Spelling suggestions: "subject:"opérateurs différentiel"" "subject:"opérateurs différentielles""
1 |
Fonction de corrélation à 3 champs grâce à l'OPE dans l'espace de plongementKhalfoun, Meriem 04 March 2024 (has links)
Titre de l'écran-titre (visionné le 29 février 2024) / La théorie quantique des champs (QFT), née de la combinaison entre la mécanique quantique et de la relativité restreinte, est aujourd'hui l'approche la plus fondamentale utilisée en physique théorique. Les théories conformes des champs (CFTs) sont des cas particuliers de QFTs qui possèdent des symétries conformes supplémentaires qui sont très intéressantes puisqu'elles nous permettent de résoudre des CFTs sans avoir recours à leur lagrangien. En effet, elles permettent de fixer complètement la forme des fonctions de corrélation à 2 et 3 points. Pour les fonctions de corrélations à 4 points et plus, le développement en produit d'opérateurs (OPE) est l'un des outils les plus importants, qui nous permet de réécrire le produit de deux champs en une somme d'un champ sur lequel s'applique un opérateur différentiel. L'OPE nous permet de réduire les fonctions de corrélation à plusieurs points en une somme de fonctions de corrélation plus petites dont nous connaissons la forme. Cependant, l'opérateur différentiel apparaissant dans l'OPE est plus facilement utilisable dans l'espace de plongement, qui est un espace à d+2 dimensions, dans lequel l'algèbre conforme vit naturellement et qui simplifie grandement les calculs impliquant l'OPE. Pourtant, il existe peu de résultats analytiques utilisant l'OPE directement dans l'espace de plongement pour calculer les fonctions de corrélations à 4 points non scalaires. Le but de mon projet est de calculer les fonctions de corrélation à 3 points en utilisant l'OPE directement dans l'espace de plongement, afin de mieux comprendre la base de l'OPE dans l'espace de plongement pour éventuellement calculer les fonctions de corrélations à 4 points. Nous avons alors trouvé que les fonctions de corrélations à 3 points s'écrivent comme une somme de fonctions de Gegenbauer, ce qui était effectivement ce à quoi on s'attendait. Cela est la première étape pour trouver la meilleure base de l'OPE pour les fonctions de corrélation à 3 points qui nous permettrait de diagonaliser un ensemble complet d'opérateurs qui commutent puis d'éventuellement obtenir une base d'OPE pour toutes les fonctions de corrélation de théories conformes des champs. / Quantum field theory (QFT), born from the combination of quantum mechanics and special relativity, is today the most fundamental approach used in theoretical physics. Conformal field theories (CFTs) are special cases of QFTs which have additional conformal symmetries which are very interesting since they allow us to solve CFTs without resorting to their Lagrangian. Indeed, they make it possible to completely fix the form of the correlation functions at 2 and 3 points. For correlation functions with 4 points and more, operator product expansion (OPE) is one of the most important tools, which allows us to rewrite the product of two fields into a sum of a field over which applies a differential operator. OPE allows us to reduce multipoint correlation functions to a sum of smaller correlation functions whose form we know. However, the differential operator appearing in the OPE is more easily usable in the embedding space, which is a (d + 2)-dimensional space, in which conformal algebra naturally lives and which greatly simplifies calculations involving the OPE. However, there are few analytical results using the OPE directly in the embedding space to compute nonscalar 4-point correlation functions. The goal of my project is to compute the 3-point correlation functions using the OPE directly in the embedding space, in order to better understand the basis of the OPE in the embedding space to eventually compute the 4-point correlation functions. We have found that the 3-point correlation functions are expressible as a sum of Gegenbauer functions, which was indeed what we expected. This is the first step in finding the best basis of the OPE for the 3-point correlation functions which would allow us to diagonalize a complete set of commuting operators and then eventually obtain a basis of the OPE for all the functions of correlation of conformal field theories.
|
2 |
Discrétisation par éléments finis de l'opérateur de Laplace-HodgeLévesque, Jean-Sébastien 19 April 2018 (has links)
L’opérateur de Laplace-Hodge est un opérateur différentiel qui généralise le Laplacien traditionnel aux formes différentielles de degré k. Bien que les formes différentielles offrent un formalisme idéal pour représenter et manipuler les champs de vecteurs, leur utilisation dans le contexte des éléments finis est relativement récente. Nous présenterons d’abord les principales notions théoriques concernant les formes différentielles, puis nous développerons tous les éléments nécessaires à la mise en oeuvre d’une formulation mixte permettant de discrétiser le problème du Laplacien de Hodge avec la méthode des éléments finis. Cette discrétisation sera essentiellement basée sur les formes de Whitney. Nous présenterons ensuite de nombreux résultats numériques couvrant une grande variété de cas.
|
3 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
4 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
5 |
Application du quotient de Rayleigh au calcul des valeurs propres d'opérateurs différentiels par la méthode des différences finiesGhemires, Touria 28 June 1979 (has links) (PDF)
.
|
6 |
Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives / On global differential operators on some projective algebraic varietiesDejoncheere, Benoît 14 December 2016 (has links)
Initiée indépendamment par Beilinson et Bernstein et par Brylinski et Kashiwara, l'étude des opérateurs différentiels sur les variétés de drapeaux complets a permis de répondre à une conjecture de Kazhdan et Lusztig. Ayant été poursuivie notamment par les travaux de Borho et Brylinski, cette étude a mis à jour plusieurs propriétés intéressantes sur les opérateurs différentiels sur les variétés de drapeaux. Cependant, en dehors du cas des variétés de drapeaux et du cas des variétés toriques projectives, qui a été étudié de manière combinatoire, les opérateurs différentiels sont plutôt mal compris sur les variétés projectives.Dans cette thèse, nous nous pencherons sur le cas de certaines compactifications magnifiques Y d'espaces symétriques G/H de petit rang, et nous comparerons les résultats obtenus avec ceux connus sur les variétés de drapeaux. Nous allons commencer par construire un opérateur différentiel global sur Y qui ne provient pas de l'action infinitésimale de l'algèbre de Lie de G, ce qui constitue une différence avec le cas des variétés de drapeaux.Ensuite, nous nous intéresserons à trois cas particulier que nous exprimerons comme des quotients GIT d'une certaine grassmannienne X. Grâce à cette description, nous verrons plusieurs similitudes avec le cas des variétés de drapeaux : nous montrerons que l'algèbre des opérateurs globaux sur Y est de type fini, et que pour tout faisceau inversible L sur Y, ses sections globales forment un module simple pour l'algèbre des opérateurs différentiels globaux de Y tordus par L. Enfin, en utilisant des arguments de cohomologie locale, nous montrerons que c'est également le cas pour les groupes de cohomologie supérieurs / Started independently by Beilinson and Bernstein, and by Brylinski and Kashiwara, the study of global differential operators on complete flag varieties has been very useful to answer a conjecture of Kazhdan and Lusztig. In their subsequent work, Borho and Brylinski have discovered many interesting properties on differential operators on flag varieties. But apart from the case of flag varieties, and the case of projective toric varieties, which has been investigated with combinatorial methods, differential operators on projective varieties are rather badly known.In this thesis, we will investigate the case of some wonderful compactifications Y of symmetric spaces G/H of small rank, and we will compare our results with what is known in the case of flag varieties. We will first construct a differential operator on Y which does not come from the infinitesimal action of G, which is different from the case of flag varieties.We will then look at three particular cases, which will be expressed as GIT quotients of some Grassmannian X. With this description, we will find some similarities with the case of flag varieties : we will show that the algebra of global differential operators is of finite type, and that for each invertible sheaf L on Y, the module of its global sections is simple as a module over the algebra of global differential operators of Y twisted by L. Finally, using arguments of local cohomology, we will show that it is still the case for higher cohomology groups
|
7 |
Détection et quantification automatiques de processus évolutifs dans des images médicales tridimensionnelles : application à la sclérose en plaquesRey, David 23 October 2002 (has links) (PDF)
L'étude des processus évoluant au cours du temps, comme les lésions de sclérose en plaques, peut dans certains cas être une aide considérable au diagnostic. Elle peut aussi servir au suivi d'un patient pour surveiller l'évolution de sa pathologie ou pour étudier les effets d'un nouveau traitement. Notre travail a tout d'abord consisté à choisir et à appliquer des prétraitements sur des séries d'images issues de l'imagerie par résonance magnétique (IRM) de patients atteints de sclérose en plaques ; ceci est nécessaire lorsqu'on veut mener une analyse temporelle automatique. Nous avons ensuite pu développer des méthodes de détection et de quantification des zones évolutives dans des ces images. Une première étude repose sur la comparaison de deux images en utilisant un champ de déplacements apparents d'une image vers l'autre. Ce champ de vecteurs peut être analysé par le biais d'opérateurs différentiels tels que le jacobien. Il est également possible d'extraire une segmentation des régions évolutives en 3D+t avec une telle analyse. Avec cette approche, on suppose que chaque point a une intensité fixe, et qu'il a un mouvement apparent. Une seconde étude consiste à mener une analyse statistique rétrospective sur une série complète d'images (typiquement plus de dix), en s'appuyant sur un modèle paramétrique de zone évolutive. Dans notre cas, les points dont la variation temporelle de l'intensité est significativement due à une lésion sont détectés. Les méthodes statistiques utilisées permettent de prendre en compte la cohérence spatiale des images. Pour cette seconde approche, on suppose que chaque point est immobile et que son intensité varie au cours du temps. Ces travaux ont été réalisés avec plusieurs partenaires cliniques afin de mener une étude expérimentale de nos algorithmes sous le contrôle d'experts médicaux, mais aussi d'entamer un travail de validation clinique.
|
8 |
Propriétés spectrales des opérateurs non-auto-adjoints aléatoires / Spectral properties of random non-self-adjoint operatorsVogel, Martin 10 September 2015 (has links)
Dans cette thèse, nous nous intéressons aux propriétés spectrales des opérateurs non-auto-adjoints aléatoires. Nous allons considérer principalement les cas des petites perturbations aléatoires de deux types des opérateurs non-auto-adjoints suivants :1. une classe d’opérateurs non-auto-adjoints h-différentiels Ph, introduite par M. Hager [32],dans la limite semiclassique (h→0); 2. des grandes matrices de Jordan quand la dimension devient grande (N→∞). Dans le premier cas nous considérons l’opérateur Ph soumis à de petites perturbations aléatoires. De plus, nous imposons que la constante de couplage δ vérifie e (-1/Ch) ≤ δ ⩽ h(k), pour certaines constantes C, k > 0 choisies assez grandes. Soit ∑ l’adhérence de l’image du symbole principal de Ph. De précédents résultats par M. Hager [32], W. Bordeaux-Montrieux [4] et J. Sjöstrand [67] montrent que, pour le même opérateur, si l’on choisit δ ⪢ e(-1/Ch), alors la distribution des valeurs propres est donnée par une loi de Weyl jusqu’à une distance ⪢ (-h ln δ h) 2/3 du bord de ∑. Nous étudions la mesure d’intensité à un et à deux points de la mesure de comptage aléatoire des valeurs propres de l’opérateur perturbé. En outre, nous démontrons des formules h-asymptotiques pour les densités par rapport à la mesure de Lebesgue de ces mesures qui décrivent le comportement d’un seul et de deux points du spectre dans ∑. En étudiant la densité de la mesure d’intensité à un point, nous prouvons qu’il y a une loi de Weyl à l’intérieur du pseudospectre,une zone d’accumulation des valeurs propres dûe à un effet tunnel près du bord du pseudospectre suivi par une zone où la densité décroît rapidement. En étudiant la densité de la mesure d’intensité à deux points, nous prouvons que deux valeurs propres sont répulsives à distance courte et indépendantes à grande distance à l’intérieur de ∑. Dans le deuxième cas, nous considérons des grands blocs de Jordan soumis à des petites perturbations aléatoires gaussiennes. Un résultat de E.B. Davies et M. Hager [16] montre que lorsque la dimension de la matrice devient grande, alors avec probabilité proche de 1, la plupart des valeurs propres sont proches d’un cercle. De plus, ils donnent une majoration logarithmique du nombre de valeurs propres à l’intérieur de ce cercle. Nous étudions la répartition moyenne des valeurs propres à l’intérieur de ce cercle et nous en donnons une description asymptotique précise. En outre, nous démontrons que le terme principal de la densité est donné par la densité par rapport à la mesure de Lebesgue de la forme volume induite par la métrique de Poincaré sur la disque D(0, 1). / In this thesis we are interested in the spectral properties of random non-self-adjoint operators. Weare going to consider primarily the case of small random perturbations of the following two types of operators: 1. a class of non-self-adjoint h-differential operators Ph, introduced by M. Hager [32], in the semiclassical limit (h→0); 2. large Jordan block matrices as the dimension of the matrix gets large (N→∞). In case 1 we are going to consider the operator Ph subject to small Gaussian random perturbations. We let the perturbation coupling constant δ be e (-1/Ch) ≤ δ ⩽ h(k), for constants C, k > 0 suitably large. Let ∑ be the closure of the range of the principal symbol. Previous results on the same model by M. Hager [32], W. Bordeaux-Montrieux [4] and J. Sjöstrand [67] show that if δ ⪢ e(-1/Ch) there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudospectrumup to a distance ⪢ (-h ln δ h) 2/3 to the boundary of ∑. We will study the one- and two-point intensity measure of the random point process of eigenvalues of the randomly perturbed operator and prove h-asymptotic formulae for the respective Lebesgue densities describing the one- and two-point behavior of the eigenvalues in ∑. Using the density of the one-point intensity measure, we will give a complete description of the average eigenvalue density in ∑ describing as well the behavior of the eigenvalues at the pseudospectral boundary. We will show that there are three distinct regions of different spectral behavior in ∑. The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly. Using the h-asymptotic formula for density of the two-point intensity measure we will show that two eigenvalues of randomly perturbed operator in the interior of ∑ exhibit close range repulsion and long range decoupling. In case 2 we will consider large Jordan block matrices subject to small Gaussian random perturbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however, only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle. We study the expected eigenvalue density of the perturbed Jordan block in the interior of thatcircle and give a precise asymptotic description. Furthermore, we show that the leading contribution of the density is given by the Lebesgue density of the volume form induced by the Poincarémetric on the disc D(0, 1).
|
9 |
Differential calculus on h-deformed spaces / Calcul différentiel sur des espaces h-déformésHerlemont, Basile 16 November 2017 (has links)
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$. / The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$.
|
10 |
Étude et simulation des processus de diffusion biaisés / Study and simulation of skew diffusion processesLenôtre, Lionel 27 November 2015 (has links)
Nous considérons les processus de diffusion biaisés et leur simulation. Notre étude se divise en quatre parties et se concentre majoritairement sur les processus à coefficients constants par morceaux dont les discontinuités se trouvent le long d'un hyperplan simple. Nous commençons par une étude théorique dans le cas de la dimension un pour une classe de coefficients plus large. Nous donnons en particulier un résultat sur la structure des densités des résolvantes associées à ces processus et obtenons ainsi une méthode de calcul. Lorsque cela est possible, nous effectuons une inversion de Laplace de ces densités et donnons quelques fonctions de transition. Nous nous concentrons ensuite sur la simulation des processus de diffusions baisées. Nous construisons un schéma numérique utilisant la densité de la résolvante pour tout processus de Feller. Avec ce schéma et les densités calculées dans la première partie, nous obtenons une méthode de simulation des processus de diffusions biaisées en dimension un. Après cela, nous regardons le cas de la dimension supérieure. Nous effectuons une étude théorique et calculons des fonctionnelles des processus de diffusions biaisées. Ceci nous permet d'obtenir entre autre la fonction de transition du processus marginal orthogonal à l'hyperplan de discontinuité. Enfin, nous abordons la parallélisation des méthodes particulaires et donnons une stratégie permettant de simuler de grand lots de trajectoires de processus de diffusions biaisées sur des architectures massivement parallèle. Une propriété de cette stratégie est de permettre de simuler à nouveau quelques trajectoires des précédentes simulations. / We consider the skew diffusion processes and their simulation. This study are divided into four parts and concentrate on the processes whose coefficients are piecewise constant with discontinuities along a simple hyperplane. We start by a theoretical study of the one-dimensional case when the coefficients belong to a broader class. We particularly give a result on the structure of the resolvent densities of these processes and obtain a computational method. When it is possible, we perform a Laplace inversion of these densities and provide some transition functions. Then we concentrate on the simulation of skew diffusions process. We build a numerical scheme using the resolvent density for any Feller processes. With this scheme and the resolvent densities computed in the previous part, we obtain a simulation method for the skew diffusion processes in dimension one. After that, we consider the multidimensional case. We provide a theoretical study and compute some functionals of the skew diffusions processes. This allows to obtain among others the transition function of the marginal process orthogonal to the hyperplane of discontinuity. Finally, we consider the parallelization of Monte Carlo methods. We provide a strategy which allows to simulate a large batch of skew diffusions processes sample paths on massively parallel architecture. An interesting feature is the possibility to replay some the sample paths of previous simulations.
|
Page generated in 0.3246 seconds