• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 3
  • 1
  • Tagged with
  • 23
  • 23
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites

Seidel, Gary Don 02 June 2009 (has links)
The present work provides a micromechanics approach based on the generalized self-consistent composite cylinders method as a non-Eshelby approach towards for assessing the impact of carbon nanotubes on the multi-functional nature of nanocom-posites in which they are a constituent. Emphasis is placed on the effective elastic properties as well as electrical and thermal conductivities of nanocomposites con-sisting of randomly oriented single walled carbon nanotubes in epoxy. The effective elastic properties of aligned, as well as clustered and well-dispersed nanotubes in epoxy are discussed in the context of nanotube bundles using both the generalized self-consistent composite cylinders method as well as using computational microme-chanics techniques. In addition, interphase regions are introduced into the composite cylinders assemblages to account for the varying degrees of load transfer between nanotubes and the epoxy as a result of functionalization or lack thereof. Model pre-dictions for randomly oriented nanotubes both with and without interphase regions are compared to measured data from the literature with emphasis placed on assessing the bounds of the effective nanocomposite properties based on the uncertainty in the model input parameters. The generalized self-consistent composite cylinders model is also applied to model the electrical and thermal conductivity of carbon nanotube-epoxy nanocomposites. Recent experimental observations of the electrical conductivity of carbon nanotube polymer composites have identified extremely low percolation limits as well as a per-ceived double percolation behavior. Explanations for the extremely low percolation limit for the electrical conductivity of these nanocomposites have included both the creation of conductive networks of nanotubes within the matrix and quantum effects such as electron hopping or tunneling. Measurements of the thermal conductivity have also shown a strong dependence on nanoscale effects. However, in contrast, these nanoscale effects strongly limit the ability of the nanotubes to increase the thermal conductivity of the nanocomposite due to the formation of an interfacial thermal resistance layer between the nanotubes and the surrounding polymer. As such, emphasis is placed here on the incorporation of nanoscale effects, such as elec-tron hopping and interfacial thermal resistance, into the generalized self-consistent composite cylinder micromechanics model.
12

A Finite Element Framework for Multiscale/Multiphysics Analysis of Structures with Complex Microstructures

Varghese, Julian 2009 August 1900 (has links)
This research work has contributed in various ways to help develop a better understanding of textile composites and materials with complex microstructures in general. An instrumental part of this work was the development of an object-oriented framework that made it convenient to perform multiscale/multiphysics analyses of advanced materials with complex microstructures such as textile composites. In addition to the studies conducted in this work, this framework lays the groundwork for continued research of these materials. This framework enabled a detailed multiscale stress analysis of a woven DCB specimen that revealed the effect of the complex microstructure on the stress and strain energy release rate distribution along the crack front. In addition to implementing an oxidation model, the framework was also used to implement strategies that expedited the simulation of oxidation in textile composites so that it would take only a few hours. The simulation showed that the tow architecture played a significant role in the oxidation behavior in textile composites. Finally, a coupled diffusion/oxidation and damage progression analysis was implemented that was used to study the mechanical behavior of textile composites under mechanical loading as well as oxidation. A parametric study was performed to determine the effect of material properties and the number of plies in the laminate on its mechanical behavior. The analyses indicated a significant effect of the tow architecture and other parameters on the damage progression in the laminates.
13

Micro-Computed Tomography Reconstruction and Analysis of the Porous Transport Layer in Polymer Electrolyte Membrane Fuel Cells

JAMES, JEROME 02 February 2012 (has links)
A procedure is presented to analyze select geometric and effective properties of the porous transport layer (PTL) of the polymer electrolyte membrane fuel cell (PEMFC) in com- pressed and uncompressed states using micro-computed X-ray tomography (Micro CT). A method of compression using a novel device design was employed to mimic the non-homogeneous compression conditions found in functioning fuel cells. The process also features open source image processing and CFD analysis through the use of software packages Fiji and OpenFOAM (proprietary software is also used such as Matlab). Tomographic images of a PTL sample in different compressive states are first analyzed by measuring local porosity values in the through-plane and both in- plane directions. The objective of this study was to develop a method for imaging the PTL structure to show directionality within its properties using relatively inexpensive and non-destructional means. Three different PTL types were tested, one without any additives, one with Polytetrafluoroethylene (PTFE) and one with PTFE and a microporous layer (MPL). Non-homogeneous porosity was shown to exist with the highest and least variable porosity values obtained from the in-plane direction that was in-line with the direction of fibres. Porosity values compared well with values obtained from the literature. The profile of the PTL with MPL added was unattainable using this procedure as the resolution of the Micro CT was too low to resolve its pore space. The next stage involved the effective properties analysis which included effective electronic conductivity and effective diffusivity. It was found that the through-plane values for the effective electronic conductivity study were higher than expected. The ratio between through-plane and in-plane was found to be much higher than expected from literature. Lack of sufficient resolution of fibre contacts has been shown to play a role in this discrepancy. These contact problems were shown not too affect measurements of diffusivity in the pore phase. The in-plane direction parallel to the direction of fibres was found to have the highest values of effective transport properties. Effective diffusivity ratios of between 0.1 and 0.37 were found to be reasonable with the limited experimental evidence found in literature. The it was found that the Bruggeman relation for calculating diffusivity and percolation theory by Tomadakis and Sotirchos over predicted the values for diffusion within the PTL and it is suggested that these theories are not suitable for predicting diffusivity for this material. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-02-02 15:46:29.395
14

Emprego do método de homogeneização assintótica no cálculo das propriedades efetivas de estruturas ósseas / Using the asymptotic homogenization method to evaluate the effective properties of bone structures

Uziel Paulo da Silva 28 May 2014 (has links)
Ossos são sólidos não homogêneos com estruturas altamente complexas que requerem uma modelagem multiescala para entender seu comportamento eletromecânico e seus mecanismos de remodelamento. O objetivo deste trabalho é encontrar expressões analíticas para as propriedades elástica, piezoelétrica e dielétrica efetivas de osso cortical modelando-o em duas escalas: microscópica e macroscópica. Utiliza-se o Método de Homogeneização Assintótica (MHA) para calcular as constantes eletromecânicas efetivas deste material. O MHA produz um procedimento em duas escalas que permite obter as propriedades efetivas de um material compósito contendo uma distribuição periódica de furos cilíndricos circulares unidirecionais em uma matriz piezoelétrica linear e transversalmente isotrópica. O material da matriz pertence à classe de simetria cristalina 622. Os furos estão centrados em células de uma matriz periódica de secções transversais quadradas e a periodicidade é a mesma em duas direções perpendiculares. O compósito piezoelétrico está sob cisalhamento antiplano acoplado a um campo elétrico plano. Os problemas locais que surgem da análise em duas escalas usando o MHA são resolvidos por meio de um método da teoria de variáveis complexas, o qual permite expandir as soluções correspondentes em séries de potências de funções elípticas de Weierstrass. Os coeficientes das séries são determinados das soluções de sistemas lineares infinitos de equações algébricas. Truncando estes sistemas infinitos até uma ordem finita de aproximação, obtêm-se fórmulas analíticas para as constantes efetivas elástica, piezoelétrica e dielétrica, que dependem da fração de volume dos furos e de um fator de acoplamento eletromecânico da matriz. Os resultados numéricos obtidos a partir destas fórmulas são comparados com resultados obtidos pelas fórmulas calculadas via método de Mori-Tanaka e apresentam boa concordância. A boa concordância entre todas as curvas obtidas via MHA sugere que a expressão correspondente da primeira aproximação fornece uma fórmula muito simples para calcular o fator de acoplamento efetivo do compósito. Os resultados são úteis na mecânica de osso. / Bones are inhomogeneous solids with highly complex structures that require multiscale modeling to understand its electromechanical behavior and its remodeling mechanisms. The objective of this work is to find analytical expressions for the effective elastic, piezoelectric, and dielectric properties of cortical bone by modeling it on two scales: microscopic and macroscopic. We use Asymptotic Homogenization Method (AHM) to calculate the effective electromechanical constants of this material. The AHM yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The piezoelectric composite is under antiplane shear deformation together with in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method, which allows us to expand the corresponding solutions in power series of Weierstrass elliptic functions. The coefficients of these series are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori-Tanaka approach and show good agreement. The good agreement between all curves obtained via AHM suggests that the corresponding expression of first approximation provides a very simple formula to calculate the effective coupling factor of the composite. The results are useful in bone mechanics.
15

Investigating the Thermo-Mechanical Behavior of Highly Porous Ultra-High Temperature Ceramics using a Multiscale Quasi-Static Material Point Method

Povolny, Stefan Jean-Rene L. 14 May 2021 (has links)
Ultra-high temperature ceramics (UHTCs) are a class of materials that maintain their structural integrity at high temperatures, e.g. 2000 °C. They have been limited in their aerospace applications because of their relatively high density and the difficulty involved in forming them into complex shapes, like leading edges and inlets. Recent advanced processing techniques have made significant headway in addressing these challenges, where the introduction of multiscale porosity has resulted in lightweight UHTCs dubbed multiscale porous UHTCs. The effect of multiscale porosity on material properties must be characterized to enable design, but doing so experimentally can be costly, especially when attempting to replicate hypersonic flight conditions for relevant testing of selected candidate samples. As such, this dissertation seeks to computationally characterize the thermomechanical properties of multiscale porous UHTCs, specifically titanium diboride, and validate those results against experimental results so as to build confidence in the model. An implicit quasi-static variant of the Material Point Method (MPM) is developed, whose capabilities include intrinsic treatment of large deformations and contact which are needed to capture the complex material behavior of the as-simulated porous UHTC microstructures. It is found that the MPM can successfully obtain the elastic thermomechanical properties of multiscale porous UHTCs over a wide range of temperatures. Furthermore, characterizations of post-elastic behavior are found to be qualitatively consistent with data obtained from uniaxial compression experiments and Brazilian disk experiments. / Doctor of Philosophy / This dissertation explores a class of materials called ultra-high temperature ceramics (UHTCs). These materials can sustain very high temperatures without degrading, and thus have the potential to be used on hypersonic aircraft which routinely experience high temperatures during flight. In lieu of performing experiments on physical UHTC specimens, one can perform a series of computer simulations to figure out how UHTCs behave under various conditions. This is done here, with a particular focus what happens when pores are introduced into UHTCs, thus rendering them more like a sponge than a solid block of material. Doing computer simulations instead of physical experiments is attractive because of the flexibility one has in a computational environment, as well as the significantly decreased cost associated with running a simulation vs. setting up and performing an experiment. This is especially true when considering challenging operating environments like those experienced by high-speed aircraft. The ultimate goal with this research is to develop a computational tool than can be used to design the ideal distribution of pores in UHTCs so that they can best perform their intended functions.
16

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Medeiros, Ricardo de 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.
17

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Ricardo de Medeiros 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.
18

Um estudo sobre estimativas de erro de modelagem em estruturas de materiais heterogêneos. / A study on modeling error estimates in heterogeneous materials structures.

Santos Júnior, Arnaldo dos 06 October 2008 (has links)
This work presents a study on modeling error estimates in linear elastic structures of heterogeneous materials. The employed formulation is based on a theory of a posteriori estimation of modeling errors and uses the Finite Element Method as numerical tool. The evaluated modeling errors consist of global errors based on energy norm and local errors in quantities of interest induced by replacing the fine-scale micromechanical properties of the material by homogenized or effective properties. These effective properties are determined from different micromechanical models and considered in the surrogate physical models of the heterogeneous materials. The quantities of interest may be, for example, averaged stress or strain on chosen regions, such as surfaces of inclusions, and interfacial displacements. Several numerical examples involving structures of heterogeneous materials are analyzed and the results are presented to demonstrate the performance of the formulation in the evaluation of global and local modeling errors. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho apresenta um estudo sobre estimativas de erro de modelagem em estruturas elásticas lineares de materiais heterogêneos. A formulação empregada é baseada em uma teoria de avaliação de erro de modelagem à posteriori e utiliza o Método dos Elementos Finitos como ferramenta numérica. Os erros de modelagem avaliados consistem em erros globais, baseados em norma energia, e erros locais, em quantidades de interesse, induzidos pela substituição das propriedades micromecânicas do material em escala refinada por propriedades efetivas homogeneizadas. Estas propriedades efetivas são determinadas a partir de diferentes modelos da micromecânica e consideradas nos modelos físicos substitutos dos materiais heterogêneos. As quantidades de interesse podem ser, por exemplo, tensões médias ou deformações sobre a região escolhida, tais como superfície de inclusões e deslocamentos nas interfaces. Diversos exemplos numéricos envolvendo estruturas de materiais heterogêneos são analisados e os resultados são apresentados para demonstrar o desempenho da formulação na avaliação de erros de modelagem global e local.
19

Physique des métamorphoses de la neige sèche : de la microstructure aux propriétés macroscopiques / Physics of dry snow metamorphism : from microstructure to macroscopic properties

Calonne, Neige 14 November 2014 (has links)
L’objectif général de la thèse est de contribuer à l’amélioration de nos connaissances sur les métamorphoses de la neige sèche et sur sa description physique, à l’échelle microscopique (grains de glace et pores) et macroscopique (couche de neige). Dans un premier temps,la méthode d’homogénéisation basée sur les développements asymptotiques à échelles multiples est appliquée à la physique des métamorphoses de la neige sèche. On présente ainsi les descriptions macroscopiques équivalentes du transport de vapeur et de chaleur dérivées à partir de la description de la physique à micro-échelle. On considère à l’échelle des grains la diffusion, la conduction, et la convection forcée, couplées aux changements de phase (sublimation et déposition). Dans un second temps, les propriétés effectives de transport impliquées dans les descriptions macroscopiques (conductivité thermique effective, coefficient effectif de diffusion de vapeur et perméabilité intrinsèque) sont estimées à l’aide d’images 3D de neige couvrant toute la gamme de masse volumique et de types de neige. Enfin, on s’intéresse au suivi temporel des métamorphoses. Les liens entre la microstructure et les propriétés effectives d’une couche de neige sont mis en évidence au cours d’une métamorphose de gradient de température en utilisant des images 3D.On présente ensuite une cellule cryogénique que nous avons mise au point pour le suivi grains à grains par tomographie des évolutions d’un échantillon de neige au cours des métamorphoses, et qui s’utilise à température ambiante. / The main objective of the thesis is to improve our knowledge about dry snow metamorphismand its physical description, at the microscopic (ice grains and pores) andmacroscopic (snow layer) scales. First, the homogenization method of multiple scaleexpansions is applied for the first time to the physics involved in dry snow metamorphism.This way, we present the equivalent macroscopic descriptions of heat and vaportransfers derived from the physical description at micro-scale. We consider at the grainscale diffusion, conduction, and forced convection, coupled to phase changes (sublimationand deposition). Second, the effective properties of transport arising in the macroscopicdescriptions (effective thermal conductivity, effective coefficient of vapor diffusion, andintrinsic permeability) are estimated from 3D images of snow spanning the whole range ofdensity and snow types. Finally, the monitoring of metamorphism with time is considered.The relationship between the microstructure and the effective properties of a snow layerare investigated during temperature gradient metamorphism using 3D images. We presentthen a new cryogenic cell that we developed to monitor the grain to grain evolution of asnow sample by time-lapse tomography during the metamorphism, and which operates atroom temperature.
20

Micromechanical models of network materials presenting internal length scales : applications to trabecular bone under stable and evolutive conditions / Modèles micromécaniques de milieux architecturés présentant des longueurs internes : applications à l'os trabéculaire en conditions stables et évolutives

Goda, Ibrahim 28 May 2015 (has links)
Des méthodes micromécaniques spécifiques ont été développées pour la détermination du comportement effectif de matériaux cellulaires dotés d’une architecture discrète à l’échelle microscopique. La méthode d’homogénéisation discrète a été appliquée à des structures tissées monocouches ainsi qu’à l’os trabéculaire. La topologie discrète initiale de ces milieux est remplacée à l’échelle mésoscopique par un milieu effectif anisotrope micropolaire, qui rend compte des effets d’échelles observés. Ces méthodes d’homogénéisation permettent d’accéder à des propriétés classiques et non classiques dont la mesure expérimentale est souvent difficile. Des modèles 3D ont été développé afin de décrire la rupture fragile et ductile de l’os trabéculaire, incorporant des effets de taille des surfaces d’écoulement plastique. Nous avons construit par des analyses éléments finis de la microstructure de l’os trabéculaire un milieu de substitution 3D homogène, orthotrope de type couple de contraintes, sur la base d’une équivalence en énergie. Les tissus osseux ont la capacité d’adapter leur densité locale et leur taille et forme aux stimuli mécaniques. Nous avons développé des modèles de remodelage interne et externe dans le cadre de la thermodynamique des processus irréversibles, aux échelles cellulaire et macroscopique. Finalement, le remodelage interne anisotrope a été couplé à l’endommagement de fatigue, dans le cadre de la théorie continue de l’endommagement / A methodology based on micromechanics has been developed to determine the effective behavior of network materials endowed with a discrete architecture at the microscopic level. It relies on the discrete homogenization method, which has been applied to textile monolayers and trabecular bones. The initially discrete topology of the considered network materials results after homogenization at the mesoscopic level in anisotropic micropolar effective continuum, which proves able to capture the observed internal scale effects. Such micromechanical methods are useful to remedy the difficulty to measure the effective mechanical properties at the intermediate mesoscopic level scale. The bending and torsion responses of vertebral trabecular bone beam specimens are formulated in both static and dynamic situations, based on the Cosserat theory. 3D models have been developed for describing the multiaxial yield and brittle fracture behavior of trabecular bone, including the analysis of size-dependent non-classical plastic yield. We have constructed by FE analyses a homogeneous, orthotropic couple-stress continuum model as a substitute of the 3D periodic heterogeneous cellular solid model of vertebral trabecular bone, based on the equivalent strain energy approach. Bone tissues are able to adapt their local density and load bearing capacities as well as their size and shape to mechanical stimuli. We have developed models for combined internal and external bone remodeling in the framework of the thermodynamics of irreversible processes, at both the cellular and macroscopic levels. We lastly combined anisotropic internal remodeling with fatigue continuum damage

Page generated in 0.0611 seconds