• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination

Mélykúti, Bence January 2010 (has links)
This thesis is concerned with methodologies for the accurate quantitative modelling of molecular biological systems. The first part is devoted to the chemical Langevin equation (CLE), a stochastic differential equation driven by a multidimensional Wiener process. The CLE is an approximation to the standard discrete Markov jump process model of chemical reaction kinetics. It is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. We observe that the CLE is not a single equation, but a family of equations with shared finite-dimensional distributions. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m_1 pairs of reversible reactions and m_2 irreversible reactions, there is another, simple formulation of the CLE with only m_1+m_2 Wiener processes, whereas the standard approach uses 2m_1+m_2. Considerable computational savings are achieved with this latter formulation. A flaw of the CLE model is identified: trajectories may leave the nonnegative orthant with positive probability. The second part addresses the challenge when alternative, structurally different ordinary differential equation models of similar complexity fit the available experimental data equally well. We review optimal experiment design methods for choosing the initial state and structural changes on the biological system to maximally discriminate between the outputs of rival models in terms of L_2-distance. We determine the optimal stimulus (input) profile for externally excitable systems. The numerical implementation relies on sum of squares decompositions and is demonstrated on two rival models of signal processing in starving Dictyostelium amoebae. Such experiments accelerate the perfection of our understanding of biochemical mechanisms.
62

企業投資之實質選擇權評價 / The Real Option Valuation of Corporate Investments

吳明政, Wu, Ming Cheng Unknown Date (has links)
建立適當的資本投資決策,對於企業未來的發展具有深遠的影響。如何能擬定出適合的資本預算計畫,以增加公司的成長機會與競爭能力,便是當前重要的課題。本論文以三個階段探討企業投資歷程中所具有的實質選擇權評價:包括對於計畫案擬定之初期,進行投資機會價值評估的實質成長選擇權。以及針對投資計畫開始進行時,管理者所擁有的各種管理彈性,如遞延、擴張、縮減與暫停投資的決策彈性,進行多重實質選擇權的價值評估。最後,針對未能順利成功的計畫案,管理者擁有將其永遠放棄,以收回投資成本殘值的實質放棄選擇權價值進行評估。   對於第一階段的成長選擇權價值評估,本文已建立出同時考量標的資產與投資成本隨機變動,以及標的資產存在不連續跳躍特性下的選擇權評價封閉解,結果可用來評估計畫方案擬定初期的實質成長選擇權價值。若將評價模式中的參數進行限制,則本模型將會分別退化至Black and Scholes(1973), Merton(1976), Fischer(1978), Margrabe(1978), McDonald and Siegel(1985)等重要的選擇權評價文獻,可知本文已獲致較一般化的評價模型。   在第二階段的多重實質選擇權價值評估,本文採用Trigeorgis(1991)所建立的對數轉換二項評價模式,再加入跳躍模型的考量,以符合科技產業所具有的創新、競爭特性,期較能合理評估其價值,也獲得了較一般化的評價模式。再者,本文以模擬方式對於管理者在投資計畫的進行過程中所擁有的遞延、擴張、縮減以及暫停投資等彈性決策價值進行評估,以彰顯出利用實質選擇權評價方法進行彈性決策價值評估的必要性。由數值分析的結果得到,當多個實質選擇權同時存在時,其間將產生不同程度的交互作用,因此並不能直接將個別價值予以加總來求算整體的實質選擇權價值。不過,每項管理彈性的加入對於整體價值的增加皆具有正向貢獻。   對於第三階段的放棄選擇權價值評估,本文建立同時存在多項投資方案下的實質放棄選擇權評價模型,結果可用來評估研發計畫方案未能成功時的實質放棄選擇權價值。此外,本文進一步對於此評價模型進行數值分析,並將所得到的結果歸納如下:(1)方案間價值變動相關係數對於實質放棄選擇權價值的影響上,有相關係數越高時,實質放棄選擇權的價值就越高的現象。(2)殘值回收比率較高時,若採取較多的投資計畫方案,將可以獲致較高的實質放棄選擇權價值,此結果可作偽管理者在選擇備抵方案數目時的參考。(3)對於敏威性分析的探討,發現到當殘值增加、利率下降以及剩餘期間較長時,實質放棄選擇權的價值是增加的,此現象與賣權特性結果一致。   因此,本文針對企業投資歷程中所具有的實質選擇權評價進行深入探討,分別建立選擇權評價模型,也獲致了較以往模型更一般化的評價結果。並於各評價模型建構完成後,輔以數值模擬與敏感性分析,以進一步說明本文所建構模型之一般性與合理性。最後,希望此結果有助於日後企業對於投資價值評估時之參考,並可彌補此類研究文獻的不足。 / This dissertation presents three essays, each provides a general real option pricing model. In the first essay, we derive a generalized option pricing formula for the case of the underlying asset and exercise price both being driven by a mixture of continuous and jump diffusion processes. Our pricing model is a generalized version of Black and Scholes(1973), Merton(1976), Fischer(1978), Margrabe(1978), and McDonald-Siegel(l 985). And each of the historical model is shown to be a special case of ours. We then use the model developed in this article to evaluate real growth options where the underlying assets follow jump diffusion processes. The second essay develops a multi-option pricing model incorporating jump characteristics. The model we provide here can be used to value various types of flexibilities, including the option to defer, the option to shut down, the option to contract, and the option to expand. Based on our numerical results, we find that the model can deal with the interactions among these options. The third essay considers an abandonment option on the maximizing value of several investment projects. Here we develop a model to evaluate R&D projects that may not be accomplished. We show that both Black-Scholes's model and Stuiz's model are special cases of ours under certain restrictions on parameters. From the simulation results, we find a positive relation between the correlation of project value changes and the value of the real abandonment options. Furthermore, our simulation results show that the higher the percentage of recovering salvage value, the more number of investment projects should be carried out. The result we find can help managers to choose the better backup projects. Our sensitivity analysis shows that the value of the real abandonment options increase when the riskless interest rate decreases, and at the same time the salvage value and the time to maturity increase.
63

Μελέτη ανάκτησης σχημάτων με χρήση διεργασιών διάχυσης

Καστανιώτης, Δημήτρης 14 February 2012 (has links)
Η παρούσα εργασία ασχολείται με την ανάκτηση σχήματος. Πιο συγκεκριμένα επικεντρώνεται σε επίπεδα (δισδιάστατα) σχήματα τα οποία είναι μη άκαμπτα και έχουν υποστεί κάμψη ή μεταβάλλονται εξαιτίας της παρουσίας κάποιας άρθρωσης. Τέτοια εύκαμπτα σχήματα συναντάμε καθημερινά στη φύση όπως για παράδειγμα τους μικροοργανισμούς μέχρι και τον ίδιο τον άνθρωπο. Τα κριτήρια ομοιότητας μεταξύ των σχημάτων που χρησιμοποιούνται εδώ είναι Intrinsic. Τέτοια κριτήρια μπορεί κανείς να εξάγει δημιουργώντας ένα τελεστή διάχυσης. Οι τελεστές διάχυσης μπορούν να διατυπωθούν με πολλούς τρόπους. Στην παρούσα εργασία βασιζόμαστε στην πιθανολογική προσέγγιση δημιουργώντας ένα τελεστή (Μητρώο Markov) ενώ ταυτόχρονα λαμβάνουμε ένα τυχαίο περίπατο στα δεδομένα. Ο τελεστής αυτός επιπλέον έχει το πλεονέκτημα ότι μπορεί να προσεγγίσει τον τελεστή Laplace-Beltrami ασχέτως της πυκνότητας δειγματοληψίας των δεδομένων. Ορίζεται λοιπόν ως Απόσταση Διάχυσης η απόσταση δύο σημείων. Η απόσταση αυτή είναι μικρότερη όσο περισσότερα μονοπάτια συνδέουν τα δύο σημεία. Η φασματική ανάλυση του μητρώου αυτού μας επιτρέπει να αναπαραστήσουμε τα δεδομένα μας σε ένα νέο χώρο με σαφή μετρική απόσταση την Ευκλείδεια χρησιμοποιώντας τις ιδιοτιμές και τα ιδιοδιανύσματα που προκύπτουν. Επιπλέον η Ευκλείδεια απόσταση στο νέο χώρο ισούται με την απόσταση Διάχυσης στον αρχικό χώρο. Ο συνδυασμός των φασματικών ιδιοτήτων του μητρώου Διάχυσης με τις Markov διεργασίες οδηγεί σε μία ανάλυση των δεδομένων σε πολλές κλίμακες. Αυτό ισοδυναμεί με το να προχωρήσουμε τον τυχαίο περίπατο μπροστά. Από τις απεικονίσεις αυτές μπορούμε να εξάγουμε ιστογράμματα κατανομής αποστάσεων. Έτσι για κάθε σχήμα και για κάθε κλίμακα λαμβάνουμε ένα ιστόγραμμα κατανομής αποστάσεων. Συνεπώς δύο σχήματα μπορεί να βρίσκονται πολύ κοντά σε μία κλίμακα χρόνου ενώ να βρίσκονται πολύ μακριά σε μία άλλη κλίμακα. Συγκεκριμένα εδώ παραθέτουμε την άποψη η απόσταση των σχημάτων συνδέεται άμεσα με την κλίμακα- χρόνο. Μελετώνται οι ιδιότητες των μικρών, μεσαίων και μεγάλων κλιμάκων κυρίως ως προς τα γεωμετρικά χαρακτηριστικά που μπορούν να περιγράψουν και κατά συνέπεια την ικανότητα να εξάγουν αποδοτικούς περιγραφείς των σχημάτων. Η συνεισφορά της παρούσας Διπλωματικής Εργασίας είναι διπλή: A. Προτείνεται για πρώτη φορά μία νέα μέθοδος κατά την οποία αξιοποιούνται οι ιδιότητες των διαφορετικών κλιμάκων της διεργασίας Διάχυσης που αναφέραμε. Ονομάζουμε τη μέθοδο αυτή Weighted Multiscale Diffusion Distance -WMDD. B. Τα αποτελέσματα που παρουσιάζονται φέρνουν την μέθοδο αυτή στην κορυφή για τις συγκεκριμένες βάσεις σχημάτων (MPEG-7 και KIMIA 99). / This thesis focuses explicitly at shape retrieval applications. More precisely concentrates in planar shapes that are non-rigid, meaning that they might have been articulated or bended. These non-rigid shapes appear in humans’ life like for example bacteria and also the same the human body. The shape pair wise similarity criteria are intrinsic. Such similarity criteria one can take through a Diffusion Operator. Diffusion Operators can be defined in many ways. In this thesis we concern only in the probabilistic interpretation of Diffusion Operators. Thus by constructing a Diffusion Operator we also construct a random Walk on data. This operator converges to the Laplace-Beltrami even if the sampling density of the data is not uniform. Through this framework the Diffusion Distance between two points is defined. This distance gets smaller as much more paths are connecting two points. Spectral decomposition if this diffusion kernel allows us to map, re-represent our data using the eigenvectors and the eigenvalues in a new space with the property of embedding with an explicit metric. These maps are called Diffusion Maps and have the property that diffusion distance in the initial space equals the Euclidean distance in the embedding space. A combination of spectral properties of a Markov matrix with Markov Processes leads to a multiscale analysis. This corresponds to running the random walk forward. From these embeddings we can extract histograms of distributions of distances. Thus for every shape and every scale we have one histogram. Therefore two shapes may be close in one scale but not in another one. The contribution of this Thesis is twofold: A. For first time a new method where the properties of different scales as studied in order to take the advantage of the most discriminative times/ steps of the diffusion process that we described above. We called this method Weighted Multiscale Diffusion Distance- WMDD. B. The results presented here bring our method to the state of the art for the MPEG- and KIMIA 99 databases.
64

Cellular automaton models for time-correlated random walks: derivation and analysis

Nava-Sedeño, Josue Manik, Hatzikirou, Haralampos, Klages, Rainer, Deutsch, Andreas 05 June 2018 (has links) (PDF)
Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is “data-driven”. Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
65

Modélisation de la dégradation, maintenance conditionnelle et pronostic : usage des processus de diffusion / The use of diffusion process for deterioration modeling, condition-based maintenance and prognosis

Ghamlouch, Houda 21 June 2016 (has links)
Aujourd’hui la prédiction des défaillances de certains systèmes industriels est devenue indispensable pour l’amélioration de la fiabilité et de la rentabilité de ces derniers. Cette prédiction s’appuie principalement sur l’analyse d’évolution du niveau de dégradation du système. Pour les systèmes dont l’état de détérioration n’est pas directement observable, la définition d’indicateurs de santé mesurables est nécessaire. Une modélisation du processus de dégradation à partir de ces données peut être ensuite effectuée. Dans cette thèse, nous considérons un ensemble d’indicateurs non-monotones pour un système opérant dans un environnement dynamique. Compte tenu des principales caractéristiques des données ainsi que de l’impact des conditions environnementales et de leur instabilité, une modélisation stochastique de l’évolution de ces indicateurs est proposée. Les modèles proposés se basent principalement sur une combinaison d’un processus de Wiener et de processus de sauts. Les motivations, les méthodes de calibration, l’utilité et les limites de chaque modèle sont discutées. Nous proposons ensuite une approche pour l’aide à la décision concernant les actions de maintenance préventive. Cette approche consiste à évaluer la valeur d’une option réelle qui présente la possibilité d’«Attendre avant d’Agir» suite à un signal d’avertissement sur une défaillance probable. Une application de cette approche pour le cas d'une éolienne équipée d’un système de surveillance et de gestion est traitée / A major concern for engineers and managers nowadays is to make high quality products and highly reliable systems. In this context, reliability analysis and failure prediction, besides of efficient maintenance decision-making are strongly required. Deterioration modeling and analysis is a fundamental step for the understanding and the anticipation of system behavior. Consider a functional system operating in unstable conditions or environment where the deterioration level is not observable and could not be determined by direct measures. For this system a set of measurable health indicator that indirectly reflects the system working conditions and deterioration level can be defined and examined. Considering these indicators, the development of a mathematical model describing the system behavior is required.In this thesis, we consider a set of non-monotone indicators evolving in a dynamic environment. Taking into account the major features of the data evolution as well as the impact of dynamic environment consequences and potential shocks, stochastic models based on Wiener and jump processes are proposed for these indicators. Each model is calibrated and tested, and their limits are discussed. A decision-making approach for preventive maintenance strategies is then proposed. In this approach, knowing the RUL of the system, a simulation-based real options analysis is used in order to determine the best date to maintain. Considering a case study of a wind turbine with PHM structure, the decision optimization approach is described
66

Från marginalparti till vågmästare : En studie över Sverigedemokraternas väg till riksdagen

Lahti, Jan January 2011 (has links)
Sverigedemokraterna är det enda partiet i Sverige som ökat antalet röster på alla nivåer sedan bildandet. Syftet med denna uppsats är att försöka identifiera vilka orsaker som kan förklara Sverigedemokraternas framgångar. För att göra detta har historie-institutionalismen, nedfrysningsteorin och diffusionsteorin använts. Vidare analyseras framgångarna även genom de olika – såväl endogena som exogena – faktorer sociologiprofessor Jens Rydgren tar upp. Resultatet visar att Sverigedemokraterna ända sedan bildandet 1988 haft en tydligt planerad strategi som hela tiden anpassats utifrån partiets storlek. / Since the inceptions of the democratic election system in Sweden the Sweden Democrats is the only party which has shown a continuously increasing numbers of voters. The aim of this essay is to try to identify the causes of the success of the Sweden Democrats.  In doing so, the thesis will apply historical-institutionalism, refrigeration theory and diffusion theory to this historical event. It will also analyze both endogenous and exogenous factors outlined by Professor Jens Rydgren with reference to the party's precedent history. The result shows that the Sweden Democrats since its foundation in 1988 has had a clear and planned strategy which has been constantly adjusted to the size of the party. / <p>2011-06-03</p>
67

Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance / Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance

Youmbi Tchuenkam, Lord Bienvenu 12 December 2016 (has links)
Les travaux exposés dans cette thèse sont consacrés à l’étude de méthodesprécises pour approcher des équations différentielles stochastiques ou deséquations aux dérivées partielles (EDP) déterministes. La première parties’inscrit dans le cadre du développement de méthodes visant à corriger le biaisdans les processus de diffusion paramétrique. Trois modèles sont étudiés enparticulier : Ornstein-Uhlenbeck, Auto-régressif et Moyenne mobile. A l’issuede ce travail, plusieurs approximations de biais ont été proposées suivant deuxapproches : la première consiste en un développement de Taylor del’estimateur obtenu alors que la seconde s'appuie sur une expansionstochastique de celui-ci.La deuxième partie de cette thèse porte sur l’approximation de l’équation de lachaleur obtenue après changement de variables à partir du modèle de Black etScholes. En général, on préfère utiliser des méthodes implicites pour résoudredes EDP paraboliques mais depuis quelques années, les méthodes dites deRunge-Kutta explicites stabilisées, sont de plus en plus utilisées. Nousmontrons que l’utilisation de ce type de méthodes explicites et notamment lesschémas ROCK donnent de très bons résultats même si les conditions initialessont peu régulières, ce qui est le cas dans les modèles financiers / The work presented in this thesis is devoted to the study of precise methods forapproximating stochastic differential equations (SDE) or deterministic partialdifferential equations (PDE). The first part is devoted to the development ofbias correction methods in parametric diffusion processes. Three models arestudied in particular : Ornstein-Uhlenbeck, auto-regressive and Movingaverage. At the end of this work, several approximations of bias have beenproposed following two approaches : the first consists in a Taylor developmentof the obtained estimator while the second one relies on a stochastic expansionof the latter.The second part of this thesis deals with the approximation of the heatequation obtained after changing variables from the Black-Scholes model. Likethe vast majority of PDE, this equation does not have an exact solution, sosolutions must be approached using explicit or implicit time schemes. Itis often customary to prefer the use of implicit methods to solve parabolic PDEsuch as the heat equation, but in the past few years, the stabilized explicitRunge-Kutta methods which have the largest possible domains of stabilityalong the negative real axis, are increasingly used. We show that the useof this type of explicit methods and in particular the ROCK (Runge-Orthogonal-Chebyshev-Kutta) schemes give very good results even if the initial conditionsare not very regular, which is the case in the financial models
68

Cellular automaton models for time-correlated random walks: derivation and analysis

Nava-Sedeño, Josue Manik, Hatzikirou, Haralampos, Klages, Rainer, Deutsch, Andreas 05 June 2018 (has links)
Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is “data-driven”. Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
69

Application des processus stochastiques aux enchères en temps réel et à la propagation d'information dans les réseaux sociaux / Application of stochastic processes to real-time bidding and diffusion processes on networks

Lemonnier, Rémi 22 November 2016 (has links)
Dans cette thèse, nous étudions deux applications des processus stochastiques au marketing internet. Le premier chapitre s’intéresse au scoring d’internautes pour les enchères en temps réel. Ce problème consiste à trouver la probabilité qu’un internaute donné réalise une action d’intérêt, appelée conversion, dans les quelques jours suivant l’affichage d’une bannière publicitaire. Nous montrons que les processus de Hawkes constituent une modélisation naturelle de ce phénomène mais que les algorithmes de l’état de l’art ne sont pas applicables à la taille des données typiquement à l’œuvre dans des applications industrielles. Nous développons donc deux nouveaux algorithmes d’inférence non-paramétrique qui sont plusieurs ordres de grandeurs plus rapides que les méthodes précédentes. Nous montrons empiriquement que le premier a de meilleures performances que les compétiteurs de l’état de l’art, et que le second permet une application à des jeux de données encore plus importants sans payer un prix trop important en terme de pouvoir de prédiction. Les algorithmes qui en découlent ont été implémentés avec de très bonnes performances depuis plusieurs années à 1000 mercis, l’agence marketing d’avant-garde étant le partenaire industriel de cette thèse CIFRE, où ils sont devenus un actif important pour la production. Le deuxième chapitre s’intéresse aux processus diffusifs sur les graphes qui constituent un outil important pour modéliser la propagation d’une opération de marketing viral sur les réseaux sociaux. Nous établissons les premières bornes théoriques sur le nombre total de nœuds atteint par une contagion dans le cadre de graphes et dynamiques de diffusion quelconques, et montrons l’existence de deux régimes bien distincts : le régime sous-critique où au maximum $O(sqrt{n})$ nœuds seront infectés, où $n$ est la taille du réseau, et le régime sur-critique ou $O(n)$ nœuds peuvent être infectés. Nous étudions également le comportement par rapport au temps d’observation $T$ et mettons en lumière l’existence de temps critiques en-dessous desquels une diffusion, même sur-critique sur le long terme, se comporte de manière sous-critique. Enfin, nous étendons nos travaux à la percolation et l’épidémiologie, où nous améliorons les résultats existants. / In this thesis, we study two applications of stochastic processes in internet marketing. The first chapter focuses on internet user scoring for real-time bidding. This problem consists in finding the probability for a given user to perform an action of interest, called conversion, in the next few days. We show that Hawkes processes are well suited for modelizing this phenomena but that state-of-the-art algorithms are not applicable to the size of datasets involved. We therefore develop two new algorithms able to perform nonparametric multivariate Hawkes process inference orders of magnitude faster than previous methods. We show empirically that the first one outperforms state-of-the-art competitors, and the second one scales to very large datasets while keeping very high prediction power. The resulting algorithms have been implemented with very good performances for several years in 1000mercis, a pioneering marketing agency being the industrial partner of this CIFRE PhD, where they became an important business asset. The second chapter focuses on diffusion processes graphs, an important tool for modelizing the spread of a viral marketing operation over social networks. We derive the first theoretical bounds for the total number of nodes reached by a contagion for general graphs and diffusion dynamics, and show the existence of two well distinct regimes: the sub-critical one where at most $O(sqrt{n})$ nodes are infected, where $n$ is the size of the network, and the super-critical one where $O(n)$ nodes can be infected. We also study the behavior wrt to the observation time $T$ and reveals the existence of critical times under which a long-term super-critical diffusion process behaves sub-critically. Finally, we extend our works to different application fields, and improve state-of-the-art results in percolation and epidemiology.
70

Sur le comportement qualitatif des solutions de certaines équations aux dérivées partielles stochastiques de type parabolique / On the qualitative behavior of solutions to certain stochastic partial differential equations of parabolic type

Touibi, Rim 18 December 2018 (has links)
Cette thèse est consacrée à l’étude des équations aux dérivées partielles stochastiques de type parabolique. Dans la première partie nous démontrons de nouveaux résultats concernant l’existence et l’unicité de solutions variationnelles globales et locales à des problèmes avec des conditions aux bords de type Neumann pour une classe d’équations aux dérivées partielles stochastiques non-autonomes. Les équations que nous considérons sont définies sur des domaines non bornés de l’espace euclidien qui satisfont à certaines conditions géométriques, et sont dirigées par un bruit multiplicatif dérivé d’un processus de Wiener fractionnaire infini-dimensionnel caractérisé par une suite de paramètres de Hurst H = (Hi) i ∈ N+ ⊂ (1/2,1). Ces paramètres sont en fait soumis à d’autres contraintes intimement liées à la nature de la non-linéarité dans le terme stochastique des équations, et au choix des espaces fonctionnels dans lesquels le problème à résoudre est bien posé. Notre méthode de preuve repose essentiellement sur des arguments d’injections compactes. Dans la seconde partie, nous étudions la possibilité de l’explosion de solutions d’une classe d’équations aux dérivées partielles stochastiques semi-linéaire avec des conditions aux bords de type Dirichlet, perturbées par un mélange d’un mouvement brownien et d’un mouvement brownien fractionnaire et dirigées par une classe d’opérateurs différentiels non autonomes contenant des processus de diffusions et des processus de Lévy. Notre but est de comprendre l’influence de la partie stochastique et de l’opérateur différentiel sur le comportement d’explosion des solutions. En particulier, nous donnons des expressions explicites pour des bornes inférieures et supérieures du temps de l’explosion de la solution, et des conditions suffisantes pour l’existence d’une solution globale positive. Nous estimons également la probabilité d’une explosion en temps fini et la loi d’une borne supérieur du temps d’explosion de la solution / This thesis is concerned with stochastic partial differential equations of parabolic type. In the first part we prove new results regarding the existence and the uniqueness of global and local variational solutions to a Neumann initial-boundary value problem for a class of non-autonomous stochastic parabolic partial differential equations. The equations we consider are defined on unbounded open domains in Euclidean space satisfying certain geometric conditions, and are driven by a multiplicative noise derived from an infinite-dimensional fractional Wiener process characterized by a sequence of Hurst parameters H = (Hi) i ∈ N+ ⊂ (1/2,1). These parameters are in fact subject to further constraints that are intimately tied up with the nature of the nonlinearity in the stochastic term of the equations, and with the choice of the functional spaces in which the problem at hand is well-posed. Our method of proof rests on compactness arguments in an essential way. The second part is devoted to the study of the blowup behavior of solutions to semilinear stochastic partial differential equations with Dirichlet boundary conditions driven by a class of differential operators including (not necessarily symmetric) Lévy processes and diffusion processes, and perturbed by a mixture of Brownian and fractional Brownian motions. Our aim is to understand the influence of the stochastic part and that of the differential operator on the blowup behavior of the solutions. In particular we derive explicit expressions for an upper and a lower bound of the blowup time of the solution and provide a sufficient condition for the existence of global positive solutions. Furthermore, we give estimates of the probability of finite time blowup and for the tail probabilities of an upper bound for the blowup time of the solutions

Page generated in 0.1025 seconds