• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de petits ions, de (bio)macromolécules et de nanoparticules par les méthodes électrophorétiques : charge effective et dépendance de la mobilité électrophorétique en force ionique / Characterization of small ions, (bio)macromolecules and nanoparticles by electrophoretic methods : effective charge and ionic strength dependence of the electrophoretic mobility

Ibrahim, Amal 07 December 2012 (has links)
L'objectif principal de cette thèse a été d'étudier et de développer les méthodes électrophorétiques pour la détermination de la charge effective de petits ions, de (bio)macromolécules et de nanoparticules. En effet, la charge effective est un paramètre physico-chimique qui contrôle les interactions électrostatiques et qui permet d'accéder aux taux de condensation des contre-ions dans le cas de polyélectrolytes. Dans une première partie, différents modèles sur la mobilité électrophorétique (Nernst-Einstein, O'Brien-White-Ohshima, Yoon-Kim) ont été comparés pour la détermination de la charge effective à partir des valeurs expérimentales de mobilité électrophorétique et de rayon hydrodynamique. Trois autres méthodes expérimentales basées sur la sensibilité de détection UV en mode indirect, sur la sensibilité de détection en conductimétrie et sur la longueur des zones isotachophorétiques ont été étudiées. Ces méthodes ont été appliquées en particulier à la détermination de la charge effective de dendrimères greffés de la lysine et de polymères utilisés en délivrance de principe actif.Une étude du comportement électrophorétique en fonction de la force ionique nous a mené à proposer une représentation graphique, appelée « slope-plot », permettant de distinguer les solutés en fonction de leur nature (petits ions, polyélectrolytes, nanoparticules). Cette représentation peut s'avérer très utile pour l'optimisation des séparations en électrophorèse capillaire en fonction de la force ionique. / The main objective of this thesis was to study and develop electrophoretic methods for effective charge determination of small ions, (bio)macromolecules and nanoparticles. Effective charge is a physical parameter that controls the electrostatic interactions and allows for the determination of condensed counter-ion fraction in the case of polyelectrolytes. In a first part, different models of electrophoretic mobility (Nernst-Einstein, O'Brien-White-Ohshima, Yoon-Kim) have been compared for effective charge determination from experimental values of electrophoretic mobility and hydrodynamic radius. Three other experimental methods based on the sensitivity of UV detection in indirect mode and in conductivity detection, or on the length of the isotachophoretic zones, were studied. These methods were applied to effective charge determination of dendrigraft poly-L-lysines and on drug delivery polymeric systems. A study of the ionic strength dependence of the electrophoretic mobility leads us to propose a graphical representation, called the slope-plot, allowing for the distinction between solutes according to their nature (small ions, polyelectrolytes, nanopaticles). The slop-plot can also be used for the optimization of electrophoretic separations according to the ionic strength.
2

The application of high capacity ion exchange adsorbent material, synthesized from fly ash and acid mine drainage, for the removal of heavy and trace metal from secondary Co-disposal process waters

Hendricks, Nicolette Rebecca January 2005 (has links)
In South Africa, being the second largest global coal exporter, coal mining plays a pivotal role in the growth of our economy, as well as supplying our nation’s ever increasing electricity needs; while also accounting for more than 10% of the 20 x 109 m3 water used annually in the country. Coal mining may thus be classified as a large-scale water user; known to inevitably generate wastewater [acid mine drainage (AMD)] and other waste material, including fly ash (FA). Current and conventional AMD treatment technologies include precipitation–aggregation (coagulation/flocculation) – settling as hydroxides or insoluble salts. The process stream resulting from these precipitation processes is still highly saline, therefore has to undergo secondary treatment. The best available desalination techniques include reverse osmosis (RO), electro dialysis (ED), ion exchange and evaporation. All available treatment methods associated with raw AMD and its derived process stream fall prey to numerous drawbacks. The result is that treatment is just as costly as the actual coal extraction. In addition, remediation only slows the problem down, while also having a short lifespan. Research conducted into converting fly ash, an otherwise waste material, into a marketable commodity has shown that direct mixing of known ratios of FA with AMD to a pre-determined pH, erves a dual purpose: the two wastes (AMD and FA) could be neutralized and produced a much cleaner water (secondary co-disposal [FA/AMD]-process water), broadly comparable to the process water derived from precipitation-aggregation treated AMD. The collected post process solid residues on the other hand, could be used for production of high capacity ion exchange material (e.g. zeolite A, faujasite, zeolite P, etc.). The produced ion exchange material can subsequently be utilized for the attenuation of metal species in neutralized FA/AMDprocess waters. / Magister Scientiae - MSc
3

Highly charged dendritic polyelectrolytes: Competitive ion binding and charge renormalization

Nikam, Rohit 01 April 2021 (has links)
Polyelektrolyte (PEs) bilden eine große Klasse von Materialien, die in der wissenschaftlichen Forschung immer mehr Beachtung findet. Aufgrund der Lange-Bereich Elektrostatic ist das theoretische Verständnis von PE-Lösungen im Vergleich zu ihren neutralen Gegenstücken noch relativ schlecht gewesen, dadurch die Rationalisierung der Gegenionskondensation auf hochgeladenen PEs herausfordern. Die Komplexität des Problems wird noch zusätzlich durch die gleichzeitige Anwesenheit monovalenter und divalenter Gegenionen in der Lösung, was vielen biologische Umgebungen entspricht, erhöht. Dies beeinflusst die PE-Protein Komplexierungen, damit ihren Funktionen und Anwendungen in der Biomedizin und Biotechnologie. In dieser Arbeit führen wir eine umfassende Analyse der Ladungs- und Hydratationsstruktur von dendritischen PEs in einem monovalenten Salz unter Verwendung von atomistischen Molekulardynamik (MD) Computersimulationen mit explizitem Wasser durch. Darüber hinaus untersuchen der kompetitiven Adsorption der monovalenten und divalenten Gegenionen am globulären PE mit Hilfe theoretischer Mean-Field-Modelle, vergröberter und atomistischer (expliziter) Wasser-Simulationen und Kalorimetrie-Experimenten. Wir befassen uns mit der Herausforderung, eine genau definierte effektive Ladung und ein Oberflächenpotential der PEs für praktische Anwendungen zu finden, und präsentieren ein neuartiges kompetitives Ionenbindungsmodell, das einen aussagekräftigen Vergleich zwischen Theorie, Simulationen und Experimenten gewährleistet. Diese Arbeit stellt eine systematische elektrostatischen Beschreibung von PE vor, untersucht die thermodynamische PE-Wasser Signatur und analysiert die kompetitiven Bindung von monovalenten und divalenten Gegenionen an PEs. Es wird ein tieferer Einblick in die physikochemischen Aspekte von PE-Gegenionen- und PE-Wasser-Wechselwirkungen erhalten, was für das rationale Design von PEs auf einer gezielten Anwendungsbasis von entscheidender Bedeutung ist. / Polyelectrolytes (PEs) represent a broad class of materials that are getting an increasing attention in the scientific community. However, due to the long-range electrostatics, the theoretical understanding of PE solutions has been relatively poor compared to their neutral counterparts, thereby challenging the rationalization of the counterion condensation on highly charged PEs. Moreover, the counter-intuitive footprint of PE-water thermodynamics, and the simultaneous presence of the divalent and the monovalent counterions in the solution, as is reminiscent of many biological environments, escalates the complexity and richness of the problem. This affects the PE-proteins complexations, and thus their functions, applications in biomedicine and biotechnology. In this thesis, we conduct a comprehensive analysis of the charge and hydration structure of dendritic PEs in a monovalent salt using all-atom explicit-water molecular dynamics computer simulations, and investigate a competitive sorption of mono- versus divalent ions on globular PEs using mean-field theoretical models, all-atom and coarse-grained simulations and calorimetry experiments. We address the challenges of obtaining a well-defined effective charge and surface potential of the PE for practical applications and present a novel competitive ion binding model, ensuring a meaningful comparison between theory, simulations and experiments. This thesis lays out a systematic PE electrostatic characterization, explores PE-water thermodynamics, and analyses the competitive binding of divalent and monovalent counterions on the PE. A deeper insight into the physicochemical aspects of PE-counterion and PE-water interactions is achieved, which is vital towards the rational design of PEs on a targeted application basis.
4

FIRST-PRINCIPLES STUDY OF ELECTRONIC AND VIBRATIONAL PROPERTIES OF BULK AND MONOLAYER V2O5

BHANDARI, CHURNA B. 01 June 2016 (has links)
No description available.
5

Etude expérimentale de polyélectrolytes hydrophobes modèles

Baigl, Damien 11 September 2003 (has links) (PDF)
Un polyélectrolyte hydrophobe est un polymère portant des charges électriques lorsqu'il est en solution aqueuse et dont l'eau est un mauvais solvant pour le squelette. Cette thèse a pour objectif d'établir l'influence de la nature hydrophobe du squelette sur les propriétés physiques des polyélectrolytes. Pour cela, nous avons tout d'abord synthétisé une série de poly(styrène-\emph(co)-styrènesulfonate de sodium), appelés PSS, possédant des taux de charge $f$ variant entre 30\% et 100\% et comportant entre $N=120$ et $N=2520$ monomères par chaîne. Ces PSS sont caractérisés précisément et peuvent être considérés comme des polyélectrolytes hydrophobes modèles. Nous avons alors étudié leurs propriétés volumiques puis interfaciales.\\ \emph(1. Propriétés en volume.) Le taux de charge effectif de la chaîne unique est anormalement réduit par rapport au cas du polyélectrolyte hydrophile. D'autre part, les propriétés structurales ont été caractérisées par la diffusion des rayons X et la technique de la sonde colloïdale en microscopie à force atomique (AFM). La conformation des chaînes se fait ressentir puisque la longueur de corrélation varie comme $N^0C_p^(-\alpha)$ où $C_p$ est la concentration en polymère et $\alpha$ un exposant dépendant de $f$, décroissant de 1/2 ($f=100\%$) à 1/3 au voisinage de la limite de solubilité. Ces observations sont interprétées dans le cadre d'un modèle théorique prédisant la conformation de la chaîne isolée comme un collier de perles, constitué de globules denses (les perles) reliés deux à deux par un segment de chaîne étirée. La dynamique collective des chaînes, quant à elle, est très proche de celle des polyélectrolytes hydrophiles.\\ \emph(2. Propriétés aux interfaces.) Nous avons conçu une expérience permettant, par adsorption électrostatique ou hydrophobe, de fixer les chaînes de PSS sur une surface solide plane modifiée chimiquement. La couche de PSS adsorbée, immergée dans l'eau, est caractérisée $in~situ$ par ellipsométrie, réflectivité des rayons X haute énergie et microscopie à force atomique. Nous avons ainsi trouvé que la taille de perles varie entre 1 et 5 nm en fonction de $f$. Cette variation est en parfait accord avec les prédictions du modèle dit du collier de perles. Enfin, les polyélectrolytes hydrophobes s'adsorbent également aux interfaces hydrophobes, les perles, dans certains cas, s'étalant sur la surface.

Page generated in 0.0685 seconds