• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 2
  • 1
  • Tagged with
  • 37
  • 21
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Numerische Untersuchung der Strömung in Magnetfluiddichtungen Lösbarkeit und Finite-Elemente-Approximation des mathematischen Modells

Mitkova, Teodora January 2004 (has links)
Zugl.: Magdeburg, Univ., Diss., 2004 u.d.T.: Mitkova, Teodora: Lösbarkeit und Finite-Elemente-Approximation eines mathematischen Modells für die Strömung in Magnetfluiddichtungen
12

Defektkorrekturverfahren für singulär gestörte Randwertaufgaben

Fröhner, Anja Katrin. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Dresden.
13

Diffusion on fractals and space-fractional diffusion equations

Prehl, Janett 16 July 2010 (has links) (PDF)
Ziel dieser Arbeit ist die Untersuchung der Sub- und Superdiffusion in fraktalen Strukturen. Der Fokus liegt auf zwei separaten Ansätzen, die entsprechend des Diffusionbereiches gewählt und variiert werden. Dadurch erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise für beide Bereiche. Im ersten Teil betrachten wir subdiffusive Prozesse, die vor allem bei Transportvorgängen, z. B. in lebenden Geweben, eine grundlegende Rolle spielen. Hierbei modellieren wir den fraktalen Zustandsraum durch endliche Sierpinski Teppiche mit absorbierenden Randbedingungen und lösen dann die Mastergleichung zur Berechnung der Zeitentwicklung der Wahrscheinlichkeitsverteilung. Zur Charakterisierung der Diffusion auf regelmäßigen und zufälligen Teppichen bestimmen wir die Abfallzeit der Wahrscheinlichkeitsverteilung, die mittlere Austrittszeit und die Random Walk Dimension. Somit können wir den Einfluss zufälliger Strukturen auf die Diffusion aufzeigen. Superdiffusive Prozesse werden im zweiten Teil der Arbeit mit Hilfe der Diffusionsgleichung untersucht. Deren zweite Ableitung im Ort erweitern wir auf nichtganzzahlige Ordnungen, um die fraktalen Eigenschaften der Umgebung darzustellen. Die resultierende raum-fraktionale Diffusionsgleichung spannt ein Übergangsregime von der irreversiblen Diffusionsgleichung zur reversiblen Wellengleichung auf. Deren Lösungen untersuchen wir mittels verschiedener Entropien, wie Shannon, Tsallis oder Rényi Entropien, und deren Entropieproduktionsraten, welche natürliche Maße für die Irreversibilität sind. Das dabei gefundene Entropieproduktions-Paradoxon, d. h. ein unerwarteter Anstieg der Entropieproduktionsrate bei sinkender Irreversibilität des Prozesses, können wir nach geeigneter Reskalierung der Entropien auflösen. / The aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox.
14

Diffusion on fractals and space-fractional diffusion equations

Prehl, Janett 02 July 2010 (has links)
Ziel dieser Arbeit ist die Untersuchung der Sub- und Superdiffusion in fraktalen Strukturen. Der Fokus liegt auf zwei separaten Ansätzen, die entsprechend des Diffusionbereiches gewählt und variiert werden. Dadurch erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise für beide Bereiche. Im ersten Teil betrachten wir subdiffusive Prozesse, die vor allem bei Transportvorgängen, z. B. in lebenden Geweben, eine grundlegende Rolle spielen. Hierbei modellieren wir den fraktalen Zustandsraum durch endliche Sierpinski Teppiche mit absorbierenden Randbedingungen und lösen dann die Mastergleichung zur Berechnung der Zeitentwicklung der Wahrscheinlichkeitsverteilung. Zur Charakterisierung der Diffusion auf regelmäßigen und zufälligen Teppichen bestimmen wir die Abfallzeit der Wahrscheinlichkeitsverteilung, die mittlere Austrittszeit und die Random Walk Dimension. Somit können wir den Einfluss zufälliger Strukturen auf die Diffusion aufzeigen. Superdiffusive Prozesse werden im zweiten Teil der Arbeit mit Hilfe der Diffusionsgleichung untersucht. Deren zweite Ableitung im Ort erweitern wir auf nichtganzzahlige Ordnungen, um die fraktalen Eigenschaften der Umgebung darzustellen. Die resultierende raum-fraktionale Diffusionsgleichung spannt ein Übergangsregime von der irreversiblen Diffusionsgleichung zur reversiblen Wellengleichung auf. Deren Lösungen untersuchen wir mittels verschiedener Entropien, wie Shannon, Tsallis oder Rényi Entropien, und deren Entropieproduktionsraten, welche natürliche Maße für die Irreversibilität sind. Das dabei gefundene Entropieproduktions-Paradoxon, d. h. ein unerwarteter Anstieg der Entropieproduktionsrate bei sinkender Irreversibilität des Prozesses, können wir nach geeigneter Reskalierung der Entropien auflösen. / The aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox.
15

MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs

Hein, Sabine 03 March 2010 (has links) (PDF)
The topic of this thesis is the theoretical and numerical research of optimal control problems for uncertain nonlinear systems, described by semilinear parabolic differential equations with additive noise, where the state is not completely available. Based on a paper by Kazufumi Ito and Karl Kunisch, which was published in 2006 with the title "Receding Horizon Control with Incomplete Observations", we analyze a Model Predictive Control (MPC) approach where the resulting linear problems on small intervals are solved with a Linear Quadratic Gaussian (LQG) design. Further we define a performance index for the MPC/LQG approach, find estimates for it and present bounds for the solutions of the underlying Riccati equations. Another large part of the thesis is devoted to extensive numerical studies for an 1+1- and 3+1-dimensional problem to show the robustness of the MPC/LQG strategy. The last part is a generalization of the MPC/LQG approach to infinite-dimensional problems.
16

Ein Inversmodell für den Südatlantik mit der Methode der finiten Elemente

Dobrindt, Uwe. Unknown Date (has links)
Universiẗat, Diss., 1999--Bremen.
17

Theory of electrochemical pattern formation under global coupling

Plenge, Florian Moritz. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Berlin.
18

Target patterns and pacemakers in reaction-diffusion systems

Stich, Michael. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Berlin.
19

Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes

Grosman, Serguei 05 April 2006 (has links) (PDF)
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory.
20

A posteriori error estimates and adaptive methods for convection dominated transport processes

Ohlberger, Mario. Unknown Date (has links) (PDF)
University, Diss., 2001--Freiburg (Breisgau). / Parallelt.: A-posteriori-Fehlerabschätzungen und adaptive Methoden für konvektionsdominante Transportprozesse.

Page generated in 0.0531 seconds