• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • Tagged with
  • 16
  • 16
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interpolation non linéaire associée à un opérateur m-accrétif dans un espace de Banach.

Dufetel, Ariel. January 1900 (has links)
Th. 3e cycle--Méthodes d'approximation et algorithmes en anal. et théor. des nombres--Besançon, 1981. N°: 351.
2

Théorie de Ramsey sans principe des tiroirs et applications à la preuve de dichotomies d'espaces de Banach / Ramsey theory without pigeonhole principle and applications to the proof of Banach-space dichotomies

De Rancourt, Noé 28 June 2018 (has links)
Dans les années 90, Gowers démontre un théorème de type Ramsey pour les bloc-suites dans les espaces de Banach, afin de prouver deux dichotomies d'espaces de Banach. Ce théorème, contrairement à la plupart des résultats de type Ramsey en dimension infinie, ne repose pas sur un principe des tiroirs, et en conséquence, sa formulation doit faire appel à des jeux. Dans une première partie de cette thèse, nous développons un formalisme abstrait pour la théorie de Ramsey en dimension infinie avec et sans principe des tiroirs, et nous démontrons dans celui-ci une version abstraite du théorème de Gowers, duquel on peut déduire à la fois le théorème de Mathias-Silver et celui de Gowers. On en donne à la fois une version exacte dans les espaces dénombrables, et une version approximative dans les espaces métriques séparables. On démontre également le principe de Ramsey adverse, un résultat généralisant à la fois le théorème de Gowers abstrait et la détermination borélienne des jeux dénombrables. On étudie aussi les limitations de ces résultats et leurs généralisations possibles sous des hypothèses supplémentaires de théorie des ensembles.Dans une seconde partie, nous appliquons les résultats précédents à la preuve de deux dichotomies d'espaces de Banach. Ces dichotomies ont une forme similaire à celles de Gowers, mais sont Hilbert-évitantes : elles assurent que le sous-espace obtenu n'est pas isomorphe à un espace de Hilbert. Ces dichotomies sont une nouvelle étape vers la résolution d'une question de Ferenczi et Rosendal, demandant si un espace de Banach séparable non-isomorphe à un espace de Hilbert possède nécessairement un grand nombre de sous-espaces, à isomorphisme près / In the 90's, Gowers proves a Ramsey-type theorem for block-sequences in Banach spaces, in order to show two Banach-space dichotomies. Unlike most infinite-dimensional Ramsey-type results, this theorem does not rely on a pigeonhole principle, and therefore it has to have a partially game-theoretical formulation. In a first part of this thesis, we develop an abstract formalism for Ramsey theory with and without pigeonhole principle, and we prove in it an abstract version of Gowers' theorem, from which both Mathias-Silver's theorem and Gowers' theorem can be deduced. We give both an exact version of this theorem in countable spaces, and an approximate version of it in separable metric spaces. We also prove the adversarial Ramsey principle, a result generalising both the abstract Gowers' theorem and Borel determinacy of countable games. We also study the limitations of these results and their possible generalisations under additional set-theoretical hypotheses. In a second part, we apply the latter results to the proof of two Banach-space dichotomies. These dichotomies are similar to Gowers' ones, but are Hilbert-avoiding, that is, they ensure that the subspace they give is not isomorphic to a Hilbert space. These dichotomies are a new step towards the solution of a question asked by Ferenczi and Rosendal, asking whether a separable Banach space non-isomorphic to a Hilbert space necessarily contains a large number of subspaces, up to isomorphism.
3

Sommabilité du développement de Taylor dans les espaces de Banach de fonctions holomorphes

Parisé, Pierre-Olivier 27 January 2024 (has links)
Dans cette thèse, nous étudions la sommabilité du développement de Taylor de fonctions appartenant à certains espaces de Banach de fonctions holomorphes sur le disque unité. Le premier chapitre sert d'introduction à la théorie de la sommabilité dans les espaces de Banach. Nous y présentons les principaux concepts tels que la définition d'une méthode de sommabilité, la définition d'inclusion de méthodes de sommabilité et le théorème de Silverman-Toeplitz. La première partie comporte deux chapitres. Nous présentons les propriétés principales de certaines familles de méthodes de sommabilité. Plus précisément, nous présentons les principales méthodes de sommabilité étudiées dans cette thèse : les méthodes de Cesàro, les méthodes de Riesz arithmétiques et les méthodes de série de puissances dont les méthodes d'Abel généralisées, de Borel généralisées et la méthode logarithmique. Nous présentons aussi les relations entre chacune de ces méthodes lorsqu'elles sont restreintes aux suites de scalaires. La deuxième partie comporte deux chapitres et porte sur la sommabilité dans les espaces de Dirichlet pondérés D[indice ω] où ω est une fonction non-négative et surharmonique. Nous exposons brièvement ces espaces de Hilbert au premier chapitre de cette deuxième partie. Ensuite, nous montrons que les moyennes de Cesàro d'ordre α > 1/2 des sommes partielles de la série de Taylor convergent vers la fonction originale dans la norme de D[indice ω]. Lorsque α = 1/2, on montre que ce n'est plus le cas et il existe une fonction f ∈ D[indice ω] telle que les moyennes de Cesàro d'ordre α = 1/2 des sommes partielles de sa série de Taylor ne sont pas bornées en norme. Ce résultat contraste grandement avec le résultat de M. Riesz pour l'espace A(D) (l'algèbre du disque) et le résultat de Hardy pour l'espace H¹ (espace de Hardy). Les résultats de cette partie ont été publiés dans le journal Complex Analysis and Operator Theory. La troisième partie a trois chapitres et traite des espaces de de Branges-Rovnyak. Après avoir présenté brièvement la théorie de ces espaces au premier chapitre de cette partie, nous démontrons qu'il existe un espace de de Branges-Rovnyak de fonctions holomorphes sur le disque unité et une fonction f de cet espace avec les propriétés suivantes : même si f peut être approximée par des polynômes dans la norme de l'espace, ni les sommes partielles, ni les moyennes de Cesàro, d'Abel, de Borel et logarithmiques ne convergent vers f dans la norme de l'espace. L'instrument principal pour démontrer ce théorème est un résultat puissant, montré dans la première partie, qui permet d'étendre aux suites de vecteurs dans un espace de Banach une propriété d'une méthode de sommabilité vraie pour les suites de scalaires. Les résultats de cette partie ont été soumis au journal Integral Equations and Operator Theory. Enfin, la dernière partie de cette thèse traite d'un cas exceptionnel d'espace de Hilbert de fonctions holomorphes sur le disque unité. En utilisant le concept de base de Markushevich et en adaptant une construction de Johnson, nous construisons un espace de Hilbert de fonctions holomorphes sur le disque unité tel que les polynômes sont denses, mais les polynômes impairs ne sont pas denses dans l'espace des fonctions impaires. Comme conséquence de ce résultat, nous montrons qu'il existe une fonction f qui n'appartient pas à la fermeture de l'espace vectoriel engendré par les sommes partielles de la série de Taylor de f. Ainsi, aucune méthode de sommabilité triangulaire appliquée aux sommes partielles ne permet d'approximer la fonction f dans la norme de l'espace. Les résultats de cette partie et quelques variantes de celui-ci ont été soumis au journal Constructive Approximation. / In this thesis, we study summability questions on the Taylor expansion of functions belonging to certain Banach spaces of holomorphic functions on the unit disk. The first chapter serves as an introduction to the theory of summability in Banach spaces. We present the main concepts such as the definition of a summability method, the definition of inclusion of summability methods and the Silverman-Toeplitz theorem in the Banach space setting. The first part consists of two chapters and presents the main properties of certain families of summability methods. More precisely, we present the main summability methods studied in this thesis : Cesàro's methods, Riesz's discrete arithmetic methods and power series methods including generalized Abel, generalized Borel and logarithmic methods. We also present the relations between each of these methods when they are restricted to sequences of scalars. The second part has two chapters and deals with summability in weighted Dirichlet spaces D[subscript ω] where ω is a non-negative superharmonic function. We briefly introduce these Hilbert spaces in the first chapter of this second part. Then we show that the Cesàro means of order α > 1/2 of the partial sums of the Taylor series converge to the original function in the norm of D[subscript ω]. When α = 1/2, we show that this is no longer the case and there exists a function f ∈ D[subscript ω] such that the Cesàro means of order α = 1/2 of the partial sums of its Taylor series are unbounded in norm. This result contrasts sharply with M. Riesz's classical result on the convergence of Cesàro means of order α > 0 in the space A(D) (the disk algebra) and Hardy's classical result on the convergence of the Cesàro means of order α > 0 in the space H¹ (the Hardy space). The results of this part have been published in the journal Complex Analysis and Operator Theory. The third part consists of three chapters and treats the de Branges-Rovnyak spaces. After having briefly presented the theory of de Branges-Rovnyak spaces in the first chapter of this part, we prove that there exists a de Branges-Rovnyak space of holomorphic functions on the unit disk and a function f belonging to this space with the following properties : even if f can be approximated by polynomials in the norm of the space, neither the partial sums, nor the Cesàro, Abel, Borel and logarithmic means converge to f in the norm of the space. The main instrument to prove this theorem is a powerful result, established in the first part, which allows extending a property of a summability method valid over sequences of scalars to the sequences of vectors in a Banach space. The results of this part have been submitted to the journal Integral Equations and Operator Theory. Finally, the last part of this thesis treats an exceptional case of Hilbert space of holomorphic functions on the unit disk. Using the concept of a Markushevich basis and by adapting a construction of Johnson, we construct a Hilbert space of holomorphic functions on the unit disk such that the polynomials are dense but the linear vector space spanned by the odd polynomials is not dense in the space of odd functions. As a consequence of this result, we show that there exists a function f which does not belong to the closure of the linear span of the partial sums of the Taylor series of f. Thus no triangular summability method applied to the partial sums can approximate the function f in the norm of the space. The results of this part and some variants of it have been submitted to the journal Constructive Approximation.
4

Analyse harmonique des fonctions a valeurs dans un espace de Banach pour l'etude des equations d'evolution paraboliques

Portal, Pierre 11 June 2004 (has links) (PDF)
Ce travail est motive par l'etude des equations paraboliques et en particulier de leur regularite \(L_(p)\). On est amene a considerer des operateurs integraux dont le noyau est une fonction a valeur dans un espace d'opérateurs agissant sur un espace de Banach. Les questions concernent alors le caractre borne de tels operateurs integraux et l'application de tels resultats a l'etude des equations d'evolution. Plus particulierement on s'interesse au role de la geometrie de l'espace de Banach sous-jacent dans ce type de resultats. Ce travail est une etude de differents problemes abstraits, en temps discret et continu, ou la regularite est liee au caractere R-borne de certains ensembles d'operateurs lineaires agissant sur un espace de Banach UMD (regularite \(L_(p)\) pour \(1
5

Analytic function spaces : properties of operators and duality /

Palmberg, Niklas. January 2006 (has links)
Thesis Ph. D.--Mathematics--Åbo (Finland)--Åbo akademi university, 2006.
6

Existence de connexions homoclines pour l'équation du pont suspendu : une preuve assistée par ordinateur

Murray, Maxime 24 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 / Dans ce mémoire, une méthode assistée numériquement est introduite et utilisée afin de montrer l'existence d'une connexion homocline à zéro pour l'équation du pont suspendu. Cette méthode, basée sur l'utilisation du théorème de contraction de Banach, permet d'obtenir les points fixes de l'opérateur de Newton légèrement modifié. La méthode ainsi que son cadre théorique sont introduits au premier chapitre. L'espace de Banach sur lequel sera définit l'opérateur ainsi que la manière de construire l'approximation de l'inverse utilisée pour l'opérateur sont les éléments majeurs du cadre théorique. Par la suite, la méthode est utilisée dans le Chapitre 2 pour prouver rigoureusement la validité de l'approximation numérique utilisée pour la variété stable locale. Puis cette approximation est réutilisée pour prouver l'existence de la connexion homocline. Cette preuve est à nouveau effectuée en utilisant la méthode introduite au premier chapitre. Finalement, certains résultats des calculs numériques sont présentés pour conclure ce mémoire. / In this work, a numerically assisted technique is introduced in order to prove the existence of a homoclinic connexion to zero for the suspension bridge equation. This technique, based on the use of the Banach fixed point theorem, can provide the fixed point of a slightly modified version of the Newton operator. The technique and its theorical background are introduced in the first chapter. The Banach space on which the operator is defined and the way to construct the approximation of the inverse needed to define the operator are the major parts of the theoretical background. The method is then used to rigorously validate the numerical approximation used to parametrize the local stable manifold. This parametrization is used to find the homoclinic connexion we are looking for. This proof is also completed using the technique from the first chapter. Finally, some results and numerical approximations will be presented in the last chapter.
7

Etude d'une classe de normes dans les espaces vectoriels à dimension finie générées par les normes des espaces fonctionnels de Banach

Pham Dinh, Tao 14 February 1972 (has links) (PDF)
.
8

Application de la théorie de la perturbation des opérateurs linéaires à l'obtention de bornes d'erreurs sur les éléments propres et à leur calcul

Redont, Patrick 28 June 1979 (has links) (PDF)
Méthode d'itération pour le calcul de valeurs propres et de vecteurs propres d'opérateurs linéaires. Approximation par itération des éléments propres d'un opérateur linéaire ferme quasi décomposé par une projection de rang 1. Approximation des éléments propres d'un opérateur linéaire ferme par itération : cas général. Approximation d'un sous-espace invariant d'un opérateur linéaire par itération.
9

Sur certaines normes et fonctionnelles dans les espaces de matrices et d'opérateurs

Maitre, Jean-François 30 November 1974 (has links) (PDF)
.
10

Application du quotient de Rayleigh au calcul des valeurs propres d'opérateurs différentiels par la méthode des différences finies

Ghemires, Touria 28 June 1979 (has links) (PDF)
.

Page generated in 0.0588 seconds