• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 45
  • 16
  • 10
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 160
  • 37
  • 36
  • 33
  • 22
  • 21
  • 21
  • 19
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Structure-property Relationship Study of Branched L-valine based Poly(ester urea)s

Qi, Ronghui 10 June 2016 (has links)
No description available.
62

A Fractal-Based Mathematical Model for Cancellous Bone Growth Considering the Hierarchical Nature of Bone

Suhr, Stephanie Marie January 2016 (has links)
No description available.
63

Mechanical Properties of Plant Cell Wall Mimics Determined using Strain-Induced Buckling Methods / Mechanical Properties of Plant Cell Wall Mimics

Stimpson, Taylor January 2020 (has links)
A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements of the Master of Applied Science degree / This thesis investigated structure-function relationships of materials designed to mimic the plant cell wall by comparing their mechanical properties measured using strain-induced buckling methods. The plant cell wall mimics are submicrometer-thick films composed of cellulose nanocrystals (CNCs) and various types of xyloglucan (XG), a common plant hemicellulose. Our goal was to establish links between film composition/architecture and elastic modulus, to better understand the interactions between plant cell wall components and their influence on mechanical properties. Three buckling methods for measuring mechanical properties of supported films were compared. All methods involved compressing a thin film deposited onto a shape memory polymer or an elastomeric substrate, through thermal shrinking or mechanical compression, respectively. Two thermal shrinking methods (constrained in one axis or unconstrained) and one compression method (using a mechanical strain stage) were used. Based on the mismatch of mechanical properties between the film and the substrate, the rigid thin film “buckles” upon compression to dissipate strain. The resulting surface wrinkle sizes are characteristic of the mechanical properties of the thin film. A Fourier analysis algorithm with Gaussian curve fitting was optimized to extract wrinkle sizes accurately and reproducibly from microscopy images to reliably quantify the elastic moduli of thin films. To select the most precise strain-induced buckling method, model layer-by-layer (LbL) thin films composed of CNCs and polyethylene imine were tested. All three buckling methods precisely quantified the elastic moduli of the films and helped us build connections between the mechanical properties and the film composition. Elastic moduli determined were 15-44 GPa (depending on composition) and films up to 350 nm-thick were tested. Based on sensitivity analyses, however, unconstrained thermal shrinking proved to be the most robust method for calculating the elastic modulus. We believe these buckling methods may find widespread use in the characterization and surface structuring of thin films for applications in biosensors, flexible electronics, point-of-care diagnostics, and for studying plant cell wall mimics. Using the unconstrained thermal shrinking method, plant cell wall mimics were constructed using LbL thin film assembly with various concentrations of CNCs and XG. Three types of XG were compared: (1) unmodified XG, (2) XG with a fraction of the galactosyl residues removed (degalactosylated), and (3) a fragmented lower molecular weight XG. It was inferred that molecular weight impacts the stiffness of XG-CNC based on adsorption conformation of XG onto CNCs, where lower molecular weight XG results in a higher modulus film (27 ± 1 vs. 19 ± 2 GPa). As well, saccharide residues of XG, specifically galactosyl, impact XG’s capacity for self-association and interaction with CNCs, because saccharide residues hinder association through their glucan backbone. This is evidenced by the higher elastic moduli calculated for degalactosylated XG-CNC films (75 ± 6, GPa), compared to native XG-CNC films (19 ± 2 GPa). This work highlights the importance of material structure as it relates to overall performance and therefore function in natural systems, such as the plant cell wall. These studies contribute to a greater understanding of the mechanical properties of the plant cell wall and serve as a basis to extend bio-based and biomimetic materials to applications such as drug delivery, packaging, and coatings. / Thesis / Master of Applied Science (MASc) / The plant cell wall boasts impressive mechanical properties, balancing seemingly opposing properties of structural strength with flexibility. These natural materials have been a source of inspiration for new material design, but the phenomena that govern interactions between components and how their structures translate into function, have yet to be fully understood. In this work, we have constructed thin multilayered films to mimic the plant cell wall, composed of cellulose nanocrystals (rod-shaped nanoparticles derived from plant cellulose) and xyloglucan (a common hemicellulose “glue”). When the films on flexible supports are compressed, they buckle into wrinkled surface patterns that can be used to calculate their mechanical properties. This investigation compares three buckling methods and supports the notion that the mechanical performance of the plant cell wall is strongly dependent on the structure of the different components and the way they interact.
64

Dynamic mechanical analysis of collagen fibrils at the nanoscale.

Grant, Colin A., Phillips, M.A., Thompson, N.H. 09 May 2011 (has links)
no / Low frequency (0.1¿2 Hz) dynamic mechanical analysis on individual type I collagen fibrils has been carried out using atomic force microscopy (AFM). Both the elastic (static) and viscous (dynamic) responses are correlated to the characteristic axial banding, gap and overlap regions. The elastic modulus (¿5 GPa) on the overlap region, where the density of tropocollagen is highest, is 160% that of the gap region. The amount of dissipation on each region is frequency dependent, with the gap region dissipating most energy at the lowest frequencies (0.1 Hz) and crossing over with the overlap region at ¿0.75 Hz. This may reflect an ability of collagen fibrils to absorb energy over a range of frequencies using more than one mechanism, which is suggested as an evolutionary driver for the mechanical role of type I collagen in connective tissues and organs. / BBSRC
65

Evaluating the Mechanical Properties and Long-Term Performance of Stabilized Full-Depth Reclamation Base Materials

Amarh, Eugene A. January 2017 (has links)
State highway agencies are searching for more cost-effective methods of rehabilitating roads. One sustainable solution is full-depth reclamation (FDR), a pavement rehabilitation technique that involves pulverizing and reusing materials from existing distressed pavements in place. There is, however, limited information on the long-term properties of these recycled materials. One important property, the elastic modulus, indicates the structural capacity of pavement materials and is highly recommended for design purposes by the Mechanistic Empirical Pavements Design Guide (MEPDG). The elastic modulus directly impacts selection of the overall pavement thickness, and an accurate estimation of the modulus is therefore key to a cost-effective pavement design. This thesis researched the modulus trends and functional properties of three in-service pavements rehabilitated with the FDR technique during the 2008 Virginia Department of Transportation (VDOT) construction season. Foamed asphalt (2.7% with 1% cement), asphalt emulsion (3.5%), and Portland cement (5%) were used as stabilizing agents for the FDR layers. Several deflection tests and distress surveys were conducted for the pavement sections before and after construction. An automated road analyzer (ARAN) was used to collect distress data over a period of 7 years. Deterioration models were developed to predict the durability of differently stabilized FDR pavements and compared to reference sections rehabilitated with traditional asphalt concrete (AC) overlays. The results of the moduli measured for the recycled base materials varied significantly over time. These changes were attributed to curing after construction, seasonal effects, and subgrade moisture. The structural capacity of the pavements improved irrespective of the stabilizing agent used. Rutting was higher for the foamed asphalt and emulsion sections. The International Roughness Index (IRI) was better for the cement stabilized sections compared asphalt stabilized sections. The Critical Condition Index (CCI) was similar for all treatments at the end of the evaluation period. The durability of the sections was comparable, with the cement stabilized FDR sections slightly outperforming the asphalt stabilized sections. / Master of Science / Replacing all roads in bad condition with new reconstruction or with traditional rehabilitation alternatives such as the mill and overlay will cost state highway agencies (SHAs) huge sums of funds. State departments of transportation are therefore seeking cost-effective ways to rehabilitate roads under their jurisdiction. An innovative technique being used by several SHAs today is full depth reclamation (FDR) which involves breaking down an existing roadway and immediately reusing the materials to construct a strengthened base layer for a new road. Despite the increasing use of FDR in recent years, several questions remain unanswered regarding the behavior of the strengthened base materials and their performance in the long-term under traffic loads. The elastic modulus is one material property that indicates the strength or structural capacity of pavement materials and usually impacts the selection of the overall thickness of the roadway. This thesis researched the modulus trends and functional properties of three in-service roadways rehabilitated with the FDR technique in 2008 by the Virginia Department of Transportation. Foamed asphalt (2.7% with 1% cement), asphalt emulsion (3.5%), and Portland cement (5%) were used to strengthen the FDR base layers. Several deflection tests and distress surveys were conducted for the pavement sections before and after construction. The moduli measured for the recycled base materials varied significantly over time. These changes were attributed to curing after construction, seasonal effects, and subgrade moisture. Long term performance monitoring of the projects showed that rutting was higher for the foamed asphalt and emulsion sections. The International Roughness Index (IRI), which gives an indication of the overall ride quality i.e. how smooth the pavement surface is, was better for the cement stabilized FDR sections compared to the asphalt stabilized counterparts. The structural capacity of the pavements improved irrespective of the stabilizing treatment used. The Critical Condition Index (CCI) was similar for all treatments at the end of the evaluation period. The durability of the sections was comparable, with the cement stabilized sections projected to last slightly longer than asphalt sections.
66

Evaluating the Mechanical Properties and Long-Term Performance of Stabilized Full-Depth Reclamation Base Materials

Amarh, Eugene Annan 08 June 2017 (has links)
State highway agencies are searching for more cost-effective methods of rehabilitating roads. One sustainable solution is full-depth reclamation (FDR), a pavement rehabilitation technique that involves pulverizing and reusing materials from existing distressed pavements in place. There is, however, limited information on the long-term properties of these recycled materials. One important property, the elastic modulus, indicates the structural capacity of pavement materials and is highly recommended for design purposes by the Mechanistic Empirical Pavements Design Guide (MEPDG). The elastic modulus directly impacts selection of the overall pavement thickness, and an accurate estimation of the modulus is therefore key to a cost-effective pavement design. This thesis researched the modulus trends and functional properties of three in-service pavements rehabilitated with the FDR technique during the 2008 Virginia Department of Transportation (VDOT) construction season. Foamed asphalt (2.7% with 1% cement), asphalt emulsion (3.5%), and Portland cement (5%) were used as stabilizing agents for the FDR layers. Several deflection tests and distress surveys were conducted for the pavement sections before and after construction. An automated road analyzer (ARAN) was used to collect distress data over a period of 7 years. Deterioration models were developed to predict the durability of differently stabilized FDR pavements and compared to reference sections rehabilitated with traditional asphalt concrete (AC) overlays. The results of the moduli measured for the recycled base materials varied significantly over time. These changes were attributed to curing after construction, seasonal effects, and subgrade moisture. The structural capacity of the pavements improved irrespective of the stabilizing agent used. Rutting was higher for the foamed asphalt and emulsion sections. The International Roughness Index (IRI) was better for the cement stabilized sections compared asphalt stabilized sections. The Critical Condition Index (CCI) was similar for all treatments at the end of the evaluation period. The durability of the sections was comparable, with the cement stabilized FDR sections slightly outperforming the asphalt stabilized sections. / Master of Science
67

Simple Techniques for the Implementation of the Mechanics of Unsaturated Soils into Engineering Practice

Oh, Won Taek 23 November 2012 (has links)
Over the past 50 years, several advancements have been made in the research area of the mechanics of unsaturated soils. These advancements can be categorized into two groups; (i) development (or improvement) of testing techniques (or apparatus) to determine the mechanical properties of unsaturated soils and (ii) development of (numerical, empirical or semi-empirical) models to estimate the variation of mechanical properties of unsaturated soils with respect to suction based on the experimental results. Implementation of the mechanics of unsaturated soils in conventional geotechnical engineering practice, however, has been rather limited. The key reasons for the limited practical applications may be attributed to the lack of simple and reliable methods for (i) measuring soil suction in the field quickly and reliably and (ii) estimating the variation of mechanical properties of unsaturated soils with respect to suction. The main objective of this thesis research is to develop simple and reliable techniques, models or approaches that can be used in geotechnical engineering practice to estimate sol suction and the mechanical properties of unsaturated soils. This research can be categorized into three parts. In the First Part, simple techniques are proposed to estimate the suction values of as-compacted unsaturated fine-grained soils using a pocket penetrometer and a conventional tensiometer. The suction values less than 300 kPa can be estimated using a strong relationship between the compressive strength measured using a pocket penetrometer and matric suction value. The high suction values in the range of 1,200 kPa to 60,000 kPa can be estimated using the unique relationship between the initial tangent of conventional tensiometer response versus time behavior and suction value. In the Second Part, approaches or semi-empirical models are proposed to estimate the variation of mechanical properties of unsaturated soils with respect to suction, which include: - Bearing capacity of unsaturated fine-grained soils - Variation of bearing capacity of unsaturated fine-grained soils with respect to matric suction - Variation of initial tangent elastic modulus of unsaturated soils below shallow foundations with respect to matric suction - Variation of maximum shear modulus with respect to matric suction for unsaturated non-plastic sandy soils (i.e. plasticity index, Ip = 0 %) In the Third Part, approaches (or methodologies) are suggested to simulate the vertically applied stress versus surface settlement behavior of shallow foundations in unsaturated coarse-grained soils assuming elastic-perfectly plastic behavior. These methodologies are extended to simulate the stress versus settlement behavior of both model footings and in-situ plates in unsaturated coarse-grained soils. The results show that there is a reasonably good comparison between the measured values (i.e. soil suction, bearing capacity, elastic and shear modulus) and those estimated using the techniques or models proposed in this thesis research. The models (or methodologies) proposed in this thesis research are promising and encouraging for modeling studies and practicing engineers to estimate the variation of mechanical behavior of unsaturated soils with respect to matric suction.
68

Effet de l'incorporation de systèmes hybrides sur les propriétés mécaniques de matériaux composites à matrice époxyvinylester et polyester insaturé / Effect of the incorporation of hybrid systems on the mechanical properties of composite materials based on epoxy vinylester and unsaturated polyester matrices

Poncet, Mélissa 20 March 2013 (has links)
Ce travail de thèse porte sur l'élaboration d'un matériau composite à matrice thermodurcissable incorporant des renforts nanométriques et/ou une phase élastomère, permettant d'améliorersa rigidité, son amortissement et sa résilience. Pour cela, nous avons réalisé des formulations baséessur des matrices époxyvinylester, renforcées ou non par une phase élastomère et chargées de montmorillonite ou de sépiolite. Nous avons étudié leurs propriétés visco-élastiques par analyse modaleexpérimentale et leurs propriétés à l'impact par des essais d'impact par chute de masse. Nous avonsdéterminé la microstructure des composites fabriqués en nous appuyant sur la diffraction des rayonsX et des observations en microscopie électronique. Des modèles d'homogénéisation, fondés sur lemodèle de H ALPIN -T SAI et adaptés aux matériaux composites étudiés, ont été développés afin dedisposer d'un outil permettant de relier explicitement la rigidité des composites à leur morphologie.Une analyse paramétrique approfondie a permis de déterminer les caractères morphologiques lesplus influents et d'évaluer la performance des procédés de mise en œuvre au regard des renforcements mécaniques obtenus. Expérimentalement, l'incorporation de montmorillonite ou de sépiolite a conduit à une augmentation significative du module élastique et la présence d'une phase élastomère dans la résine a permis de doubler l'amortissement et d'augmenter la résilience. Finalement, les formulations les plus performantes ont été retenues pour la fabrication de composites renforcés de fibres de verre. L'amélioration des propriétés mécaniques se retrouve, dans une moindre mesure, dans lesprototypes réalisés. La pertinence de l'utilisation de ces matériaux à l'échelle industrielle a été évaluée. / This thesis focuses on the development of a thermosetting matrix composite incorporating nanoscale reinforcements and/or an elatomeric phase to improve its stiffness, damping and resilience.To do so, we made formulations based on epoxy vinyl ester matrices, filled or not by an elastomeric phase, and reinforced with montmorillonite or sepiolite. Their viscoelastic properties were studied usingexperimental modal analysis and their impact properties were investigated using drop weight impacttesting. The microstructure of these composites was examined using X-ray diffraction and electronmicroscopy observations.Homogenization models based on H ALPIN -T SAI model and adapted to the studied composites were developed to provide a tool able to explicitly link the stiffness of the material to its morphology.A detailed parametric analysis allowed to determine the most influential morphological characteristics and to assess the efficiency of the process regarding the mechanical stiffening obtained.Experimentally, the incorporation of montmorillonite or sepiolite led to a significant increase in the elastic modulus and, with the presence of an elastomeric phase in the resin, the damping was doubled and the resilience was increased.Finally, the most efficient formulations were used to manufacture glass fibers reinforced composites.The improvement in mechanical properties was found, to a lesser extent, for the manufactured prototypes.The relevance of the use of these materials on an industrial scale was evaluated.
69

Estudo in vitro da influência da dureza e módulo de elasticidade de sistemas adesivos na resistência de união à dentina humana / In vitro study of influence of hardness and elasticity module of adhesive sistems in bond strenght to human dentin

Bengtson, Camilla Regina Galvão 01 February 2011 (has links)
O objetivo deste trabalho foi avaliar a dureza e o módulo de elasticidade da região de adesão quando utilizados diferentes sistemas adesivos e uma resina composta imediatamente após o procedimento adesivo e após 6 meses de armazenamento, correlacionando esses valores com a resistência adesiva à dentina humana. Para isso foram medidos a dureza e o módulo de elasticidade da resina composta junto à área de união, da camada de adesivo, da camada híbrida, e da dentina adjacente utilizando testes de nanoendentação. Foram utilizados 40 molares humanos hígidos (n=10). Os dentes foram preparados de modo a obterem-se superfícies planas em dentina, sobre as quais os sistemas adesivos foram aplicados seguindo as instruções dos fabricantes. Foram utilizados quatro sistemas adesivos de diferentes formas de aplicação (Adper Scotchbond Multiuso, Adper Single Bond 2, Adper SE Plus e Clearfil SE Bond). Sobre essas superfícies foram inseridos incrementos de resina composta perfazendo 5 mm de altura. Após 24h de armazenamento em água destilada à 37ºC. Os dentes restaurados foram seccionados para obterem-se corpos-de-prova com área aderida de 1mm2. Dos corpos de prova viáveis, 2 palitos centrais de cada dente foram selecionados para análise da nanodureza e do módulo de elasticidade da interface adesiva. Os demais tiveram a resistência de união testada através do teste de microtração, sendo metade desses corpos de prova armazenados durante 6 meses em água à 37ºC. Foi aplicado o teste estatístico ANOVA para dois fatores para todas as variáveis do estudo. Para o fator tempo foi detectada diferença estatística entre os grupos para a resistência adesiva (p=0,042), para o módulo de elasticidade do adesivo (p=0,000) e nanodureza do adesivo (p=0,000), sendo os valores mais baixos observados após 6 meses de armazenamento. Para o fator adesivo, todos os grupos apresentaram diferenças estatísticas (p=0,000), exceto para a variável nanodureza da camada híbrida (p=0,255). O sistema adesivo Clearfil SE Bond apresentou os melhores valores para resistência adesiva e módulo de elasticidade da camada híbrida, juntamente com o sistema Scothbond Multiuso. Os piores desempenhos foram demonstrados pelo sistema adesivo Adper SE Plus. Para a interação, apenas a variável nanodureza do adesivo apontou diferença entre os grupos (p=0,028). O teste de correlação de Pearson detectou correlação significante para as variáveis de módulo de elasticidade, sendo negativa para o módulo de elasticidade do adesivo e positiva para o módulo de elasticidade da camada híbrida. A metodologia e os resultados apresentados permitem-nos concluir que as propriedades mecânicas estudadas (resistência adesiva, módulo de elasticidade do sistema adesivo e da camada híbrida, nanodureza do sistema adesivo e da camada híbrida) podem variar dependendo do sistema adesivo utilizado e do tempo de armazenamento após o procedimento adesivo ter sido realizado. Além disso, quanto maior o módulo de elasticidade da camada híbrida apresentado por um sistema adesivo maior será sua resistência adesiva e menor será o módulo de elasticidade apresentado pela camada de adesivo. / The aim of this study is to evaluate hardness and elasticity module of adhesive region of adhesive systems of different formulations immediately and 6 moths after the adhesive procedures. Those values will be compared to microtensile bond strength to human dentin. The hardness and elasticity module of composite resin next to adhesion region, adhesive layer, hybrid layer and dentin were evaluated. Forty sound human molars were used and prepared in order to obtain flat dentin surfaces in which the adhesive systems were applied following manufactures instructions (n=10). The groups were divided according the four adhesive systems: Adper Scotchbond Multipurpose, Adper Single Bond 2, Adper SE Plus and Clearfil SE Bond. Resin blocks of 5mm were constructed in those surfaces. After 24h of storage in distilled water at 37°C restored teeth were sectioned in order to obtain specimen with a bonded area of around 1mm2. Two specimen of each tooth were submitted to nanohardness and elasticity module test of adhesive interface. Half of the specimen were immediately submitted to the test with a crosshead speed of 0,5mm/min until fracture, the other specimen were stored for additional 6 month in 37ºC water prior to the test. The values resulting of all variables of the study were compared using ANOVA two-way. For the time factor, it was detected statiscal difference between groups in microtensile bond strength values (p=0,042), adhesive elastic modulus (p=0,000) and adhesive nanohardnes (p=0,000), the lowest values were observed in 6 months of storage. For adhesive factor, all groups presented statistical difference (p=0,000), except hybrid layer nanohardness (p=0,255). Clearfil SE bond and Scothbond systems presented the best values of bond strength and hybrid layer elastic modulus. The worse performance was demonstrated by Adper SE Plus adhesive system. For the interaction, only the adhesive nanohardness presents difference between groups (p=0,028). The Pearson correlation test detected positive correlation with microtensile bond strength tests and hybrid layer elastic modulus and negative correlation with bond strength and adhesive elastic modulus. The methodology and the results allow us to conclude that the studied mechanical properties (bond strength, modulus of elasticity of the adhesive and hybrid layer, nanohardness adhesive system and the hybrid layer) may vary depending on the adhesive system and time storage after the bonding procedures have been performed. Moreover, when an adhesive system presents a high elastic modulus of hybrid layer, it will present a high bond strength and low elastic modulus of adhesive layer.
70

Avaliação da resistência à flexão e do módulo de elasticidade de diferentes materiais restauradores poliméricos tratados ou não termicamente após a fotoativação / Evaluation of flexural strength and elastic modulus of different restorative polymeric materials with or without heat treatment after photoactivation

Watanabe, Mauricio Umeno [UNESP] 19 December 2016 (has links)
Submitted by MAURICIO UMENO WATANABE null (mauriciowatanabe@yahoo.com.br) on 2017-01-31T20:21:29Z No. of bitstreams: 1 TESE Mauricio Umeno Watanabe Doutorado.pdf: 1431193 bytes, checksum: 6559d1f5a8ffe6a615335a16b8dd301c (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-03T18:53:52Z (GMT) No. of bitstreams: 1 watanake_mu_dr_araca.pdf: 1431193 bytes, checksum: 6559d1f5a8ffe6a615335a16b8dd301c (MD5) / Made available in DSpace on 2017-02-03T18:53:52Z (GMT). No. of bitstreams: 1 watanake_mu_dr_araca.pdf: 1431193 bytes, checksum: 6559d1f5a8ffe6a615335a16b8dd301c (MD5) Previous issue date: 2016-12-19 / Objetivo: Resinas compostas para uso direto têm sido frequentemente usadas pelos profissionais para confecção de restaurações indiretas extensas. O objetivo do presente estudo foi avaliar a resistência à flexão (RF) e o módulo de elasticidade (ME) de diferentes materiais restauradores poliméricos diretos, nos tempos de 30min e 24h sem tratamento térmico (TT); e quando submetidos ou não ao TT, sendo armazenados ou não por 180 dias. Materiais e método: Foram confeccionados 200 corpos de prova divididos nos seguintes grupos de acordo com o material: o ormocer microhíbrido Admira Fusion (ADM), a resina tipo “bulk” nanoparticulada Filtek Bulk Fill (BU), a resina composta convencional nanoparticulada Filtek Z350XT (Z350) e resina composta convencional microhíbrida IPS Empress Direct (EMP). Os grupos foram subdivididos (n=10) nos tempos de 30min sem TT, 24h com e sem TT ou 180 dias com e sem TT. Os corpos de prova (10 mm x 2 mm x 2 mm) foram confeccionados usando-se um molde tripartido de aço inox, no qual o material foi inserido em incremento único e fotoativado por 20s de cada lado. No final do período de 24h da fotoativação, o TT foi realizado por 10min em estufa à temperatura controlada de 170⁰C. O armazenamento das amostras de 180 dias foi em água destilada em ambiente escuro a 37⁰C. O teste de resistência à flexão de 3 pontos foi realizado em uma máquina de ensaio Instron à velocidade de 1,0 mm/min. Resultados: Os resultados foram obtidos em MPa (RF) e GPa (ME), sendo depois submetidos à análise estatística ao nível de significância de 5%. Todos materiais tiveram aumentos significativos do tempo de 30min para o tempo de 24h, tanto para a RF quanto para o ME (p<0,05). A realização do TT promoveu aumento nos valores de RF para as resinas compostas BU e EMP no tempo de 24h e Z350 no tempo de 180 dias (p<0,05). Para a BU sem TT, o armazenamento não influenciou nos resultados de RF. A realização do TT promoveu aumento nos valores de ME para o ADM nos dois tempos de análise, e para as resinas compostas EMP, BU e Z350 no tempo de 24h (p<0,05). Houve diminuição significativa no ME de ADM e EMP após 180 dias em comparação ao tempo de 24h, independente do TT e para BU com TT (p<0,05). Não houve diferença quanto ao ME na comparação entre 180 dias e 24h para a BU sem TT e para a Z350 com TT (p>0,05). Conclusões: Pode-se concluir que a influência do tempo de 30min para o tempo de 24h na RF e no ME independe do material. A influência do armazenamento e do TT na RF e no ME são materiais dependentes. / Purpose: Direct composite resins are often used by professionals for making extensive indirect restorations. The aim of this investigation was to evaluate flexural strength and elastic modulus of different restorative polymeric materials at 30 minutes and 24 hours without heat treatment (HT); and with and without HT at 24 hours and 180 days post cure. Materials and method: 200 samples were prepared and divided according to the material as follows: microhybrid ormocer Admira Fusion (ADM), nanofilled bulk-fill composite resin Fitek Bulk Fill (BU), nanofilled universal composite resin Filtek Supreme Ultra (Z350) and microhybrid universal composite resin IPS Empress Direct (EMP). Groups were subdivided (n=10) at 30 minutes into: without HT (30 min), 24 h with and without HT and 180 days with and without HT. The samples (10 mm x 2 mm x 2 mm) were made in a tri-part stainless steel mold where the material was inserted and light-cured for 20 seconds on each side. At the end of the 24 h period HT at 170⁰C was performed for 10 minutes in a dry heat oven. The 180 day storage samples were placed in destilled water at 37⁰C in the dark. A standard three point bending test was conducted on all samples with a universal testing machine (Instron) at a crosshead speed of 1.0 mm/min. Results: The results were recorded in MPa (flexural strength) and GPa (elastic modulus) and data were analyzed statistically at a significance level of 5%. All the materials had a significant increase in flexural strength and elastic modulus from 30 minutes to 24 hours (p<0.05). HT promoted an increase in flexural strength for BU and EMP at 24 hours and Z350 at 180 days (p<0,05). Storage didn’t influence flexural strength for BU without HT. HT promoted elastic modulus increase for ormocer ADM at both testing times and for EMP, BU and Z350 at 24 hours (p<0.05). With regard to ADM and EMP the elastic modulus decreased significantly after 180 days in comparison to 24 h independent of HT. BU with HT also decreased in modulus after 180 days (p<0.05). There was no significant difference in elastic modulus between 24 hours and 180 days for BU without HT and for Z350 with HT (p>0.05). Conclusions: It can be concluded that the influence of time from 30 minutes to 24 hours in flexural strength and elastic modulus is independent of the material. Storage and HT influence on flexural strength and elastic modulus are material dependent.

Page generated in 0.1403 seconds