Spelling suggestions: "subject:"eigenvectors."" "subject:"eigenvector's.""
71 |
CONTROLE ROBUSTO LQG/LTR COM RECUPERAÇÃO DO GANHO DA MALHA DE TRANSFERÊNCIA / ROBUST CONTROL LQG/LTR WITH RECOVERY OF THE PROFIT OF THE MESH OF TRANSFERENCEBrito Filho, Joaquim Gomes 31 May 2006 (has links)
Made available in DSpace on 2016-08-17T14:52:59Z (GMT). No. of bitstreams: 1
Joaquim Gomes Brito Filho.pdf: 577773 bytes, checksum: 0d9ad903ecdf123ced443b5b094e37aa (MD5)
Previous issue date: 2006-05-31 / In this work is presented a method to solve the Eigenstructure Allocation pro-
blem for multivariable dynamic systems by means of Robust Controllers Design
Linear Quadratic Gaussian, LQG/LTR Loop transfer Recovery and Hierarchical
Genetic Algorithm in three levels. It shows an uni¯ed method for controllers ro-
bust design that are one systematical of the three stages of LQG/LTR methodo-
logy. The evolutionary computation is used in the primary level that is the gain
controller optimal determination to guarantee the terms of robust stability. The
intermediary level, consists in the utilization of a AG to determine the Kalman
state observer gain. The last level of this hierarchy consists of recovery the ro-
bustness properties of the LQR design which were lost due to inclusion of the
LQG loop by means of a GA. The method is veri¯ed in a dynamic system which
represents an aircraft in cruzeiro speed, a LQG/LQR-hierarchic design perfor-
mance analysis in the frequency domain and of time show the commitments that
should be taken over in applications of the real world systems. / Apresenta-se um método para resolver o problema de Alocação de Auto-estrutura
para sistemas dinâmicos multivariáveis por meio do Projeto de Controladores Ro-
busto Gaussiano Linear Quadrático, Recuperação da Malha de Transferência e
Algoritmo Genético Hierárquico em três níveis. Mostra-se um método unificado
para o projeto de controladores robustos que são uma sistematização das três
etapas da metodologia LQG/LTR. A computação evolutiva é utilizada no nível
primário que é a determinação dos ganhos do controlador ótimo para garantir as
condições de estabilidade robusta. O nível intermediário, consiste na utilização
de um AG para determinar os ganhos de Kalman do observador de estado. O
último nível desta hierarquia consiste da recuperação das propriedades de ro-
bustez do projeto LQR que foram perdidas devido a inclusão da malha LQG
por meio de um AG. O método é verficado em um sistema dinâmico que re-
presenta uma aeronave em velocidade cruzeiro, uma análise de desempenho do
projeto LQG/LQR-hierárquico no domínio da frequência e do tempo mostram
os compromissos que devem ser assumidos em aplicações de sistemas do mundo
real.
|
72 |
Výpočet vlastních čísel a vlastních vektorů hermitovské matice / Computation of the eigenvalues and eigenvectors of Hermitian matrixŠtrympl, Martin January 2016 (has links)
This project deals with computation of eigenvalues and eigenvectors of Hermitian positive-semidefinite complex square matrix of order 4. The target is an implementation of computation in language VHDL to field-programmable gate array of type Xilinx Zynq-7000. This master project deals with algorithms used for computation of eigenvalues and eigenvectors of positive-semidefinite symmetric real square and positive-semidefinite complex Hermitian matrix and the analysis of algorithms by AnalyzeAlgorithm program assembled for this purpose. The closing part of this project describes implementation of the computation into field-programmable gate array with use of IP core Xilinx® Floating-Point \linebreak Operator and SVAOptimalizer, SVAInterpreter and SVAToDSPCompiler programs.
|
73 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
74 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
75 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
76 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
77 |
Μαθηματικές μέθοδοι βελτιστοποίησης προβλημάτων μεγάλης κλίμακας / Mathematical methods of optimization for large scale problemsΑποστολοπούλου, Μαριάννα 21 December 2012 (has links)
Στην παρούσα διατριβή μελετάμε το πρόβλημα της βελτιστοποίησης μη γραμμικών συναρτήσεων πολλών μεταβλητών, όπου η αντικειμενική συνάρτηση είναι συνεχώς διαφορίσιμη σε ένα ανοιχτό υποσύνολο του Rn. Αναπτύσσουμε μαθηματικές μεθόδους βελτιστοποίησης αποσκοπώντας στην επίλυση προβλημάτων μεγάλης κλίμακας, δηλαδή προβλημάτων των οποίων οι μεταβλητές είναι πολλές χιλιάδες, ακόμα και εκατομμύρια. Η βασική ιδέα των μεθόδων που αναπτύσσουμε έγκειται στη θεωρητική μελέτη των χαρακτηριστικών μεγεθών των Quasi-Newton ενημερώσεων ελάχιστης και μικρής μνήμης. Διατυπώνουμε θεωρήματα αναφορικά με το χαρακτηριστικό πολυώνυμο, τον αριθμό των διακριτών ιδιοτιμών και των αντίστοιχων ιδιοδιανυσμάτων. Εξάγουμε κλειστούς τύπους για τον υπολογισμό των ανωτέρω ποσοτήτων, αποφεύγοντας τόσο την αποθήκευση όσο και την παραγοντοποίηση πινάκων. Τα νέα θεωρητικά απoτελέσματα εφαρμόζονται αφενός μεν στην επίλυση μεγάλης κλίμακας υποπροβλημάτων περιοχής εμπιστοσύνης, χρησιμοποιώντας τη μέθοδο της σχεδόν ακριβούς λύσης, αφετέρου δε, στην καμπυλόγραμμη αναζήτηση, η οποία χρησιμοποιεί ένα ζεύγος κατευθύνσεων μείωσης, την Quasi-Newton κατεύθυνση και την κατεύθυνση αρνητικής καμπυλότητας. Η νέα μέθοδος μειώνει δραστικά τη χωρική πολυπλοκότητα των γνωστών αλγορίθμων του μη γραμμικού προγραμματισμού, διατηρώντας παράλληλα τις καλές ιδιότητες σύγκλισής τους. Ως αποτέλεσμα, οι προκύπτοντες νέοι αλγόριθμοι έχουν χωρική πολυπλοκότητα Θ(n). Τα αριθμητικά αποτελέσματα δείχνουν ότι οι νέοι αλγόριθμοι είναι αποδοτικοί, γρήγοροι και πολύ αποτελεσματικοί όταν χρησιμοποιούνται στην επίλυση προβλημάτων με πολλές μεταβλητές. / In this thesis we study the problem of minimizing nonlinear functions of several variables, where the objective function is continuously differentiable on an open subset of Rn. We develop mathematical optimization methods for solving large scale problems, i.e., problems whose variables are many thousands, even millions. The proposed method is based on the theoretical study of the properties of minimal and low memory Quasi-Newton updates. We establish theorems concerning the characteristic polynomial, the number of distinct eigenvalues and corresponding eigenvectors. We derive closed formulas for calculating these quantities, avoiding both the storage and factorization of matrices. The new theoretical results are applied in the large scale trust region subproblem for calculating nearly exact solutions as well as in a curvilinear search that uses a Quasi-Newton and a negative curvature direction. The new method is drastically reducing the spatial complexity of known algorithms of nonlinear programming. As a result, the new algorithms have spatial complexity Θ(n), while they are maintaining good convergence properties. The numerical results show that the proposed algorithms are efficient, fast and very effective when used in solving large scale problems.
|
78 |
The condition number of Vandermonde matrices and its application to the stability analysis of a subspace method / Die Konditionzahl von Vandermondematrizen und ihre Anwendung für die Stabilitätsanalyse einer UnterraummethodeNagel, Dominik 19 March 2021 (has links)
This thesis consists of two main parts. First of all, the condition number of rectangular Vandermonde matrices with nodes on the complex unit circle is studied. The first time quantitative bounds for the extreme singular values are proven in the multivariate setting and when nodes of the Vandermonde matrix form clusters. In the second part, an optimized presentation of the deterministic stability analysis of the subspace method ESPRIT is given and results from the first part are applied.
|
79 |
Analýza chování železniční koleje na účinky pojezdu železničního vozidla / Analysis of railway behavior on vehicles effectsPeňázová, Gabriela January 2022 (has links)
The master’s thesis deals with the possibilities of railway track modeling. The computational models were created in ANSYS Classic. Simplified 2D model represents a longitudal half of classic single track construction, 3D models represent classic single track construction and RHEDA 2000 slab track. Static and dynamic response of 2D model was compared with analytical solutions by Timoshenko and Fryba. Static and dynamic responses of 3D models were analyzed and compared.
|
80 |
The Eigenvalue Problem in Linear Viscoelastic Structures: New Numerical Approaches and the Equivalent Viscous ModelLázaro Navarro, Mario 25 June 2013 (has links)
El análisis y el control de las vibraciones cobra especial importancia en muchas
ramas de la ingeniería, en especial la ingeniería mecánica, civil, aeronáutica y
automovilística. Tal es así que prácticamente se identi¿ca como un área independiente dentro del análisis dinámico de estructuras. Desde los comienzos de esta
teoría, las fuerzas disipativas o de amortiguamiento han sido uno de los fenómenos
más difíciles de modelizar. El modelo viscoso, por su sencillez y versatilidad ha
sido y sigue siendo el gran paradigma de los modelos de amortiguamiento. Sin embargo, como consecuencia de la aparición de materiales con memoria se introdujo
el fenómeno de la viscoelasticidad; Esta, si bien está también 'íntimamente ligada '
a la velocidad de la respuesta, necesito de la introducción de las denominadas funciones hereditarias, que permiten poner a las fuerzas disipativas como función no
solo de la velocidad instantánea sino de la historia de velocidades desde el comienzo
del movimiento, de ahí el termino memoria. De forma natural, el avance teórico
introducido en el modelo supone también una complicación computacional, pues
donde antes teníamos un sistema lineal de ecuaciones diferenciales ahora tenemos
un sistema de ecuaciones integro-diferenciales.
El análisis de las vibraciones libres de los sistemas con amortiguamiento viscoelástico conduce a un problema nolineal de autovalores donde la característica
principal es una matriz de amortiguamiento que depende de la frecuencia de excitación. El estudio de la solución de autovalores y autovectores de este problema
es importante si se desean conocer los modos de vibración de la estructura o si se
pretende obtener la respuesta en el dominio de la frecuencia del sistema. El objetivo fundamental de esta Tesis Doctoral es doble: Por un lado, profundizar en el
conocimiento del problema de autovalores de sistemas viscoelásticos proponiendo
para ello nuevos métodos numéricos de resolución. Por otro, desarrollar un nuevo
modelo viscoso que, bajo ciertas condiciones, reproduzca la respuesta del modelo
viscoelástico con su¿ciente aproximación.
La Tesis se divide en ocho capítulos, de ellos el cuerpo principal se encuentra en
los seis centrales (Capítulos 2 a 7. Todos ellos son artículos de investigación que,
o bien han sido publicados, o bien están en proceso de revisión en revistas contenidas en el Journal Citation Reports (JCR). Por esta razón, todos los capítulos
conservan la estructura intrínseca de un artículo, incluidas una introducción y una
bibliografía en cada uno.
Los cuatro primeros capítulos (Capítulos 2 a 5) se centran en el estudio del problema no lineal de autovalores. Se proponen dos metodologías de resolución: la
primera es un procedimiento iterativo basado en el esquema del punto-¿jo y desarrollado para sistemas proporcionales o ligeramente no-proporcionales (aquellos
en los que los modos se presentan desacoplados o casi desacoplados). La segunda
metodología (presentada en dos capítulos diferentes), denominada paramétrica,
permite obtener soluciones casi-analíticas de los autovalores, tanto para sistemas
de un grado de libertad como para sistemas de múltiples grados de libertad y
dentro de 'estos, para sistemas proporcionales y no proporcionales. El estudio del
problema de autovalores se completa con un capítulo dedicado a los autovalores
reales, también denominados autovalores no viscosos. En 'él se demuestra una
nueva caracterización maten ática que deben cumplir dichos autovalores y que
permite proponer un nuevo concepto: el conjunto no-viscoso.
Los dos 'últimos capítulos (Capítulos 6 y 7) analizan el Modelo Viscoso Equivalente
como propuesta para la modelización de la respuesta de sistemas viscoelásticos.
El análisis se realiza desde el dominio de la frecuencia estudiando la función de
transferencia. En una primera etapa (pen último capítulo), de naturaleza más
maten ática, se demuestra que la función de transferencia exacta de un modelo viscoelástico se puede expresar como suma de una función de transferencia
propia de un modelo viscoso más un término denominado residual, directamente
dependiente del nivel de amortiguamiento inducido y del acoplamiento modal (noproporcionalidad de la matriz de amortiguamiento). En una segunda etapa ('ultimo
capítulo), se desarrolla una aplicación para estructuras reales formadas por entramados planos de elementos 1D amortiguados con capas de material visco elástico.
Este tipo de estructuras ha permitido usar una variante mejorada del método
paramétrico para la obtención de los autovalores, de forma que en este 'ultimo
capítulo ha servido como nexo de unión de las metodologías más importantes desarrolladas en la Tesis. / Lázaro Navarro, M. (2013). The Eigenvalue Problem in Linear Viscoelastic Structures: New Numerical Approaches and the Equivalent Viscous Model [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/30062
|
Page generated in 0.0587 seconds