• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An Efficient Method for Computing Excited State Properties of Extended Molecular Aggregates Based on an Ab-Initio Exciton Model

Morrison, Adrian Franklin January 2017 (has links)
No description available.
12

Studying nonlinear optical properties of the plant light-harvesting protein LHCII

Schubert, Axel 11 May 2004 (has links)
Ultraschnelle Energietransferprozesse zwischen den Anregungszuständen organischer Pigmentmoleküle in photosynthetischen Lichtsammelkomplexen gehören zu den schnellsten bisher untersuchten biologischen Ereignissen. Diese Vorgänge wurden insbesondere auch für den Haupt-Antennenkomplex der höheren Pflanzen (LHCII) beobachtet, der mehr als die Hälfte des pflanzlichen Chlorophylls (Chl) bindet (5 Chl b und 7 Chl a pro Monomer). Offenbar ist dieser Pigment-Protein-Komplex entscheidend für Regulationsmechanismen verantwortlich, die eine schnelle Adaptation des Photosyntheseapparats an wechselnde Licht- bedingungen ermöglichen. Die Struktur von LHCII ist mit einer Auflösung von 3.4 Å bekannt und erlaubt (im Prinzip) die Berechnung des Anregungsenergietransfers auf Basis eines Förster-Mechanismus. In diesem Zusammenhang gibt es jedoch noch zahlreiche ungeklärte Fragen, die vor allem die Orientierung der Pigmente zueinander sowie deren mögliche starke (exzitonische) Wechselwirkung betreffen. Allerdings sind konventionelle spektroskopische Methoden nicht geeignet, diese Merkmale ausreichend aufzuklären. Aus diesem Grund wird in dieser Arbeit untersucht, inwieweit neuere laserspektroskopische Methoden wie die nichtlineare Polarisationsspektroskopie in der Frequenzdomäne (NLPF) zur Ermittlung unbekannter Parameter beitragen können. Anfänglich ergaben sich besonders Fragen der Anwendbarkeit der NLPF auf solche hoch- komplexen Untersuchungsobjekte sowie der Signifikanz eventuell erzielbarer Ergebnisse. Aufbauend auf einer parallel verfaßten Dissertation zu theoretischen Aspekten der NLPF- Methode [1] wurde daher ein vereinfachtes System modelliert, das die Heterogenität der individuellen Chl(e) im LHCII widerspiegelt. Die gewonnenen Resultate ließen vermuten, daß die reine Simulation von NLPF-Spektren nicht ausreicht, um eindeutige Aussagen über die Molekülparameter zu gewinnen. Um den benötigten zusätzlichen Erkenntnisgewinn zu erreichen, wurden daher Paralleluntersuchungen mit anderen laserspektroskopischen Methoden (nichtlineare Absorption mit fs-Pulsen, intensitätsabhängige NLPF, Einzelmolekülspektroskopie, Tieftemperatur-NLPF) sowie mit in vitro rekonstituierten Protein-Mutanten durchgeführt. Als Ergebnis konnte die Subbstruktur der Qy- Absorptionsbande der ersten angeregten Zustände der Chl(e) für LHCII ausreichend beschrieben werden. Darüber hinaus ergaben sich Aussagen zu exzitonischen Wechselwirkungen zwischen bestimmten Chl(en), die unter anderem Einfluß auf das Energie- transferverhalten haben. Diese zusätzlichen Untersuchungen erlaubten letztendlich eine Modellierung der bei Raum- temperatur an LHCII gemessenen NLPF-Spektren. Neben dem dabei implizit gewonnenen Verständnis der nichtlinearen optischen Eigenschaften im Bereich der Qy-Absorption ließen sich so Aussagen über bestimmte Modellparameter, besonders über die Orientierung von Übergangsdipolmomenten, ableiten. Abschließend wurde die Auswirkung der Erkenntnisse auf das Verständnis der Struktur-Funktionsbeziehungen für intra- und inter-komplexen Energietransfer erläutert. / Ultra-fast excitation energy transfer (EET) between excited states of organic pigment molecules in photosynthetic antenna complexes belongs to the fastest observed biological processes. Such EET phenomena has been studied to a large extent for the main light- harvesting complex of the higher plants (LHCII), which appears to play an exceptional role for the regulatory function (i.e. light adaptation) of the plant photosynthetic apparatus. The structure of this pigment-protein complex harboring more than 50 % of the total chlorophyll (Chl) content is known with 3.4 Å resolution and reveals the binding sites of 5 Chl b and 7 Chl a per monomeric unit. Based on this structure analysis, EET calculations are (in principle) available on the molecular level under the assumption of Förster-type transfer. However, several molecular features like mutual pigment orientations and electronic interactions between their transition dipoles are still rather uncertain. Since conventional spectroscopic techniques can hardly reveal the corresponding parameters, this work was aimed at the evaluation of newly introduced laser spectroscopic techniques with respect to these questions. In the beginning, suitability and significance of the method when applied to highly complicated structures like pigment-protein complexes were studied by modeling heterogeneous, LHCII-like absorption systems in NLPF experiments. Based on recent improvements in the NLPF theory by a parallel theoretical investigation [1], these simulations clarified the sensitivity of the NLPF method on numerous physical parameters. As a major consequence, unambiguous evaluations of NLPF measurements appear to require substantial additional information about the investigated system. Accordingly, several supplementary methods like nonlinear absorption (using fs-pulses), intensity-dependent NLPF, single- molecule spectroscopy, and NLPF at low temperatures were employed. These investigations revealed unique information about excitonic interaction between certain Chl(s), including implications for the overall EET scheme. The sub-structure model for the Qy-absorption region of LHCII was further essentially improved by the analysis of reconstituted proteins with selectively modified Chl binding residues in the amino-acid sequence. The sum of all complementary investigations allowed finally the evaluation of room temperature NLPF measurements of trimeric LHCII. Due to the unique selectivity of the spectra to individual transition-dipole directions, several orientation parameters have been obtained. Under this point of view, the NLPF method has indeed revealed a high potential as compared to conventional techniques like circular dichroism spectroscopy. Moreover, the understanding of nonlinear phenomena in the Qy-absorption region of LHCII as a consequence of molecular interaction provides further knowledge for the application of other nonlinear optical experiments. Concluding, implications of the obtained results for the structure-function relationship of intra- and inter-complex EET were elucidated.
13

Excitation energy transfer in pheophorbide a complexes

Megow, Jörg 21 February 2013 (has links)
Die Arbeit untersucht den Anregungsenergietransfer in supramolekularen Phäophorbid-a-Komplexen. Das P4- und das P16-Molekül bestehen aus vier bzw. sechzehn Phäophorbid-a-Molekülen. Die Komplexe werden in explizitem Lösungsmittel im Rahmen einer gemischt quanten-klassischen Methode untersucht. Klassische Molekulardynamik-Simulationen werden durchgeführt. Die zeitabhängige Schrödingergleichung wird gelöst, der entsprechende Hamiltonoperator hängt parametrisch von den Kernkoordinaten ab. Es wird eine Methode vorgestellt, die die Berechnung des Schwingungsbeitrags der Koordinatenabhängigkeit in harmonischer Näherung ermöglicht. Die Qualität der Methode wird bewiesen. Es werden drei verschiedene Ansätze benutzt, um das Zeitverhalten des Anregungsenergietransfers innerhalb der Chromophorkomplexe zu charakterisieren. Es werden zunächst Transferraten berechnet und entsprechende Ratengleichungen gelöst. Desweiteren werden gemittelte zeitabhängige Populationen aus der Lösung der Schrödingergleichung bestimmt. Zudem wird die Zeitskala des Anregungsenergietransfers aus der Anisotropie erhalten. Die Berechnung der Anisotropie beruht auf der Lösung einer Schrödingergleichung, welche das elektromagnetischen Feldes explizit enthält. Für alle drei Ansätze ergibt sich die gleiche Dynamik des Anregungsenergietransfers. Es werden zudem lineare und transiente Spektren der Qy-Banden der Chromophorkomplexe berechnet. Für ein einzelnes Phäophorbid-a-Molekül in Ethanol werden zusätzlich die Qx-Bande und die Schwingungsprogression bestimmt. Außerdem wird die lineare Absorption von Phäophorbid a und P16 neben einem Gold-Nanopartikel untersucht, die erwartete Verstärkung des Absorptionssignals durch die Präsenz des Nanoteilchens wird gezeigt. Abschließend wird eine neue Methode vorgestellt, die es erlaubt, die abstands- und orientierungsabhängige Abschirmung der exzitonischen Kopplung parametrisch in die gemischt quanten-klassische Methode zu integrieren. / This thesis investigates the excitation energy transfer in pheophorbide a complexes. The P4 and the P16 molecule consist of four and sixteen pheophorbide a molecules, respectively. The complexes in explicit ethanol solution are investigated utilizing a mixed quantum-classical methodology. Classical molecular dynamics simulations are carried out. The time-dependent Schrödinger equation is solved for a Hamiltonian that depends parametrically on the classical nuclear coordinates. In this thesis a method is introduced which allows the computation of the vibrational contribution in harmonic approximation. The high quality of the method is proven. Three different ansatzes were utilized to compute the time development of the excitation energy transfer within the chromophore complexes. The expansion coefficients that result from the solution of the time-dependent Schrödinger equation are utilized to compute averaged time-dependent populations. Also, the expansion coefficients are used to compute excitation energy transfer rates in second order of the excitonic coupling. Thirdly, the time scale of the excitation energy transfer is derived from the delay-time dependent transient anisotropy. In order to compute the anisotropy, the electromagnetic field is included directly in the Hamiltonian of the system. The excitation energy transfer dynamics is exactly the same for the three approaches. In addition, linear and transient spectra of the chromophor complexes Qy band are computed. For a single pheophorbide a in ethanol, the Qx band and the vibrational progression are calculated. Furthermore, the linear absorption of pheophorbide a and P16 next to a gold nanoparticle is studied. The amplification of the molecular absorption signal due to the presence of the nanoparticle is shown. Finally, a new method is introduced to treat distance and conformation dependent screening of the excitonic coupling parametrically within a mixed quantum-classical description.
14

Theoretical Studies of Energy Transport in Complex Systems

Bhattacharya, Pallavi January 2014 (has links) (PDF)
Photosynthesis involves the absorption of photons by light-harvesting pigments and the subsequent transfer of excitation from the absorption centre to the reaction centre. This highly efficient phenomenon of excitation transfer has traditionally been explained by the Forster mechanism of incoherent hopping of excitation from one chromophore to another. Recently 2D electronic spectroscopic evidences were gathered by Fleming and coworkers on the photosynthetic Fenna-Matthews-Olson (FMO) complex in green sulfur bacteria [1]. Subsequent simulation studies by the same group [2] led to the proposition of a quantum-mechanical, coherent, wave-like transfer of excitation among the chromophores. However, Fleming's conclusions regarding retention of coherence appeared surprising because, the complex would interact with the numerous degrees of freedom of the protein scaffold surrounding it, leading to decoherence, which is expected to be rapid. Thus, we were interested in proposing an analytical treatment to rationalize the excitation transfer. Traditional approaches employed for studying excitation energy transfer involve the master equation techniques where the system-bath coupling is perturbative and is truncated after a few orders. It is important to note that the system-bath coupling causes both decoherence and population relaxation. Such a perturbative approximation is difficult to justify for the photosystem, as the system-bath coupling and the interchromophoric electronic coupling have comparable values. Also, these treatments are largely numerical studies and demand involved calculations. Thus, exact calculations for such a system (7-level) are very difficult. Consequently, we were interested in developing an analytical approach where the coupling is treated as non-perturbative. We devised a novel analytical treatment which employs a unitary transformation analogous to the one used for the theory of nonadiabatic effects in chemical reactions [3]. Our treatment rests on an adiabatic basis which are eigenstates calculated at each nuclear position (i.e. at each configuration of the bath) bearing a parametric dependence in Qi, where Qi denotes the shift of the exciton at site `i' due to the environment. The treatment is justified because in the case of coherent transfer, the excitation would travel mostly amongst the adiabatic states and the effects of non-adiabaticity are small. We observed that the system-bath coupling, after the unitary transformation, could be decoupled at the lowest order into two parts: a) an adiabatic contribution, which accounts solely for decoherence (this is evaluated almost exactly in our approach) and b) a non-adiabatic contribution which accounts for population relaxation from one adiabatic state to another (treated by a Markovian master equation). When we applied our technique to the FMO complex, our prediction for population evolution at the chromophores showed excellent correspondence with those obtained by Nalbach and coworkers using path-integral calculations [4], which are exact. These were calculations where the environment was modelled using a Drude spectral density. Our method allowed the calculations to be readily performed for different temperatures as well. It should be specifically emphasized that, unlike the involved and cumbersome path-integral calculations by Nalbach and coworkers [4] or the hierarchical equation calculations by Ishizaki et al. [2], our method is simple, easy to apply and computationally expedient. Further it became evident that the ultra-efficiency of energy transfer in photosynthetic complexes is not completely captured by coherence alone but is the result of an interplay of coherence and the dissipative influence of the environment (also known as ENAQT or Environment Assisted Quantum Transport [5]). An added advantage of our analytical treatment was the flexibility it offered. Thus, we could use our formalism to perform expedient analyses on the behavior of the system under various conditions. For example, we may wish to evaluate the consequences of introducing correlations among the bath degrees of freedom on the efficiency of transfer to the reaction centre. To this end, we applied our formalism by introducing correlations among the bath degrees of freedom and then by introducing anticorrelations among the bath degrees of freedom. The conclusions were interesting, for they suggested that the efficiency of transfer to the reaction centre was enhanced by the presence of anti-correlations, when compared with an uncorrelated bath. Uncorrelated baths, in turn, had a higher efficiency of energy transfer than correlated baths [6]. Thus, the population evolution is fastest for the anti-correlated bath, followed by the uncorrelated bath and is slowest for the correlated bath. Similar conclusions have been reached at by Tiwari et al. [7]. We could also extend the formalism for studying the system under different spectral densities for the environment, apart from just the Drude spectral density which is popularly used in literature associated with FMO calculations. For instance, the FMO system could be analyzed for the Adolphs-Renger spectral density [3, 8]. Once again our results showed excellent agreement with those reported by Nalbach. We also analyzed the FMO system under the spectral density proposed by Kleinekathofer and coworkers [9]. It was found that these latter spectral densities had more profound participation from the environment, therefore coherences were destroyed more effectively and population relaxation was faster. The excitation transfer to the final site (site closest to the reaction centre in the FMO complex) was found to be faster for the Adolphs and Renger spectral density and the spectral density proposed by Kleinekathofer and coworkers, when compared to the Drude spectral density. Also, the excitation transfer was fastest when we modelled the environment using the Kleinekathofer spectral density. This reinforced the previous conclusions that the dissipative effects of the environment promote a faster energy transport. Being an almost analytical approach, our technique could be applied to systems with larger number of levels as well. A good example of such a case is the MEH-PPV polymer. 2D electronic-spectroscopic experiments performed on this polymer in solution speculate that the excitation energy transfer might be coherent even at physiological temperatures [10]. A prototype for studying this system might be a conjugated polymer with around 80-100 chromophores. Linewidths and Lineshapes in the vicinity of Graphene It has been reported that a vibrating dipole may de-excite by transferring energy non-radiatively to a neighboring metal surface [11]. It is also understood that due to its delocalized pi-cloud, graphene has a continuum of energy states and can behave like a metal sheet and accept energies. Thus, we proposed that if a vibrationally excited dipole de-excites in the vicinity of a graphene sheet, graphene may get electronically excited and thus serve as an effective quencher for such vibrational excitations. Depending on the distance of the dipole from the graphene sheet, the transfer might be intense enough to be spectroscopically probed. We have investigated the rate of such an energy transfer. We use the Dirac cone approximation for graphene, as this enables us to obtain analyt-ical results. The Fermi Golden rule was used to evaluate the rate of energy transfer from the excited dipole to the graphene sheet [12]. The calculations were performed for both the instances: a) energy transfer from a dipole to undoped graphene and, b) energy trans-fer from a dipole to doped graphene. For undoped graphene, the carrier (electron) charge density in the conduction band is zero and we would only have transitions from the valence band to the conduction band. As a consequence of absence of carrier charge density in CB (conduction band), the screening of Coulombic interactions in the graphene plane is ineffective. Thus, one could use the non-interacting polarizability for undoped graphene in the rate expression [13]. However, when we consider the case of doped graphene where EF is shifted upwards into CB, the conduction band electrons will contribute to screening. In this case, we have two sets of transitions: a) from ki in VB (valence band) to kf in CB and b) ki in CB to kf in CB, where ki and kf are the wavevectors which correspond to the initial and final electronic states in graphene. So we have used the polarizability propagator in the random phase approximation [14] to calculate the rate following the approach of [13]. It is also known that the imaginary part of the frequency domain dipole-dipole corre-lation function is a measure of the lineshape [15]. We were, thus, interested in evaluating the lineshape for these transitions. For evaluating the correlation function, we used the partitioning technique developed by L•owdin [16] and subsequently extracted the lineshape from its imaginary part. Using this method, we calculated lineshape for the vibrational excitation of CO molecule in the vicinity of an undoped graphene lattice. The linewidth for this system also was obtained. It could be seen that the vibrational linewidth for 1 CO in the vicinity (5 A) of undoped graphene (EF = 0:00eV ) is small (0:012 cm ) but could be observed experimentally. The lineshape calculations were also extended to cases where it is possible to have atomic transitions by placing an electronically excited atom in the vicinity of the graphene sheet. We considered the following two cases: a) 3p ! 2s transition in hydrogen atom, at a distance of 12 A from the graphene sheet and, b) 4p ! 3s transition in hydrogen atom, at a distance of 20 A from the graphene sheet. The linewidths for atomic transitions could be easily probed in these cases ( 55 cm 1 for 3p ! 2s and 56 cm 1 for 4p ! 3s). In the preceding calculations, the transi-tion dipoles were considered perpendicular to the graphene surface. It is worthwhile to note that if the transition dipoles are considered parallel to the graphene surface, the respective linewidths would be half of those obtained for the case where the transition dipoles are perpendicular. Another interesting possibility would be to consider a lanthanide metal complex placed within a few nanometers from graphene. Lanthanides are known to have sharp f-f transitions [17] and consequently, one could easily observe the effects of broadening due to energy transfer to the electronic system of graphene. Energy Eigenmodes for arrays of Metal Nanoparticles In the final part of the thesis we consider organized assemblies of metal nanoparti-cles, specifically helical and cylindrical assemblies and investigate the plasmonic excitation transfer across these assemblies. These were motivated by recent studies which reported growth of chiral asymmetric assemblies of nanoparticles on D and L- isomers of dipheny-lalanine peptide nanotubes [18]. The plasmons in the helical/cylindrical assemblies are expected to couple with each other via electromagnetic interactions. We construct the Hamiltonian for such systems and evaluate the eigenmodes and energies pertaining to these modes in the wave vector space. We also perform calculations for the group velocity for each eigenmode as this gives us an idea of which eigenmode transports excitation the fastest.
15

Theory of Excitation Energy Transfer in Nanohybrid Systems

Ziemann, Dirk 25 November 2020 (has links)
Im Folgenden werden Transferprozesse in Nanohybridsystemen theoretisch untersucht. Diese Hybridsysteme sind vielversprechende Kandidaten für neue optoelektronische Anwendungen und erfahren daher ein erhebliches Forschungsinteresse. Jedoch beschränken sich Arbeiten darüber hauptsächlich auf experimentelle Untersuchungen und kaum auf die dazugehörige theoretische Beschreibung. Bei den theoretischen Betrachtungen treten entscheidende Limitierungen auf. Es werden entweder Details auf der atomaren Ebene vernachlässigt oder Systemgrößen betrachtet, die wesentlich kleiner als im Experiment sind. Diese Thesis zeigt, wie die bestehenden Theorien verbessert werden können und erweitert die bisherigen Untersuchungen durch die Betrachtung von vier neuen hoch relevanten Nanohybridsystemen. Das erste System ist eine Nanostruktur, die aus einem Au-Kern und einer CdS-Schale besteht. Beim zweiten System wurde eine ZnO/Para-Sexiphenyl Nanogrenzfläche untersucht. Die zwei anderen Systeme beinhalten jeweils einen CdSe-Nanokristall, der entweder mit einem Pheophorbide-a-Molekül oder mit einem röhrenförmigen Farbstoffaggregat wechselwirkt. In allen Systemen ist der Anregungsenergie-Transfer ein entscheidender Transfermechanismus und steht im Fokus dieser Arbeit. Die betrachteten Hybridsysteme bestehen aus zehntausenden Atomen und machen daher eine individuelle Berechnung der einzelnen Subsysteme sowie deren gegenseitiger Wechselwirkung notwendig. Die Halbleiter-Nanostrukturen werden mit der Tight-Binding-Methode und der Methode der Konfigurationswechselwirkung beschrieben. Für das molekulare System wird die Dichtefunktionaltheorie verwendet. Die dazugehörigen Rechnungen wurden von T. Plehn ausgeführt. Das metallische Nanoteilchen wird durch quantisierte Plasmon-Moden beschrieben. Die verwendeten Theorien ermöglichen eine Berechnung von Anregungsenergietransfer in Nanohybridsystemen von bisher nicht gekannter Systemgröße und Detailgrad. / In the following, transfer phenomena in nanohybrid systems are investigated theoretically. Such hybrid systems are promising candidates for novel optoelectronic devices and have attracted considerable interest. Despite a vast amount of experimental studies, only a small number of theoretical investigations exist so far. Furthermore, most of the theoretical work shows substantial limitations by either neglecting the atomistic details of the structure or drastically reducing the system size far below the typical device extension. The present thesis shows how existing theories can be improved. This thesis also expands previous theoretical investigations by developing models for four new and highly relevant nanohybrid systems. The first system is a spherical nanostructure consisting of an Au core and a CdS shell. By contrast, the second system resembles a finite nanointerface built up by a ZnO nanocrystal and a para-sexiphenyl aggregate. For the last two systems, a CdSe nanocrystal couples either to a pheophorbide-a molecule or to a tubular dye aggregate. In all of these systems, excitation energy transfer is an essential transfer mechanism and is, therefore, in the focus of this work. The considered hybrid systems consist of tens of thousands of atoms and, consequently, require an individual modeling of the constituents and their mutual coupling. For each material class, suitable methods are applied. The modeling of semiconductor nanocrystals is done by the tight-binding method, combined with a configuration interaction scheme. For the simulation of the molecular systems, the density functional theory is applied. T. Plehn performed the corresponding calculations. For the metal nanoparticle, a model based on quantized plasmon modes is utilized. As a consequence of these theories, excitation energy transfer calculations in hybrid systems are possible with unprecedented system size and complexity.
16

Light-induced energy and charge transfer processes in artificial photosynthetic systems

Menting, Raoul 11 January 2013 (has links)
Der Gegenstand der vorliegenden Arbeit ist die Untersuchung von photoinduzierten Energietransferprozessen (EET) und Elektronentransferprozessen (ET) in Modellsystemen, die als potentiell geeignet für eine Nutzung in der artifiziellen Photosynthese angesehen werden. Den beiden wesentlichen Zugängen zur Architektur artifizieller Photosynthese-Systeme entsprechend wurden vergleichend kovalente und sich selbst organisierende Systeme untersucht. In beiden Zugängen wurden ähnliche chemische Komponenten als optisch aktive Moleküle eingesetzt, insbesondere Phthalocyanine mit einem Silizium-Zentralatom (SiPc). Durch eine Kombination von stationären und zeitaufgelösten optisch-spektroskopischen Methoden konnten die lichtinduzierten ET- und EET-Prozesse identifiziert und quantifiziert werden. Im ersten Teil der Arbeit wurden mehrere kovalent gebundene Triaden und eine Pentade untersucht. In allen Systemen finden sehr effiziente ET und EET Prozesse statt. Es wurde gezeigt, dass das Lösungsmittel großen Einfluss auf die photophysikalischen Eigenschaften der Systeme ausübt. Die Lebensdauer des ladungsseparierten Zustandes variiert von 1,7 ns in Toluol bis 30 ps in DMF. Im zweiten Teil der Arbeit wurde erstmals gezeigt, dass sich in wässriger Lösung ein supramolekularer Komplex, bestehend aus einem Beta-Cyklodextrin (CD), einem konjugierten Subphthylocyanin (SubPc), einem Porphyrin (Por) und einem SiPc bilden kann. Letzteres wurde über unterschiedliche Ketten an zwei CDs kovalent gebunden. Die Selbstorganisation wird über hydrophobe Wechselwirkungen vermittelt und die Bildung der Komplexe ist sehr effizient. Nach selektiver Anregung von SubPc finden sequenzielle ET- und EET-Prozesse von SubPc zu SiPc statt. Das Por spielt die Rolle einer energetischen und elektronischen Brücke und ermöglicht die ET und EET-Prozesse von SubPc zu SiPc. Die Ladungsrekombination in den Grundzustand geschieht innerhalb von 1,7 ns. / The main objective of the present thesis was to conduct investigations of photo-induced electron transfer (ET) and excitation energy transfer (EET) processes in model compounds that are considered potentially appropriate for use in artificial photosynthesis. Two approaches have been used to construct the artificial photosynthetic systems, namely covalent and supramolecular approach. In both systems similar optically active molecules have been employed, particularly silicon-based phthalocyanines (SiPc). A comparative study between the covalently-linked and self-assembled systems had been conducted. For these purposes, thorough spectroscopic measurements in the UV/Vis range had been performed on these conjugates. A combination of steady-state and time-resolved experiments allowed an identification and quantification of the photo-induced ET and EET processes. In the first part of the work several covalently bound triads and a pentad bearing a central SiPc unit were studied. In all systems highly efficient ET and EET processes take place. It was found that the solvent exerts great influence on the photophysical properties of the systems. The lifetime of the charge-separated state varied from 1.7 ns (toluene) down to 30 ps (DMF). In the second part of the thesis, for the first time the formation of ternary supramolecular complexes consisting of a beta-cyclodextrin (CD), a conjugated subphthalocyanine (SubPc), a porphyrin (Por) and a series of SiPcs substituted axially with two CDs via different spacers was shown. These components are held in water by host-guest interactions and the formation of these host-guest complexes was found to be very efficient. Upon excitation of the SubPc-part of the complex sequential ET and EET processes from SubPc to SiPc take place. The Por dye acts as a transfer bridge enabling these processes. The probability of ET is controlled by the linker between CD and SiPc. Charge recombination to the ground state occurs within 1.7 ns.
17

Theory of Transfer Processes in Molecular Nano-Hybrid Systems / A Stochastic Schrödinger Equation Approach for Large-Scale Open Quantum System Dynamics

Plehn, Thomas 19 March 2020 (has links)
Das Verstehen der elektronischen Prozesse in Nano-Hybridsystemen, bestehend aus Molekülen und Halbleiterstrukturen, eröffnet neue Möglichkeiten für optoelektronische Bauteile. Dafür benötigt es nanoskopische und gleichzeitig atomare Modelle und somit angepasste Rechenmethoden. Insbesondere "Standard"-Ansätze für die Dynamik offener Quantensysteme werden mit zunehmender Systemgröße jedoch sehr ineffizient. In dieser Arbeit wird eine neue Methode basierend auf einer stochastischen Schrödinger-Gleichung etablieren. Diese umgeht die numerischen Limits der Quanten-Mastergleichung und ermöglicht Simulationen von imposanter Größe. Ihr enormes Potenzial wird hier in Studien zu Anregungsenergietransfer und Ladungsseparation an zwei realistischen Nano-Hybridsystemen demonstriert: para-sexiphenyl Moleküle auf einer flachen ZnO Oberfläche (6P/ZnO), und ein tubuläres C8S3 Farbstoffaggregat gekoppelt an einen CdSe Nanokristall (TFA/NK). Im 6P/ZnO System findet nach optischer Anregung Energietransfer vom 6P Anteil zum ZnO statt. Direkt an der Grenzfläche können Frenkel-Exzitonen zusätzlich Ladungsseparation initiieren, wobei Elektronen ins ZnO transferiert werden und Löcher im 6P Anteil verbleiben. Beide Mechanismen werden mittels laserpulsinduzierter ultraschneller Wellenfunktionsdynamik simuliert. Danach wird die langsamere dissipative Lochkinetik im 6P Anteil studiert. Hierfür wird die eigene Simulationstechnik der stochastischen Schrödinger-Gleichung verwendet. Die Studie an der TFA/NK Grenzfläche basiert auf einer gigantischen equilibrierten Aggregatstruktur aus 4140 Molekülen. Ein generalisiertes Frenkel-Exzitonenmodell wird benutzt. Der Ansatz der stochastischen Schrödinger-Gleichung ermöglicht bemerkenswerte Einblicke in die Aggregat-interne Exzitonenrelaxation. Danach werden inkohärente Raten des Exzitonentransfers zum NK berechnet. Unterschiedliche räumliche Konfigurationen werden untersucht und es wird diskutiert, warum das Förster-Modell hier keine Gültigkeit besitzt. / Understanding the electronic processes in hybrid nano-systems based on molecular and semiconductor elements opens new possibilities for optoelectronic devices. Therefore, it requires for models which are both nanoscopic and atomistic, and so for adapted computational methods. In particular, "standard" methods for open quantum system dynamics however become very inefficient with increasing system size. In this regard, it is a key challenge of this thesis, to establish a new stochastic Schrödinger equation technique. It bypasses the computational limits of the quantum master equation and enables dissipative simulations of imposing dimensionality. Its enormous potential is demonstrated in studies on excitation energy transfer and charge separation processes in two realistic nanoscale hybrid systems: para-sexiphenyl molecules deposited on a flat ZnO surface (6P/ZnO), and a tubular dye aggregate of C8S3 cyanines coupled to a CdSe nanocrystal (TDA/NC). After optical excitation, the 6P/ZnO system exhibits exciton transfer from the 6P part to the ZnO. Close to the interface, Frenkel excitons may further initiate charge separation where electrons enter the ZnO and holes remain in the 6P part. Both mechanisms are simulated in terms of laser-pulse induced ultrafast wave packet dynamics. Afterwards, slower dissipative hole motion in the 6P part is studied. For this purpose, the own stochastic Schrödinger equation simulation technique is applied. The study on the TDA/NC interface is based on a gigantic equilibrated nuclear structure of the aggregate including 4140 dyes. A generalized Frenkel exciton model is employed. Thanks to the stochastic Schrödinger equation approach, energy relaxation in the exciton band of the TDA is simulated in outstanding quality and extend. Then, incoherent rates for exciton transfer to the NC are computed. Different spatial configurations are studied and it is discussed why the Förster model possesses no validity here.

Page generated in 0.148 seconds