• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 3
  • 3
  • Tagged with
  • 28
  • 26
  • 26
  • 23
  • 18
  • 13
  • 13
  • 13
  • 13
  • 12
  • 10
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hochauflösende Spektroskopie und Mikroskopie einzelner Moleküle und Farbzentren bei tiefen Temperaturen

Dräbenstedt, Alexander 11 June 1999 (has links)
In dieser Arbeit wird der Aufbau eines Raumtemperatur-Nahfeldmikroskopes und die Implementation eines neuen nichtoptischen Abstandsregelmechanismus beschrieben und die Ergebnisse verschiedener Abbildungsarten dargestellt. Eine theoretische Modellierung des Scherkraft-Detektionsmechanismus erlaubt ein gezieltes Design fuer eine Nachnutzung. Der Aufbau eines Tieftemperatur-Konfokalmikroskopes, das zum Tieftemperatur-Nahfeldmikroskop erweiterbar ist, wird dargelegt. Die Abhaengigkeit des Photobleichens einzelner Terrylen-Molekuele von der Temperatur wird untersucht. Beobachtungen der spektralen Diffusion von Terrylen-Molekuelen werden dargelegt. Den Hauptteil dieser Arbeit bilden Untersuchungen am N-V Farbzentrum im Diamant. Einzelne Defektzentren wurden bei tiefen Temperaturen abgebildet und mittels Fluoreszenz-Anregungsspektroskopie untersucht, die Fluoreszenz-Emissionsdynamik wurde mit Autokorrelationsmessungen studiert. Das Temperaturverhalten der Fluoreszenzintensitaet, die Autokorrelation der Fluoreszenzintensitaet und die verzoegerte Fluoreszenz beweisen die Existenz eines metastabilen Zustandes. Durch Einstrahlen einer zweiten Wellenlaenge verkuerzt sich die Verweilzeit im metastabilen Zustand und die mittlere Fluoreszenzrate wird erhoeht (Deshelving). Die Tieftemperaturspektren widersprechen in mehreren Punkten den aus der Literatur bekannten Werten, die an hoeherkonzentrierten Proben gemessen wurden. Diese Unterschiede werden diskutiert und sind mit einer in hoeherkonzentrierten Proben verstaerkten Verspannung zu erklaeren. Ein Vergleich mit Diamant-Nanokristalliten, in denen eine erhoehte Verspannung auftritt, bestaetigt den Zusammenhang zwischen schmalen Uebergaengen und wirkender Verspannung durch das Auftreten von schmalen Emissionslinien.
22

Density functional study of the electronic and magnetic properties of selected transition metal complexes

Martin, Claudia 29 November 2013 (has links)
Die vorliegende Promotionsarbeit “Density functional study of the electronic and magnetic properties of selected transition metal complexes” beschäftigt sich mit dem Zusammenhang zwischen strukturellen Merkmalen sowie elektronischen und magnetischen Eigenschaften von Einzelmolekül-Magneten. Im Wesentlichen konnte dabei gezeigt werden, dass die magnetischen Eigenschaften sowohl von strukturellen Merkmalen als auch von den elektronischen Eigenschaften bestimmt werden. Des Weiteren ergab sich, dass verschiedene Kenngrößen der magnetischen Eigenschaften (im speziellen der magnetische Grundzustand S sowie die magnetische Anisotropie D) miteinander korreliert sind. Dies ist im Besonderen für eine mögliche Anwendung von Einzelmolekül-Magneten im Bereich der Datenspeicherung von Bedeutung.
23

Single-Molecule Measurements of Complex Molecular Interactions in Membrane Proteins using Atomic Force Microscopy

Sapra, K. Tanuj 01 March 2007 (has links)
Single-molecule force spectroscopy (SMFS) with atomic force microscope (AFM) has advanced our knowledge of the mechanical aspects of biological processes, and helped us take big strides in the hitherto unexplored areas of protein (un)folding. One such virgin land is that of membrane proteins, where the advent of AFM has not only helped to visualize the difficult to crystallize membrane proteins at the single-molecule level, but also given a new perspective in the understanding of the interplay of molecular interactions involved in the construction of these molecules. My PhD work was tightly focused on exploiting this sensitive technique to decipher the intra- and intermolecular interactions in membrane proteins, using bacteriorhodopsin and bovine rhodopsin as model systems. Using single-molecule unfolding measurements on different bacteriorhodopsin oligomeric assemblies - trimeric, dimeric and monomeric - it was possible to elucidate the contribution of intra- and interhelical interactions in single bacteriorhodopsin molecules. Besides, intriguing insights were obtained into the organization of bacteriorhodopsin as trimers, as deduced from the unfolding pathways of the proteins from different assemblies. Though the unfolding pathways of bacteriorhodopsin from all the assemblies remained the same, the different occurrence probability of these pathways suggested a kinetic stabilization of bacteriorhodopsin from a trimer compared to that existing as a monomer. Unraveling the knot of a complex G-protein coupled receptor, rhodopsin, showed the existence of two structural states, a native, functional state, and a non-native, non-functional state, corresponding to the presence or absence of a highly conserved disulfide bridge, respectively. The molecular interactions in absence of the native disulfide bridge mapped onto the three-dimensional structure of native rhodopsin gave insights into the molecular origin of the neurodegenerative disease retinitis pigmentosa. This presents a novel technique to decipher molecular interactions of a different conformational state of the same molecule in the absence of a high-resolution X-ray crystal structure. Interestingly, the presence of ZnCl2 maintained the integrity of the disulfide bridge and the nature of unfolding intermediates. Moreover, the increased mechanical and thermodynamic stability of rhodopsin with bound zinc ions suggested a plausible role for the bivalent ion in rhodopsin dimerization and consequently signal transduction. Last but not the least, I decided to dig into the mysteries of the real mechanisms of mechanical unfolding with the help of well-chosen single point mutations in bacteriorhodopsin. The monumental work has helped me to solve some key questions regarding the nature of mechanical barriers that constitute the intermediates in the unfolding process. Of particular interest is the determination of altered occurrence probabilities of unfolding pathways in an energy landscape and their correlation to the intramolecular interactions with the help of bioinformatics tools. The kind of work presented here, in my opinion, will not only help us to understand the basic principles of membrane protein (un)folding, but also to manipulate and tune energy landscapes with the help of small molecules, proteins, or mutations, thus opening up new vistas in medicine and pharmacology. It is just a matter of a lot of hard work, some time, and a little bit of luck till we understand the key elements of membrane protein (un)folding and use it to our advantage.
24

Single-molecule approaches reveal outer membrane protein biogenesis dynamics

Svirina, Anna, Chamachi, Neharika, Schlierf, Michael 01 March 2024 (has links)
Outer membrane proteins (OMPs) maintain the viability of Gram-negative bacteria by functioning as receptors, transporters, ion channels, lipases, and porins. Folding and assembly of OMPs involves synchronized action of chaperones and multi-protein machineries which escort the highly hydrophobic polypeptides to their target outer membrane in a folding competent state. Previous studies have identified proteins and their involvement along the OMP biogenesis pathway. Yet, the mechanisms of action and the intriguing ability of all these molecular machines to work without the typical cellular energy source of ATP, but solely based on thermodynamic principles, are still not well understood. Here, we highlight how different single-molecule studies can shed additional light on the mechanisms and kinetics of OMP biogenesis.
25

On-surface synthesis of acenes – / Oberflächensynthese von Acenen – organische nanoelektronische Materialien als Einzelmoleküle untersucht

Krüger, Justus 09 January 2018 (has links) (PDF)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
26

Downhill folders in slow motion:: Lambda repressor variants probed by optical tweezers

Mukhortava, Ann 26 September 2017 (has links)
Die Proteinfaltung ist ein Prozess der molekularen Selbstorganisation, bei dem sich eine lineare Kette von Aminosäuren zu einer definierten, funktionellen dreidimensionalen Struktur zusammensetzt. Der Prozess der Faltung ist ein thermisch getriebener diffusiver Prozess durch eine Gibbs-Energie-Landschaft im Konformationsraum für die Struktur der minimalen Energie. Während dieses Prozesses zeigt die freie Enthalpie des Systems nicht immer eine monotone Abnahme; stattdessen führt eine suboptimale Kompensation der Enthalpie- und der Entropieänderung während jedes Faltungsschrittes zur Bildung von Freien-Enthalpie-Faltungsbarrieren. Diese Barrieren und damit verbundenen hochenergetischen Übergangszustände, die wichtige Informationen über Mechanismen der Proteinfaltung enthalten, sind jedoch kinetisch unzugänglich. Um den Prozess der Barrierebildung und die strukturellen Merkmale von Übergangszuständen aufzudecken, werden Proteine genutzt, die über barrierefreie Pfade falten – so genannte “downhill folder“. Aufgrund der geringen Faltungsbarrieren werden wichtige Interaktionen der Faltung zugänglich und erlauben Einblicke in die ratenbegrenzenden Faltungsvorgänge. In dieser Arbeit vergleichen wir die Faltungsdynamiken von drei verschiedenen Varianten eines Lambda-Repressor-Fragments, bestehend aus den Aminosäuren 6 bis 85: ein Zwei-Zustands-Falter λWT (Y22W) und zwei downhill-folder-artige Varianten, λYA (Y22W/Q33Y/ G46,48A) und λHA (Y22W/Q33H/G46,48A). Um auf die Kinetik und die strukturelle Dynamik zu greifen zu können, werden Einzelmolekülkraftspektroskopische Experimente mit optische Pinzetten mit Submillisekunden- und Nanometer-Auflösung verwendet. Ich fand, dass die niedrige denaturierende Kraft die Mikrosekunden Faltungskinetik von downhill foldern auf eine Millisekunden-Zeitskala verlangsamt, sodass das System für Einzelmolekülstudien gut zugänglich ist. Interessanterweise zeigten sich unter Krafteinwirkung die downhill-folder-artigen Varianten des Lambda-Repressors als kooperative Zwei-Zustands-Falter mit deutlich unterschiedlicher Faltungskinetik und Kraftabhängigkeit. Drei Varianten des Proteins zeigten ein hoch konformes Verhalten unter Last. Die modellfreie Rekonstruktion von Freien-Enthalpie-Landschaften ermöglichte es uns, die feinen Details der Transformation des Zwei-Zustands-Faltungspfad direkt in einen downhill-artigen Pfad aufzulösen. Die Auswirkungen von einzelnen Mutationen auf die Proteinstabilität, Bildung der Übergangszustände und die konformationelle Heterogenität der Faltungs- und Entfaltungszustände konnten beobachtet werden. Interessanterweise zeigen unsere Ergebnisse, dass sich die untersuchten Varianten trotz der ultraschnellen Faltungszeit im Bereich von 2 μs in einem kooperativen Prozess über verbleibende Energiebarrieren falten und entfalten, was darauf hindeutet, dass wesentlich schnellere Faltungsraten notwendig sind um ein downhill Limit vollständig zu erreichen.:I Theoretical background 1 1 Introduction 3 2 Protein folding: the downhill scenario 5 2.1 Protein folding as a diffusion on a multidimensional energy landscape 5 2.2 Downhill folding proteins 7 2.2.1 Thermodynamic description of downhill folders 7 2.2.2 Identification criteria for downhill folders 8 2.3 Lambda repressor as a model system for studying downhill folding 9 2.3.1 Wild-type lambda repressor fragment λ{6-85} 10 2.3.2 Acceleration of λ{6-85} folding by specifific point mutations 11 2.3.3 The incipient-downhill λYA and downhill λHA variants 14 2.4 Single-molecule techniques as a promising tool for probing downhill folding dynamics 17 3 Single-molecule protein folding with optical tweezers 19 3.1 Optical tweezers 19 3.1.1 Working principle of optical tweezers 19 3.1.2 The optical tweezers setup 21 3.2 The dumbbell assay 22 3.3 Measurement protocols 23 3.3.1 Constant-velocity experiments 23 3.3.2 Constant-trap-distance experiments (equilibrium experiments) 24 4 Theory and analysis of single-molecule trajectories 27 4.1 Polymer elasticity models 27 4.2 Equilibrium free energies of protein folding in optical tweezers 28 4.3 Signal-pair correlation analysis 29 4.4 Force dependence of transition rate constants 29 4.4.1 Zero-load extrapolation of rates: the Berkemeier-Schlierf model 30 4.4.2 Detailed balance for unfolding and refolding data 31 4.5 Direct measurement of the energy landscape via deconvolution 32 II Results 33 5 Efficient strategy for protein-DNA hybrid formation 35 5.1 Currently available strategies for protein-DNA hybrid formation 35 5.2 Novel assembly of protein-DNA hybrids based on copper-free click chemistry 37 5.3 Click-chemistry based assembly preserves the native protein structure 40 5.4 Summary 42 6 Non-equilibrium mechanical unfolding and refolding of lambda repressor variants 45 6.1 Non-equilibrium unfolding and refolding of lambda repressor λWT 45 6.2 Non-equilibrium unfolding and refolding of incipient-downhill λYA and downhill λHA variants of lambda repressor 48 6.3 Summary 52 7 Equilibrium unfolding and refolding of lambda repressor variants 53 7.1 Importance of the trap stiffness to resolve low-force nanometer transitions 54 7.2 Signal pair-correlation analysis to achieve millisecond transitions 56 7.3 Force-dependent equilibrium kinetics of λWT 59 7.4 Equilibrium folding of incipient-downhill λYA and downhill λHA variants of lambda repressor 61 7.5 Summary 65 8 Model-free energy landscape reconstruction for λWT, incipient-downhill λYA and downhill λHA variants 69 8.1 Direct observation of the effect of a single mutation on the conformational heterogeneity and protein stability 71 8.2 Artifacts of barrier-height determination during deconvolution 75 8.3 Summary 76 9 Conclusions and Outlook 79 / Protein folding is a process of molecular self-assembly in which a linear chain of amino acids assembles into a defined, functional three-dimensional structure. The process of folding is a thermally driven diffusive search on a free-energy landscape in the conformational space for the minimal-energy structure. During that process, the free energy of the system does not always show a monotonic decrease; instead, sub-optimal compensation of enthalpy and entropy change during each folding step leads to formation of folding free-energy barriers. However, these barriers, and associated high-energy transition states, that contain key information about mechanisms of protein folding, are kinetically inaccessible. To reveal the barrier-formation process and structural characteristics of transition states, proteins are employed that fold via barrierless paths – so-called downhill folders. Due to the low folding barriers, the key folding interactions become accessible, yielding insights about the rate-limiting folding events. Here, I compared the folding dynamics of three different variants of a lambda repressor fragment, containing amino acids 6 to 85: a two-state folder λWT (Y22W) and two downhill-like folding variants, λYA (Y22W/Q33Y/G46,48A) and λHA (Y22W/Q33H/G46,48A). To access the kinetics and structural dynamics, single-molecule optical tweezers with submillisecond and nanometer resolution are used. I found that force perturbation slowed down the microsecond kinetics of downhill folders to a millisecond time-scale, making it accessible to single-molecule studies. Interestingly, under load, the downhill-like variants of lambda repressor appeared as cooperative two-state folders with significantly different folding kinetics and force dependence. The three protein variants displayed a highly compliant behaviour under load. Model-free reconstruction of free-energy landscapes allowed us to directly resolve the fine details of the transformation of the two-state folding path into a downhill-like path. The effect of single mutations on protein stability, transition state formation and conformational heterogeneity of folding and unfolding states was observed. Noteworthy, our results demonstrate, that despite the ultrafast folding time in a range of 2 µs, the studied variants fold and unfold in a cooperative process via residual barriers, suggesting that much faster folding rate constants are required to reach the full-downhill limit.:I Theoretical background 1 1 Introduction 3 2 Protein folding: the downhill scenario 5 2.1 Protein folding as a diffusion on a multidimensional energy landscape 5 2.2 Downhill folding proteins 7 2.2.1 Thermodynamic description of downhill folders 7 2.2.2 Identification criteria for downhill folders 8 2.3 Lambda repressor as a model system for studying downhill folding 9 2.3.1 Wild-type lambda repressor fragment λ{6-85} 10 2.3.2 Acceleration of λ{6-85} folding by specifific point mutations 11 2.3.3 The incipient-downhill λYA and downhill λHA variants 14 2.4 Single-molecule techniques as a promising tool for probing downhill folding dynamics 17 3 Single-molecule protein folding with optical tweezers 19 3.1 Optical tweezers 19 3.1.1 Working principle of optical tweezers 19 3.1.2 The optical tweezers setup 21 3.2 The dumbbell assay 22 3.3 Measurement protocols 23 3.3.1 Constant-velocity experiments 23 3.3.2 Constant-trap-distance experiments (equilibrium experiments) 24 4 Theory and analysis of single-molecule trajectories 27 4.1 Polymer elasticity models 27 4.2 Equilibrium free energies of protein folding in optical tweezers 28 4.3 Signal-pair correlation analysis 29 4.4 Force dependence of transition rate constants 29 4.4.1 Zero-load extrapolation of rates: the Berkemeier-Schlierf model 30 4.4.2 Detailed balance for unfolding and refolding data 31 4.5 Direct measurement of the energy landscape via deconvolution 32 II Results 33 5 Efficient strategy for protein-DNA hybrid formation 35 5.1 Currently available strategies for protein-DNA hybrid formation 35 5.2 Novel assembly of protein-DNA hybrids based on copper-free click chemistry 37 5.3 Click-chemistry based assembly preserves the native protein structure 40 5.4 Summary 42 6 Non-equilibrium mechanical unfolding and refolding of lambda repressor variants 45 6.1 Non-equilibrium unfolding and refolding of lambda repressor λWT 45 6.2 Non-equilibrium unfolding and refolding of incipient-downhill λYA and downhill λHA variants of lambda repressor 48 6.3 Summary 52 7 Equilibrium unfolding and refolding of lambda repressor variants 53 7.1 Importance of the trap stiffness to resolve low-force nanometer transitions 54 7.2 Signal pair-correlation analysis to achieve millisecond transitions 56 7.3 Force-dependent equilibrium kinetics of λWT 59 7.4 Equilibrium folding of incipient-downhill λYA and downhill λHA variants of lambda repressor 61 7.5 Summary 65 8 Model-free energy landscape reconstruction for λWT, incipient-downhill λYA and downhill λHA variants 69 8.1 Direct observation of the effect of a single mutation on the conformational heterogeneity and protein stability 71 8.2 Artifacts of barrier-height determination during deconvolution 75 8.3 Summary 76 9 Conclusions and Outlook 79
27

On-surface synthesis of acenes –: organic nanoelectronic materials explored at a single-molecule level

Krüger, Justus 05 December 2017 (has links)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
28

Impact of cholesterol and Lumacaftor on the folding of CFTR helical hairpins

Schenkel, Mathias, Ravamehr-Lake, Dorna, Czerniak, Tomasz, Saenz, James P., Krainer, Georg, Schlierf, Michael, Deber, Charles M. 07 December 2023 (has links)
Cystic fibrosis (CF) is caused by mutations in the gene that codes for the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). Recent advances in CF treatment have included use of small-molecule drugs known as modulators, such as Lumacaftor (VX-809), but their detailed mechanism of action and interplay with the surrounding lipid membranes, including cholesterol, remain largely unknown. To examine these phenomena and guide future modulator development, we prepared a set of wild type (WT) and mutant helical hairpin constructs consisting of CFTR transmembrane (TM) segments 3 and 4 and the intervening extracellular loop (termed TM3/4 hairpins) that represent minimal membrane protein tertiary folding units. These hairpin variants, including CF-phenotypic loop mutants E217G and Q220R, and membrane-buried mutant V232D, were reconstituted into large unilamellar phosphatidylcholine (POPC) vesicles, and into corresponding vesicles containing 70 mol% POPC +30 mol% cholesterol, and studied by single-molecule FRET and circular dichroism experiments. We found that the presence of 30 mol% cholesterol induced an increase in helicity of all TM3/4 hairpins, suggesting an increase in bilayer cross-section and hence an increase in the depth of membrane insertion compared to pure POPC vesicles. Importantly, when we added the corrector VX-809, regardless of the presence or absence of cholesterol, all mutants displayed folding and helicity largely indistinguishable from the WT hairpin. Fluorescence spectroscopy measurements suggest that the corrector alters lipid packing and water accessibility. We propose a model whereby VX-809 shields the protein from the lipid environment in a mutant-independent manner such that the WT scaffold prevails. Such ‘normalization’ to WT conformation is consistent with the action of VX-809 as a protein-folding chaperone.

Page generated in 0.0422 seconds