• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude et mise en oeuvre d'un procédé de préformage d'un alliage eutectique d'oxydes / Study and implementation of a capillary shaping process for the growth of an eutectic's oxides alloy

Carroz, Laurent 12 December 2016 (has links)
Cette étude s’inscrit dans une problématique d’économie d’énergie à travers l’augmentation des rendements des turbines à gaz. L’objectif est alors de mettre au point un procédé permettant la croissance et la mise en forme de céramiques d’oxydes à la composition eutectique pour l’élaboration d’aubes de turbine. En conservant leurs propriétés mécaniques jusqu’à 1700°C et en présentant une densité plus faible que les superalliages actuellement utilisés dans les aubes, ces nouveaux matériaux seraient une solution potentielle pour augmenter notablement le rendement global des turboréacteurs. Dans ce contexte, le procédé EFG utilisé pour la production de saphir a été identifié comme le procédé d’élaboration le plus prometteur, et la céramique Al2O3/YAG/ZrO2 comme la composition présentant les meilleurs propriétés mécaniques.Dans un premier temps une étude approfondie du procédé EFG utilisé par RSA le Rubis, l’entreprise dans laquelle s’est déroulé ce travail, a été menée. Nous avons alors réalisé un modèle analytique de résolution du point de fonctionnement du procédé. Ce modèle est basé sur nos connaissances dans la cristallisation de saphir et nécessite des ajustements pour convenir à la cristallisation de la céramique.Nous avons donc mesuré les propriétés de mouillage du matériau. La densité liquide et la tension de surface ont été mesurées à l’aide d’une méthode dérivée de la méthode de Wilhelmy. En outre, une simulation numérique du procédé, accompagnée de mesures de températures par thermocouple, a permis de connaitre plus précisément la distribution thermique à proximité de la zone de cristallisation. Cette étude complète les résultats du modèle.Ainsi, nous avons pu solidifier des plaques en céramique eutectique avec le procédé EFG. Plusieurs essais ont été nécessaires au dimensionnement d’une zone chaude assurant le maintien géométrique des plaques, puis de nombreux essais d’optimisation ont permis de prolonger les tirages et ainsi produire des plaques de plus grandes dimensions.Enfin, nous nous sommes intéressés à la caractérisation des céramiques. L’analyse des microstructures définit la vitesse de cristallisation maximale admissible pour réaliser des cristaux sans colonie, qui sont les défauts principaux dans ce type de microstructure. Une campagne d’essais mécaniques a également été effectuée, révélant des problématiques d’usinage nouvelles et particulièrement importantes. / This study is a part of an energy saving issues through an increase of gas turbine yields. The objective is to adapt a process for the growth of oxide ceramics with eutectic composition for the manufacture of turbine blades. Sustaining their mechanical properties up to 1700 ° C and with a lower density than superalloys which are currently used in the blades, these new materials are a potential solution to significantly increase the overall efficiency of jet engines. In this context, the EFG process used for the production of sapphire has been identified as the most promising process, and the eutectic composition Al2O3/YAG/ZrO2 as the ceramic with the best mechanical properties.First, a thorough study of the EFG process used by RSA le Ruby, the company where this work was conducted, was done. An analytic model to resolve the setting point of the process was realized. This model is based on the RSA le Rubis’s knowledge in the sapphire crystallization.The wetting properties of the material were measured to fit the model. The liquid density and surface tension were measured using a method derived from the Wilhelmy method. In addition, a numerical simulation of the process, accompanied by temperature measurement by thermocouple, was done. It allows to know the temperature distribution close to the crystallization zone with a better accuracy.Thus, eutectic ceramic plates were solidified with the EFG process. Several tests were necessary in order to design a process ensuring the solidification of net shaped plates. Then lot of optimization pulls have been done to extend the plate’s dimensions.Finally, some characterizations were achieved on the plates. Analysis of the microstructure defines the maximum rate of crystallization to produce crystals without colonies, which are the main defect in these kinds of microstructures. A campaign of mechanical testing was also performed, revealing new machining problems which are particularly important.
2

Crystal structure, electron density and chemical bonding in inorganic compounds studied by the Electric Field Gradient

Koch, Katrin 22 September 2009 (has links) (PDF)
The goal of solid state physics and chemistry is to gain deeper understanding of the basic principles of condensed matter. This ongoing process is achieved by the combination of experimental methods and theoretical models. One theoretical approach are the so-called first-principles calculations, which are based on the concept of density functional theory (DFT). In order to test the reliability of a band structure calculation, its results have to be compared with experiments. Since the electron density, the main constituent of DFT codes, cannot be directly determined experimentally with sufficient accuracy (e.g., by X-ray diffraction), other experimentally available properties are needed for the comparison with the calculation. A quantity that can be measured with high accuracy and that provides indirect information about the electron density is the electric field gradient (EFG). The EFG reflects local structural symmetry properties of the charge distribution surrounding a nucleus: the EFG is nonzero if the density deviates from cubic symmetry and therefore generates an inhomogeneous electric field at the nucleus. Since the EFG is highly sensitive to structural parameters and to disorder, it is a valuable tool to extract structural information. Furthermore, the evaluation of the EFG can provide valuable insight into the chemical bonding. Whereas the experimental determination of the quadrupole frequency and the closely related EFG has been possible for more than 70 years, reliable values for calculated EFGs could not be obtained before 1985, when an EFG module was implemented in the full-potential, linearised-augmented-plane-wave code WIEN. Since the full-potential local-orbital minimum-basis scheme FPLO is numerically very efficient and its local-orbital scheme allows an easy analysis of the different contributions to the EFG, one goal of this work was the implementation of an EFG module within the FPLO code. The newly implemented EFG module was applied to different systems: starting from simple metals, then approaching more complex systems and finally tackling strongly correlated oxides. Simultaneously, the EFGs for the studied compounds were determined experimentally by NMR spectroscopists. This close collaboration enables the comparison of the calculated EFGs with the experimental observations, which makes it possible to extract more physical and chemical information from the measured values regarding structural relaxation, distortion, the chemical bond or the relevance of electron correlation. In the last part of this work, the importance of corrections that go beyond the EFG are discussed. Such corrections arise for any multipole order of the hyperfine interactions, and are due to electron penetration into the nucleus. A correction similar to the isomer shift, coined here the "quadrupole shift" is examined in detail.
3

Kohlenstoff in EFG-Silizium

Scholz, Sandra 27 July 2009 (has links) (PDF)
In EFG-Silizium wird Kohlenstoff weit über der Gleichgewichtslöslichkeit im Gitter eingebaut. In dünnen Bereichen der EFG-Bänder wird dabei mehr gelöster Kohlenstoff inkooperiert. Im EFG-Material liegen 4 · 10^17At/cm^3 Kohlenstoff in ausgeschiedener Form vor. Dabei bildet sich zum Einen in einigen Zwillingskorngrenzen eine monoatomare Schicht SiC aus, zum Anderen bilden sich Präzipitate, die kleiner als 60nm sind und kaum Spannungen in der Siliziummatrix erzeugen. Es wird vermutet, dass es sich um atomare Agglomerate aus wenigen Atomen Kohlenstoff und interstitiellen Siliziumatomen handelt. Diese Präzipitate verschlechtern die elektrischen Eingeschaften im Ausgangsmaterial. Durch eine veränderte Spülgaszusammensetzung (Zugabe von CO oder CO_2) während der Züchtung bilden sich Präzipitate größer als 60nm im Volumen der EFG-Bänder. Dadurch verbessert sich der Wirkungsgrad der gefertigten Solarzellen, verglichen mit den herkömmlichen EFG-Zellen.
4

Kohlenstoff in EFG-Silizium: Verteilung und Einfluss auf die Rekombinationseigenschaften

Scholz, Sandra 05 December 2008 (has links)
In EFG-Silizium wird Kohlenstoff weit über der Gleichgewichtslöslichkeit im Gitter eingebaut. In dünnen Bereichen der EFG-Bänder wird dabei mehr gelöster Kohlenstoff inkooperiert. Im EFG-Material liegen 4 · 10^17At/cm^3 Kohlenstoff in ausgeschiedener Form vor. Dabei bildet sich zum Einen in einigen Zwillingskorngrenzen eine monoatomare Schicht SiC aus, zum Anderen bilden sich Präzipitate, die kleiner als 60nm sind und kaum Spannungen in der Siliziummatrix erzeugen. Es wird vermutet, dass es sich um atomare Agglomerate aus wenigen Atomen Kohlenstoff und interstitiellen Siliziumatomen handelt. Diese Präzipitate verschlechtern die elektrischen Eingeschaften im Ausgangsmaterial. Durch eine veränderte Spülgaszusammensetzung (Zugabe von CO oder CO_2) während der Züchtung bilden sich Präzipitate größer als 60nm im Volumen der EFG-Bänder. Dadurch verbessert sich der Wirkungsgrad der gefertigten Solarzellen, verglichen mit den herkömmlichen EFG-Zellen.
5

Crystal structure, electron density and chemical bonding in inorganic compounds studied by the Electric Field Gradient

Koch, Katrin 18 September 2009 (has links)
The goal of solid state physics and chemistry is to gain deeper understanding of the basic principles of condensed matter. This ongoing process is achieved by the combination of experimental methods and theoretical models. One theoretical approach are the so-called first-principles calculations, which are based on the concept of density functional theory (DFT). In order to test the reliability of a band structure calculation, its results have to be compared with experiments. Since the electron density, the main constituent of DFT codes, cannot be directly determined experimentally with sufficient accuracy (e.g., by X-ray diffraction), other experimentally available properties are needed for the comparison with the calculation. A quantity that can be measured with high accuracy and that provides indirect information about the electron density is the electric field gradient (EFG). The EFG reflects local structural symmetry properties of the charge distribution surrounding a nucleus: the EFG is nonzero if the density deviates from cubic symmetry and therefore generates an inhomogeneous electric field at the nucleus. Since the EFG is highly sensitive to structural parameters and to disorder, it is a valuable tool to extract structural information. Furthermore, the evaluation of the EFG can provide valuable insight into the chemical bonding. Whereas the experimental determination of the quadrupole frequency and the closely related EFG has been possible for more than 70 years, reliable values for calculated EFGs could not be obtained before 1985, when an EFG module was implemented in the full-potential, linearised-augmented-plane-wave code WIEN. Since the full-potential local-orbital minimum-basis scheme FPLO is numerically very efficient and its local-orbital scheme allows an easy analysis of the different contributions to the EFG, one goal of this work was the implementation of an EFG module within the FPLO code. The newly implemented EFG module was applied to different systems: starting from simple metals, then approaching more complex systems and finally tackling strongly correlated oxides. Simultaneously, the EFGs for the studied compounds were determined experimentally by NMR spectroscopists. This close collaboration enables the comparison of the calculated EFGs with the experimental observations, which makes it possible to extract more physical and chemical information from the measured values regarding structural relaxation, distortion, the chemical bond or the relevance of electron correlation. In the last part of this work, the importance of corrections that go beyond the EFG are discussed. Such corrections arise for any multipole order of the hyperfine interactions, and are due to electron penetration into the nucleus. A correction similar to the isomer shift, coined here the "quadrupole shift" is examined in detail.
6

The impact of a single nucleotide polymorphism in fusA1 on biofilm formation and virulence in Pseudomonas aeruginosa

Maunders, Eve Alexandra January 2018 (has links)
Pseudomonas aeruginosa is an opportunistic human pathogen that is now the leading cause of morbidity and mortality in immunocompromised individuals. Those suffering with the genetic disease cystic fibrosis (CF) commonly encounter P. aeruginosa infections. P. aeruginosa infection can present itself as an acute infection, which is characterised by highly virulent, "free-swimming" bacteria, or as a chronic infection associated with the formation of surface-adhered bacterial communities known as biofilms. The labyrinth of interconnecting signalling networks has meant that the regulatory mechanisms behind biofilm formation and virulence are largely undefined. In this dissertation, a single nucleotide polymorphism was identified within the gene, fusA1, encoding elongation factor G (EF-G). The mutation introduced minor structural changes to the protein which were likely to have functional repercussions in its involvement in protein synthesis. Phenotypic analysis revealed that the mutation conferred changes in both resistance and sensitivity to various antibiotics, as well as changes in motility, exoenzyme production, quorum sensing, metabolism, synthesis of biofilm-associated proteins and exopolysaccharide production. Most notably was the up-regulation of a major virulence determinant, the type three secretion system, typically characteristic of cells comprising an acute infection. Proteomic and transcriptomic profiling of the mutant strain provided an insight into the genetic basis behind these phenotypes, identifying the up-regulation of multidrug efflux systems and modulations to the chemotactic systems. This study also found links between several biological processes that were modulated in the mutant strain, such as crosstalk between sulfur metabolism, iron uptake and the oxidative stress response. In summary, the work presented in this dissertation highlights the susceptibility of fusA1 to spontaneous mutation and identifies a novel role for EF-G in bacterial virulence and antibiotic sensitivity, both of which have worrying implications for infection within the CF lung.
7

Effect of dislocation density on residual stress in polycrystalline silicon wafers

Garcia, Victoria 06 March 2008 (has links)
The goal of this research was to examine the relationship between dislocation density and in-plane residual stress in edge-defined film-fed growth (EFG) silicon wafers. Previous research has shown models for linking dislocation density and residual stress based on temperature gradient parameters during crystal growth. Residual stress and dislocation density have a positive relationship for wafers with very low dislocation density such as Cz wafers. There has been limited success in experimental verifications of residual stress for EFG wafers, without any reference to dislocation density. No model of stress relaxation has been verified experimentally in post production wafers. A model that assumes stress relaxation and links residual stress and dislocation density without growth parameters will be introduced here. Dislocation density and predominant grain orientation of EFG wafers have been measured by the means of chemical etching/optical microscope and x-ray diffraction, respectively. The results have been compared to the residual stress obtained by a near infrared transmission polariscope. A model was established to explain the results linking dislocation density and residual stress in a randomly selected EFG wafer.
8

Study of ZrSiO<sub>4</sub> Phase Transition Using Perturbed Angular Correlation Spectroscopy

Rambo, Matthew P. 03 March 2005 (has links)
No description available.
9

Mechanism Of Ribosome Recycling In Eubacteria, And The Impact Of rRNA Methylations On Ribosome Recycling And Fidelity Of Initiation In Esherichia coli

Anuradha, S 02 1900 (has links)
The studies reported in this thesis address, firstly, aspects of ribosome recycling in eubacteria, and secondly, a preliminary characterization of an EFG-like locus from Mycobacterium smegmatis. A hitherto unsuspected role of the ribosome recycling factor in governing the fidelity of initiation has been discovered during the course of this work. A summary of the relevant literature is presented in chapter 1. Section I of the ‘General Introduction’ provides a brief review of the current understanding of protein biosynthesis, with a special emphasis on ribosome recycling and the fidelity of translation initiation. Section II provides a brief introduction to mycobacterial translation, and known deviations from the E. coli prototype are highlighted. This is followed by three chapters containing experimental work, as summarized below. (i) Role of elongation factor G in governing specificity of ribosome recycling In eubacteria and the eukaryotic organelles, the post-termination ribosome complexes are recycled by the combined action of ribosome recycling factor (RRF) and elongation factor G (EFG). Earlier studies both from our laboratory and other laboratories have revealed the existence of specific interactions between RRF and EFG that are crucial for ribosome recycling, using ribosomes from E. coli and factors from both E. coli and heterologous sources such as Mycobacterium tuberculosis, Thermus thermophilus etc. In this study, to further understand the mechanism of ribosome recycling, we employed polysomes from both E. coli and M. smegmatis and monitored ribosome recycling in in vitro assays using RRF and EFG from both these sources; in addition, in vivo assays were performed in E. coli using either temperature-sensitive strains or strains carrying a deletion in frr (encoding RRF) or fusA (encoding EFG) genes. It was found that, in E. coli, RRF from Mycobacterium tuberculosis and M. smegmatis function with MtuEFG or MsmEFG but not with EcoEFG. In vitro assays revealed that the mycobacterial EFGs facilitate recycling of both the mycobacterial and E. coli polysomes not only with mycobacterial RRFs but also with EcoRRF. In contrast, although EcoEFG binds to mycobacterial polysomes, carries out GTP hydrolysis and is reported to sustain translocation on mycobacterial ribosomes, its activity in recycling mycobacterial polysomes was undetectable with EcoRRF, as well as with the mycobacterial RRFs. Such an observation allowed us to infer that EFG establishes specific interactions with the ribosome that are crucial for ribosome recycling but not for translocation, suggesting that translocation and ribosome recycling are distinct functions of EFG. In addition, a number of EFG chimeras generated by swapping corresponding domains between Msm- and Eco-EFGs were analyzed for their ability to sustain translocation and/or ribosome recycling in E. coli and M. smegmatis, using a combination of in vivo (for E. coli) and in vitro (for both E. coli and M. smegmatis) approaches. Our observations reveal that a dual set of specific interactions of EFG with RRF and ribosome is essential for ribosome recycling. While the RRF-EFG specific interactions are predominantly localized to the domains IV and V of EFG, the EFG-ribosome specific interactions that are crucial for ribosome recycling are not localized to a specific region of EFG but are found throughout the molecule. Our novel observations also emphasize the importance of using ribosomes from heterologous sources to understand the mechanism of this crucial process. (ii) Impact of rRNA methylations on ribosome recycling and fidelity of initiation in Escherichia coli Ribosomal RNA (rRNA) contains a number of modified nucleosides in functionally important regions including the intersubunit bridge regions; however, very little is known about the role of these rRNA modifications in ribosome function. As the activity of ribosome recycling factor (RRF) in separating the large and the small subunits of the ribosome involves disruption of the intersubunit bridges, we investigated the impact of rRNA methylations on ribosome recycling. The isolation of a folD122 mutant strain of E. coli with a deficiency in rRNA methylations, as well as the availability of E. coli strains deficient for various individual methyltransferases that modify specific rRNA residues, provided us with a genetic tool to assay the role of rRNA methylations in ribosome recycling. We observed that deficiency of rRNA methylations, especially at positions 1518 and 1519 of 16S rRNA near the interface with the 50S subunit and in the vicinity of the IF3 binding site, adversely affects the efficiency of RRF-mediated ribosome recycling. In addition, a compromise in the RRF activity was found to afford increased initiation with a mutant tRNAfMet wherein the three consecutive G-C base pairs (29GGG31:39CCC41), a highly conserved feature of the initiator tRNAs, were mutated to those found in the elongator tRNAMet (29UCA31:39ψGA41). This observation has allowed us to uncover a new role of RRF as a factor that contributes to fidelity of initiator tRNA selection on the ribosome. In addition, it was also found that IF3 and rRNA methylations, both of which are known to affect fidelity of initiation, exert their effects through distinct mechanisms, despite the proximity of a cluster of methylated rRNA residues to the IF3 binding site on the 30S subunit. (iii) Characterization of the role of EFG2, an EFG-like locus in Mycobacterium smegmatis Several bacteria, including various species of mycobacteria (with the exception of Mycobacterium leprae) contain a second EFG-like locus, denoted as fusA2, which shows considerable homology to fusA (encoding EFG). A comparison of the sequences of EFG and EFG2 from various bacteria reveals that EFG2 contains a GTPase domain and domains with significant homology to EFG domains IV and V, suggesting that it may function as an elongation factor. With the single exception of a recent study on Thermus thermophilus EFG2, this class of EFG-like protein factors has not been studied so far. Hence, it was of interest to characterize EFG2. In the current study, EFG2 from M. smegmatis was characterized both by in vitro biochemical assays as well as by in vivo experiments targeted to investigate the biological significance of EFG2 in mycobacteria. It was found that, unlike EFG, MsmEFG2 could not sustain either translocation or ribosome recycling in E. coli. Despite the fact that the purified MsmEFG2 could bind guanine nucleotides, it lacked the ribosome-dependent GTPase activity characteristic of EFG and other translation GTPases, suggesting that it was unlikely to function as an elongation factor. However, EFG2 was found to be expressed in stationary phase cultures of M. smegmatis. To understand the biological significance of EFG2, fusA2 was disrupted in M. smegmatis. The viability of the M. smegmatis mc2155 fusA2::kan derivative indicates that MsmfusA2 is a non-essential gene. While disruption of the fusA2 gene (encoding EFG2) in M. smegmatis does not appear to affect its growth and survival in log phase or stationary phase or under hypoxic conditions, preliminary experiments indicate that disruption of fusA2 confers a fitness disadvantage to M. smegmatis when competed against M. smegmatis mc2155 (with wild type fusA2 locus).
10

Study of ZrSiO4 phase transition using perturbed angular correlation spectroscopy

Rambo, Matthew P. January 2005 (has links)
Thesis (M.S.)--Miami University, Dept. of Physics, 2005. / Title from first page of PDF document. Document formatted into pages; contains [1], vii, 55 p. : ill. Includes bibliographical references (p. 53-55).

Page generated in 0.0294 seconds