• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 17
  • 14
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Pontryagin approximations for optimal design

Carlsson, Jesper January 2006 (has links)
This thesis concerns the approximation of optimally controlled partial differential equations for applications in optimal design and reconstruction. Such optimal control problems are often ill-posed and need to be regularized to obtain good approximations. We here use the theory of the corresponding Hamilton-Jacobi-Bellman equations to construct regularizations and derive error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method where the first, analytical, step is to regularize the Hamiltonian. Next its stationary Hamiltonian system, a nonlinear partial differential equation, is computed efficiently with the Newton method using a sparse Jacobian. An error estimate for the difference between exact and approximate objective functions is derived, depending only on the difference of the Hamiltonian and its finite dimensional regularization along the solution path and its L2 projection, i.e. not on the difference of the exact and approximate solutions to the Hamiltonian systems. In the thesis we present solutions to applications such as optimal design and reconstruction of conducting materials and elastic structures. / QC 20101110
12

Error Estimates for a Meshfree Method with Diffuse Derivatives and Penalty Stabilization

Osorio, Mauricio Andres 05 August 2010 (has links)
No description available.
13

Quelques résultats en analyse théorique et numérique pour les équations de Navier-Stokes compressibles / Some theorical and numerical results for the compressible Navier-Stokes equations

Maltese, David 07 December 2016 (has links)
Dans cette thèse, nous nous intéressons à l’analyse mathématique théorique et numérique des équations deNavier-Stokes compressibles en régime barotrope. La plupart des travaux présentés ici combinent desméthodes d’analyse des équations aux dérivées partielles et des méthodes d’analyse numérique afin de clarifierla notion de solution faible ainsi que les mécanismes de convergence de méthodes numériques approximant cessolutions faibles. En effet les équations de Navier-Stokes compressibles sont fortement non linéaires et leuranalyse mathématique repose nécessairement sur la structure de ces équations. Plus précisément, nousprouvons dans la partie théorique l’existence de solutions faibles pour un modèle d’écoulement compressibled’entropie variable où l’entropie du système est transportée. Nous utilisons les méthodes classiques permettantde prouver l’existence de solutions faibles aux équations de Navier-Stokes compressibles en regime barotrope.Nous étudions aussi dans cette partie la réduction de dimension 3D/2D dans les équations de Navier-Stokescompressibles en utilisant la méthode d’énergie relative. Dans la partie numérique nous nous intéressons auxestimations d’erreur inconditionnelles pour des schémas numériques approximant les solutions faibles deséquations de Navier-Stokes compressibles. Ces estimations d’erreur sont obtenues à l’aide d’une versiondiscrète de l’énergie relative satisfaite par les solutions discrètes de ces schémas. Ces estimations d’erreur sontobtenues pour un schéma numérique académique de type volumes finis/éléments finis ainsi que pour le schémanumérique Marker-and-Cell. Nous prouvons aussi que le schéma Marker-and-Cell est inconditionnellement etuniformément asymptotiquement stable en régime bas Mach. Ces résultats constituent les premiers résultatsd’estimations d’erreur inconditionnelles pour des schémas numériques pour les équations de Navier-Stokescompressibles en régime barorope. / In this thesis, we deal with mathematical and numerical analysis of compressible Navier-Stokes equations inbarotropic regime. Most of these works presented here combine mathematical analysis of partial differentialequations and numerical methods with aim to shred more light on the construction of weak solutions on oneside and on the convergence mechanisms of numerical methods approximating these weak solutions on theother side. Indeed, the compressible Navier-Stokes equations are strongly nonlinear and their mathematicalanalysis necessarily relies on the structure of equations. More precisely, we prove in the theorical part theexistence of weak solutions for a model a flow of compressible viscous fluid with variable entropy where theentropy is transported. We use the classical techniques to prove the existence of weak solutions for thecompressible Navier-Stokes equations in barotropic regime. We also investigate the 3D/2D dimensionreduction in the compressible Navier-Stokes equations using the relative energy method. In the numerical wedeal with unconditionally error estimates for numerical schemes approximating weak solutions of thecompressible Navier-Stokes equations. These error estimates are obtained by using the discrete version of therelative energy method. These error estimates are obtained for a academic finite volume/finite element schemeand for the Marker-and-Cell scheme. We also prove that the Marker-and-cell scheme is unconditionally anduniformly asymptotically stable at the Low Mach number regime. These are the first results onunconditionally error estimates for numerical schemes approximating the compressible Navier-Stokesequations in barotropic regime.
14

Discontinuous Galerkin Methods For Time-dependent Convection Dominated Optimal Control Problems

Akman, Tugba 01 July 2011 (has links) (PDF)
Distributed optimal control problems with transient convection dominated diffusion convection reaction equations are considered. The problem is discretized in space by using three types of discontinuous Galerkin (DG) method: symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), incomplete interior penalty Galerkin (IIPG). For time discretization, Crank-Nicolson and backward Euler methods are used. The discretize-then-optimize approach is used to obtain the finite dimensional problem. For one-dimensional unconstrained problem, Newton-Conjugate Gradient method with Armijo line-search. For two-dimensional control constrained problem, active-set method is applied. A priori error estimates are derived for full discretized optimal control problem. Numerical results for one and two-dimensional distributed optimal control problems for diffusion convection equations with boundary layers confirm the predicted orders derived by a priori error estimates.
15

Kvadratūrinių formulių liekamųjų narių įverčiai ir jų analizė / Error estimates of quadrature formulas and their analysis

Leščiauskienė, Vaiva 06 June 2006 (has links)
In this paper the problems of finding error estimates of quadrature formulas are discussed. A method proposed by K.Plukas was tested. One of the most important tests was the one determining the error estimates that are too optimistic. The results have shown that there are 1/8 of such error estimates and that there is no visible pattern when they occur. The second very important test was the one that shows how many iterations are needed to get the estimate of integral. After comparing the results to the ones produced by method of T.O.Espelid it was obvious that method of K.Plukas produced results even when method of T.O.Espelid was not able to. Comparison of these results have also shown that method of K.Plukas is not always as effective as method of T.O.Coteda, i.e. in many cases method of K.Plukas produced the result after more iterations than method of T.O.Coteda.
16

Adaptive Algorithms and High Order Stabilization for Finite Element Computation of Turbulent Compressible Flow

Nazarov, Murtazo January 2011 (has links)
This work develops finite element methods with high order stabilization, and robust and efficient adaptive algorithms for Large Eddy Simulation of turbulent compressible flows. The equations are approximated by continuous piecewise linear functions in space, and the time discretization is done in implicit/explicit fashion: the second order Crank-Nicholson method and third/fourth order explicit Runge-Kutta methods. The full residual of the system and the entropy residual, are used in the construction of the stabilization terms. These methods are consistent for the exact solution, conserves all the quantities, such as mass, momentum and energy, is accurate and very simple to implement. We prove convergence of the method for scalar conservation laws in the case of an implicit scheme. The convergence analysis is based on showing that the approximation is uniformly bounded, weakly consistent with all entropy inequalities, and strongly consistent with the initial data. The convergence of the explicit schemes is tested in numerical examples in 1D, 2D and 3D. To resolve the small scales of the flow, such as turbulence fluctuations, shocks, discontinuities and acoustic waves, the simulation needs very fine meshes. In this thesis, a robust adjoint based adaptive algorithm is developed for the time-dependent compressible Euler/Navier-Stokes equations. The adaptation is driven by the minimization of the error in quantities of interest such as stresses, drag and lift forces, or the mean value of some quantity. The implementation and analysis are validated in computational tests, both with respect to the stabilization and the duality based adaptation. / QC 20110627
17

Kontrolle semilinearer elliptischer Randwertprobleme mit variationeller Diskretisierung

Matthes, Ulrich 11 December 2009 (has links)
Steuerungsprobleme treten in vielen Anwendungen in Naturwissenschaft und Technik auf. In dieser Arbeit werden Optimalsteuerungsprobleme mit semilinearen elliptischen partiellen Differentialgleichungen als Nebenbedingungen untersucht. Die Kontrolle wird durch Kontrollschranken als Ungleichungsnebenbedingungen eingeschränkt. Dabei ist die Zielfunktion quadratisch in der Kontrolle. Die Lösung des Optimierungsproblems kann dann durch die Projektionsbedingung mit Hilfe des adjungierten Zustandes dargestellt werden. Ein neuer Zugang ist die variationelle Diskretisierung. Bei dieser wird nur der Zustand und der adjungierte Zustand diskretisiert, nicht aber der Raum der Kontrollen. Dieser Zugang erlaubt höhere Konvergenzraten für die Kontrolle für kontrollrestingierte Probleme als bei einer Diskretisierung des Kontrollraumes. Die Projektionsbedingung für das variationell diskretisierte Problem ist dabei auf die gleiche zulässige Menge wie beim nicht diskretisierten Problem. In der vorliegenden Arbeit wird die Methode der variationellen Diskretisierung auf semilineare elliptische Optimalkontrollprobleme angewendet und Fehlerabschätzungen für die Kontrollen bewiesen. Dabei wird hauptsächlich auf die verteilte Steuerung Wert gelegt, aber auch die Neumann-Randsteuerung mitbehandelt. Nach einem Überblick über die Literatur wird die Aufgabenstellung mit den Voraussetzungen aufgeschrieben und die Optimalitätsbedingungen angegeben. Danach wird die Existenz einer Lösung, sowie die Konvergenz der diskreten Lösungen gegen eine kontinuierliche Lösung gezeigt. Außerdem werden Finite-Elemente-Konvergenzordnungen angegeben. Dann werden optimale Fehlerabschätzungen in verschiedenen Normen für die variationelle Kontrolle bewiesen. Insbesondere werden die Fehlerabschätzung in Abhängigkeit vom Finite-Elemente-Fehler des Zustandes und des adjungierten Zustandes angegeben. Dabei wird die nichtlineare Fixpunktgleichung mittels semismooth Newtonverfahrens linearisiert. Das Newtonverfahren wird auch für die numerische Lösung des Problems eingesetzt. Die Voraussetzung für die Konvergenzordnung ist dabei nicht die SSC, die hinreichende Bedingung zweiter Ordnung, welche eine lokale Konvexität in der Zielfunktion impliziert, sondern die Invertierbarkeit des Newtonoperators. Dies ist eine stationäre Bedingung in der optimalen Kontrolle. Dabei wird nur benötigt, dass der Rand der aktiven Menge eine Nullmenge ist und die Invertierbarkeit des Newtonoperators in der Optimallösung. Der Schaudersche Fixpunktsatz wird benutzt, um für die Newtongleichung die Existenz eines Fixpunktes innerhalb der gewünschten Umgebung zu beweisen. Außerdem wird die Eindeutigkeit eines solchen Fixpunktes für eine gegebene Triangulation bei hinreichend feiner Diskretisierung gezeigt. Das Ergebnis ist, dass die Konvergenzrate nur durch die Finite-Elemente-Konvergenzraten von Zustand und adjungiertem Zustand beschränkt wird. Diese Rate wird nicht nur durch die Ansatzfunktionen, sondern auch durch die Glattheit der rechten Seite beschränkt, so dass der Knick am Rand der aktiven Menge hier ein Grenze setzt. Außerdem wird die Implementation des semismooth Newtonverfahrens für den unendlichdimensionalen Kontrollraum für die variationelle Diskretisierung erläutert. Dabei wird besonders auf den zweidimensionalen verteilten Fall eingegangen. Es werden die bewiesenen Konvergenzraten an einigen semilinearen und linearen Beispielen mittels der variationellen Diskretisierung demonstriert. Es entsprechen sich die bei den analytische Beweisen und der numerischen Lösung eingesetzten Verfahren, die Fixpunktiteration sowie das nach Kontrolle oder adjungiertem Zustand aufgelöste Newtonverfahren. Dabei sind einige Besonderheiten bei der Implementation zu beachten, beispielsweise darf die Kontrolle nicht inkrementell mit dem Newtonverfahren oder der Fixpunktiteration aufdatiert werden, sondern muss in jedem Schritt neu berechnet werden.
18

Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis / A posteriori error estimates for the time-dependent convection-diffusion-reaction equation and application to the finite volume methods

Chalhoub, Nancy 17 December 2012 (has links)
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions $Hdiv$-conformes du flux diffusif et du flux convectif, et d'une reconstruction $H^1_0(Omega)$-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues / We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori error estimates for the discretization of this equation by the cell-centered finite volume scheme in space and a backward Euler scheme in time. The estimates are established in the energy norm and they bound the error between the exact solution and a locally post processed approximate solution, based on $Hdiv$-conforming diffusive and convective flux reconstructions, as well as an $H^1_0(Omega)$-conforming potential reconstruction. We propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision by refining the meshes adaptively while equilibrating the time and space contributions to the error. We also present numerical experiments. Finally, we derive another a posteriori error estimate in the energy norm augmented by a dual norm of the time derivative and the skew symmetric part of the differential operator. The new estimate is robust in convective-dominated regimes and local-in-time and global-in-space lower bounds are also derived
19

High-order in time discontinuous Galerkin finite element methods for linear wave equations

Al-Shanfari, Fatima January 2017 (has links)
In this thesis we analyse the high-order in time discontinuous Galerkin nite element method (DGFEM) for second-order in time linear abstract wave equations. Our abstract approximation analysis is a generalisation of the approach introduced by Claes Johnson (in Comput. Methods Appl. Mech. Engrg., 107:117-129, 1993), writing the second order problem as a system of fi rst order problems. We consider abstract spatial (time independent) operators, highorder in time basis functions when discretising in time; we also prove approximation results in case of linear constraints, e.g. non-homogeneous boundary data. We take the two steps approximation approach i.e. using high-order in time DGFEM; the discretisation approach in time introduced by D Schötzau (PhD thesis, Swiss Federal institute of technology, Zürich, 1999) to fi rst obtain the semidiscrete scheme and then conformal spatial discretisation to obtain the fully-discrete formulation. We have shown solvability, unconditional stability and conditional a priori error estimates within our abstract framework for the fully discretized problem. The skew-symmetric spatial forms arising in our abstract framework for the semi- and fully-discrete schemes do not full ll the underlying assumptions in D. Schötzau's work. But the semi-discrete and fully discrete forms satisfy an Inf-sup condition, essential for our proofs; in this sense our approach is also a generalisation of D. Schötzau's work. All estimates are given in a norm in space and time which is weaker than the Hilbert norm belonging to our abstract function spaces, a typical complication in evolution problems. To the best of the author's knowledge, with the approximation approach we used, these stability and a priori error estimates with their abstract structure have not been shown before for the abstract variational formulation used in this thesis. Finally we apply our abstract framework to the acoustic and an elasto-dynamic linear equations with non-homogeneous Dirichlet boundary data.
20

Analyse et développement de méthodes de raffinement hp en espace pour l'équation de transport des neutrons

Fournier, Damien 10 October 2011 (has links)
Pour la conception des cœurs de réacteurs de 4ème génération, une précision accrue est requise pour les calculs des différents paramètres neutroniques. Les ressources mémoire et le temps de calcul étant limités, une solution consiste à utiliser des méthodes de raffinement de maillage afin de résoudre l'équation de transport des neutrons. Le flux neutronique, solution de cette équation, dépend de l'énergie, l'angle et l'espace. Les différentes variables sont discrétisées de manière successive. L'énergie avec une approche multigroupe, considérant les différentes grandeurs constantes sur chaque groupe, l'angle par une méthode de collocation, dite approximation Sn. Après discrétisation énergétique et angulaire, un système d'équations hyperboliques couplées ne dépendant plus que de la variable d'espace doit être résolu. Des éléments finis discontinus sont alors utilisés afin de permettre la mise en place de méthodes de raffinement dite hp. La précision de la solution peut alors être améliorée via un raffinement en espace (h-raffinement), consistant à subdiviser une cellule en sous-cellules, ou en ordre (p-raffinement) en augmentant l'ordre de la base de polynômes utilisée.Dans cette thèse, les propriétés de ces méthodes sont analysées et montrent l'importance de la régularité de la solution dans le choix du type de raffinement. Ainsi deux estimateurs d'erreurs permettant de mener le raffinement ont été utilisés. Le premier, suppose des hypothèses de régularité très fortes (solution analytique) alors que le second utilise seulement le fait que la solution est à variations bornées. La comparaison de ces deux estimateurs est faite sur des benchmarks dont on connaît la solution exacte grâce à des méthodes de solutions manufacturées. On peut ainsi analyser le comportement des estimateurs au regard de la régularité de la solution. Grâce à cette étude, une stratégie de raffinement hp utilisant ces deux estimateurs est proposée et comparée à d'autres méthodes rencontrées dans la littérature. L'ensemble des comparaisons est réalisé tant sur des cas simplifiés où l'on connaît la solution exacte que sur des cas réalistes issus de la physique des réacteurs.Ces méthodes adaptatives permettent de réduire considérablement l'empreinte mémoire et le temps de calcul. Afin d'essayer d'améliorer encore ces deux aspects, on propose d'utiliser des maillages différents par groupe d'énergie. En effet, l'allure spatiale du flux étant très dépendante du domaine énergétique, il n'y a a priori aucune raison d'utiliser la même décomposition spatiale. Une telle approche nous oblige à modifier les estimateurs initiaux afin de prendre en compte le couplage entre les différentes énergies. L'étude de ce couplage est réalisé de manière théorique et des solutions numériques sont proposées puis testées. / The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4th generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called Sn approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of $hp-$refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into subcells, or by order refinement (p-refinement), by increasing the order of the polynomial basis.In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores.These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the flux behaviour is very different depending on the energy, there is no reason to use the same spatial discretization. Such an approach implies to modify the initial estimators in order to take into account the coupling between groups. This study is done from a theoretical as well as from a numerical point of view.

Page generated in 0.0646 seconds