisms by which MS-275 prevents tumor recurrence are unlikely through direct up-regulation of antigen presentation in low- or non-antigen-expressing variants <em>in vivo</em>. Indeed, CD4 depletion in the absence of MS-275 resulted in sustained tumor regression, implying that immunoregulatory cells such as CD4+ Treg play a prominent role in sustaining tumor regression. Moreover, MS-275 modulates the phenotypic status of tumor-infiltrating MDSCs toward the differentiation of inflammatory macrophages. Taken together, the data suggests that combination therapy with HDACi with oncolytic immunotherapy mediates a synergized immune attack against the tumor through subversion of immunomodulatory mechanisms.</p> / Master of Science in Medical Sciences (MSMS)
|
175 |
Modulation de l'expression de Sirt-1 induite par l'endothéline-1 dans les cellules musculaires lisses vasculairesMir, Ahmed 08 1900 (has links)
Au cours des maladies cardiovasculaires (MCV), il peut se produire divers problèmes de santé, telle que l’insuffisance cardiaque ou encore l’HTA. Ces phénomènes se caractérisent, entre autres, par une augmentation de synthèse d’endotheline-1 (ET-1), un neuropeptide synthétisé par les cellules endothéliales ayant un effet vasoconstricteur sur les cellules musculaires lisses vasculaires (CMLV). Ainsi, la surexpression de ce vasopeptide, mène à terme, au maintien de l’HTA aggravée des sujets, précédée ou concomitante à l’athérosclérose ou à la resténose, cliniquement illustrées par une prolifération et une migration anormale des CMLV de la media vers l’intima des vaisseaux sanguins. Parallèlement, il a été observé que la protéine sirtuine-1 (Sirt-1), membre de la famille des protéines histones déacétylases (HDAC), présente des propriétés anti-athérosclérotiques par sa capacité d’atténuer la prolifération et la migration des CMLV. Des travaux récents ont aussi montré qu’au cours de l’HTA la protéine Sirt-1 est faiblement exprimée dans les CMLV. Son implication dans le développement des pathologies vasculaires semble apparente, mais des études demeurent nécessaires pour décrire son rôle exact dans la pathogenèse des MCV. Dans cette optique, l’objectif de cette étude a été d’observer la variation d’expression de Sirt-1 dans les CMLV, isolées de l’aorte ascendante de rat, en réponse à l’ET-1. On a remarqué qu’une heure de stimulation des CMLV avec l’ET-1 induit une diminution de l’expression de Sirt-1 via l’activation des récepteurs ETA. Ces résultats suggèrent que la capacité d’ET-1 à atténuer l’expression de Sirt-1 serait un éventuel mécanisme d’action avec des effets favorisant les MCV. / Cardiovascular diseases (CVD) are associated with several vascular dysfunctions such as heart failure and hypertension. These phenomena cause increased synthesis of endothelin-1 (ET-1), a neuropeptide, synthesized by endothelial cells which has vasoconstrictor action on vascular smooth muscle cells (VSMC). Overexpression of this vasopeptide leads eventually to hypertension (HTA). This usually happen after atherosclerosis or restenosis, leading to proliferation and migration of VSMC from media to intima. It was shown that during atherosclerosis, the protein sirtuin-1 (Sirt-1), a member of protein histone deacetylases (HDAC), has an anti-atherosclerotic effect due to its ability to diminish proliferation and migration of VSMC. It has also been observed that during hypertension, Sirt-1 was poorly expressed in VSMC. Its role in vascular pathophysiology remains sparsely studied, therefore it’s essential to explore it. In the present study we investigated the expression of Sirt-1 in VSMC isolated from the ascending aorta of rats, in response to ET-1 stimulation. We observed that Sirt-1 expression decreases after 1 hour of stimulation by ET-1 via ETA receptors. In summary, these results suggest that the ability of ET-1 to attenuate Sirt-1 expression in VSMC, may be a potential mechanism for promoting CVD.
|
176 |
Influence du microenvironnement inflammatoire sur la sénescence contrôlée par la réponse aux dommages à l'ADN, et sa régulation par l’induction du stress à la chromatineCarrier-Leclerc, Audrey 01 1900 (has links)
La sénescence cellulaire, ou l’arrêt irréversible de la prolifération, influence des processus physiologiques et pathologiques, comme le cancer. Parmi les caractéristiques de la sénescence, se retrouve le PSAS ou phénotype sécrétoire associé à la sénescence. Le PSAS est composé d’une variété de cytokines, facteurs de croissance et protéases. Ses actions pro- et anti-tumorale sont connues, mais l’on ignore laquelle prédomine. Mes travaux s’attardent aux effets du PSAS sur l’induction de la sénescence dans les cellules environnantes et à sa régulation. Nous avons démontré que le PSAS ne synergise pas avec la dysfonction télomérique chronique ou aigue, afin de causer un arrêt de croissance. Également, l’étude du mécanisme responsable de l’induction de la sénescence par stress à la chromatine, suggère que la kinase c-Abl n’est pas requise pour cette voie, contrairement à des publications antérieures. Mes travaux éclairent les mécanismes d’action et la régulation du PSAS dans la sénescence induite par dysfonction télomérique et par stress à la chromatine. / Cellular senescence, or irreversible proliferation arrest, is known for its influence on physiological and pathological processes, such as cancer. Among the features found in the senescent phenotype is the inflammatory secretome, also known as the senescence associated secretory phenotype (SASP). The SASP consists of a variety of factors such as cytokines, growth factors and proteases. It is widely recognized that SASP can have either a pro- or anti-tumor effect, but it is not clear which one predominates. My work focused on the SASP effects on the induction of senescence in surrounding cells and its regulation mechanisms. We demonstrated that the SASP does not synergize with chronic or induced telomere dysfunction to cause cellular proliferation arrest. Also, study of chromatin stress-induced senescence mechanism suggests that kinase c-Abl is not required for this pathway, contrary to what had been previously published. My work helps understand the regulatory and working mechanisms of the SASP in chromatin stress-induced and telomere dysfunction-induced senescence models.
|
177 |
Regulation of the Timing of Puberty: Exploration of the Role of EpigeneticsRzeczkowska, Paulina Agnieszka 16 August 2012 (has links)
Pubertal timing displays wide, normally distributed variation in a healthy population of sexually maturing adolescents. However, like many complex traits, factors contributing to the variation are not well understood. Epigenetic regulation may contribute to some of the population variation. The role that epigenetics, specifically DNA methylation and histone acetylation, may play in regulating pubertal timing was investigated in C57BL/6 female mice: investigating whether population variation in pubertal timing among inbred mice could be explained by environmental factors; whether perturbing the epigenome using a histone deacetylase inhibitor or methyl-donor would alter pubertal timing; and examining genome-wide methylation patterns in hypothalami of early versus late maturing mice. Results demonstrate that measurable micro-environmental factors have only negligible effects on pubertal timing; pubertal timing was significantly altered by administration of epigenetic modifying agents; differences in methylation patterns are subtle. This initial evidence supports the involvement of epigenetic mechanisms in regulating pubertal timing.
|
178 |
Regulation of the Timing of Puberty: Exploration of the Role of EpigeneticsRzeczkowska, Paulina Agnieszka 16 August 2012 (has links)
Pubertal timing displays wide, normally distributed variation in a healthy population of sexually maturing adolescents. However, like many complex traits, factors contributing to the variation are not well understood. Epigenetic regulation may contribute to some of the population variation. The role that epigenetics, specifically DNA methylation and histone acetylation, may play in regulating pubertal timing was investigated in C57BL/6 female mice: investigating whether population variation in pubertal timing among inbred mice could be explained by environmental factors; whether perturbing the epigenome using a histone deacetylase inhibitor or methyl-donor would alter pubertal timing; and examining genome-wide methylation patterns in hypothalami of early versus late maturing mice. Results demonstrate that measurable micro-environmental factors have only negligible effects on pubertal timing; pubertal timing was significantly altered by administration of epigenetic modifying agents; differences in methylation patterns are subtle. This initial evidence supports the involvement of epigenetic mechanisms in regulating pubertal timing.
|
179 |
Entwicklung von Substraten und Inhibitoren pharmakologisch relevanter Proteintargets / Development of substrates and inhibitors of pharmacologically relevant protein targetsRiester, Daniel 25 January 2005 (has links)
No description available.
|
180 |
Functional analysis of mitochondrial sirtuins in C. elegans and mammalian cells / Funktionale Analyse mitochondrialer Sirtuine in C. elegans und SäugetierzellenWirth, Martina 09 November 2010 (has links)
No description available.
|
Page generated in 0.0457 seconds