• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 802
  • 484
  • 124
  • 73
  • 64
  • 50
  • 42
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 11
  • 10
  • Tagged with
  • 1976
  • 728
  • 195
  • 170
  • 168
  • 153
  • 131
  • 129
  • 124
  • 120
  • 118
  • 116
  • 111
  • 108
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Bilan biochimique et sensoriel des modifications de la note fruitée des vins rouges lors de la fermentation malolactique : rôle particulier des esters / Biochemical and sensorial modifications of the fruity aroma of red wines during malolactic fermentation : specific role of esters

Antalick, Guillaume 16 December 2010 (has links)
L’objectif de cette thèse est d’étudier le rôle de la fermentation malolactique (FML) sur l’arôme fruité des vins rouges. Les bactéries lactiques (BL) modifient la composition du vin mais il n’existe pas de consensus concernant spécifiquement cette famille aromatique. Contrairement aux idées empiriques sur la FML, ce travail a démontré l’absence à court terme d’un " masque lactique ", cependant l’apparition d’une telle interaction olfactive pourrait être plus tardive. Par contre, il est montré l’existence d’un masque proche de la note de réduction, de type fumé/grillé, dont la caractérisation n’a pas été effectuée dans cette étude.Le suivi des principaux marqueurs fruités du vin (70 molécules) a été rendu possible par le développement des méthodes d’analyse chromatographique en phase gazeuse couplée à la microextraction sur phase solide (esters, C13-norisoprénoïdes, lactones, thiols). En particulier, une " base de données esters " (32 composés) a rendu plus robuste l’ensemble des variations constatées au cours du développement des BL. En effet, les modifications des teneurs en esters sont démontrées comme un processus majeur de la balance de la note fruitée au cours de la FML. Cette fermentation permet à court terme, aussi bien la synthèse que l’hydrolyse des esters grâce aux activités estérases et, à plus long terme, la formation tardive d'esters éthyliques d'acides branchés issus du catabolisme de certains acides aminés. La spécificité des estérases vis-à-vis de la nature et de la longueur de la chaîne carbonée des esters est mise en évidence, ainsi que l'importance de la disponibilité des substrats, liée en partie à l'activité des levures.L’étude de l’influence des souches de BL et de la co-inoculation levures/bactéries a permis de confirmer le rôle clé des interactions entre les microorganismes, ainsi que l’importance de la composition de la matrice vin. / The aim of this thesis is to study the role of malolactic fermentation (MLF) on the fruity aroma of red wines. Lactic acid bacteria (LAB) modify wine composition but there is no consensus concerning this aromatic group specifically. In opposition to empirical ideas on MLF, this work has demonstrated the absence, in short-term, of a “lactic-mask” although this kind of olfactory interaction may still occur in a later stage of wine development. Nevertheless, the existence of a smoked/toasted reduction-like mask note was proved. Its characterization has not been done in this work. The survey of the main fruity markers of wine (70 compounds) was made possible by the development of several gas chromatography coupled with solid-phase microextraction analytical methods (esters, C13-norisoprenoids, lactones, thiols). In particular, the creation of an “ester database” (32 compounds) has improved the detection of variations during LAB development in terms of analysis robustness. In fact, changes on esters contents are proved to be responsible for a major part of fruity notes evolution during MLF. Initially, this fermentation allows both synthesis and hydrolysis of esters as a consequence of esterase activity. Moreover, it promotes late-production of ethylic esters through the catabolism of certain aminoacids. Esterases specificity towards nature and size of the esters carbon chain is pointed out along with substrates availability, partially related to yeast activity.The study of the influence of both LAB strains and yeast/bacteria co-inoculation has confirmed microorganisms interactions and wine matrix composition to be of the great importance.
752

Augmentation de la production d'hydrogène par l'expression hétérologue d'hydrogénase et la production d’hydrogène à partir de résidus organiques

Sabourin, Guillaume P. 11 1900 (has links)
La recherche de sources d’énergie fiables ayant un faible coût environnemental est en plein essor. L’hydrogène, étant un transporteur d’énergie propre et simple, pourrait servir comme moyen de transport de l’énergie de l’avenir. Une solution idéale pour les besoins énergétiques implique une production renouvelable de l’hydrogène. Parmi les possibilités pour un tel processus, la production biologique de l’hydrogène, aussi appelée biohydrogène, est une excellente alternative. L’hydrogène est le produit de plusieurs voies métaboliques bactériennes mais le rendement de la conversion de substrat en hydrogène est généralement faible, empêchant ainsi le développement d’un processus pratique de production d’hydrogène. Par exemple, lorsque l’hydrogène est produit par la nitrogénase sous des conditions de photofermentation, chaque molécule d’hydrogène constituée requiert 4 ATP, ce qui rend le processus inefficace. Les bactéries photosynthétiques non sulfureuses ont la capacité de croître sous différentes conditions. Selon des études génomiques, Rhodospirillum rubrum et Rhodopseudomonas palustris possèdent une hydrogénase FeFe qui leur permettrait de produire de l’hydrogène par fermentation anaérobie de manière très efficace. Il existe cependant très peu d’information sur la régulation de la synthèse de cette hydrogénase ainsi que sur les voies de fermentation dont elle fait partie. Une surexpression de cette enzyme permettrait potentiellement d’améliorer le rendement de production d’hydrogène. Cette étude vise à en apprendre davantage sur cette enzyme en tentant la surexpression de cette dernière dans les conditions favorisant la production d’hydrogène. L’utilisation de résidus organiques comme substrat pour la production d’hydrogène sera aussi étudiée. / The search for alternative energy sources with low environmental impact is in great expansion. Hydrogen, an elegant and simple energy transporter, could serve as means of transporting energy in the future. An ideal solution to the increasing energy needs would imply a renewable production of hydrogen. Out of all the existing possibilities for such a process, the biological production of hydrogen, also called biohydrogen, is an excellent alternative. Hydrogen is the end result or co-product of many pathways in bacterial metabolism. However, such pathways usually show low yields of substrate to hydrogen conversion, which prevents the development of efficient production processes. For example, when hydrogen is produced via nitrogenase under photofermentation conditions, each hydrogen molecule produced requires 4 molecules of ATP, rendering the process very energetically inefficient. Purple non-sulfur bacteria are highly adaptive organisms that can grow under various conditions. According to recent genomic analyses, Rhodospirillum rubrum and Rhodopseudomonas palustris possess, within their genome, an FeFe hydrogenase that would allow them to produce hydrogen via dark fermentation quite efficiently. Unfortunately, very little information is known on the regulation of the synthesis of this enzyme or the various pathways that require it. An overexpression of this hydrogenase could potentially increase the yields of substrate to hydrogen conversion. This study aims to increase our knowledge about this FeFe hydrogenase by overexpressing it in conditions that facilitate the production of hydrogen. The use of organic waste as substrate for hydrogen production will also be studied.
753

Improvements in Fermentative Hydrogen Production through Physiological Manipulation and Metabolic Engineering

Abo-Hashesh, Mona 12 1900 (has links)
La production biologique d'hydrogène (H2) représente une technologie possible pour la production à grande échelle durable de H2 nécessaire pour l'économie future de l'hydrogène. Cependant, l'obstacle majeur à l'élaboration d'un processus pratique a été la faiblesse des rendements qui sont obtenus, généralement autour de 25%, bien en sous des rendements pouvant être atteints pour la production de biocarburants à partir d'autres processus. L'objectif de cette thèse était de tenter d'améliorer la production d'H2 par la manipulation physiologique et le génie métabolique. Une hypothèse qui a été étudiée était que la production d'H2 pourrait être améliorée et rendue plus économique en utilisant un procédé de fermentation microaérobie sombre car cela pourrait fournir la puissance supplémentaire nécessaire pour une conversion plus complète du substrat et donc une production plus grande d'H2 sans l'aide de l'énergie lumineuse. Les concentrations optimales d’O2 pour la production de H2 microaérobie ont été examinées ainsi que l'impact des sources de carbone et d'azote sur le processus. La recherche présentée ici a démontré la capacité de Rhodobacter capsulatus JP91 hup- (un mutant déficient d’absorption-hydrogénase) de produire de l'H2 sous condition microaérobie sombre avec une limitation dans des quantités d’O2 et d'azote fixé. D'autres travaux devraient être entrepris pour augmenter les rendements d'H2 en utilisant cette technologie. De plus, un processus de photofermentation a été créé pour améliorer le rendement d’H2 à partir du glucose à l'aide de R. capsulatus JP91 hup- soit en mode non renouvelé (batch) et / ou en conditions de culture en continu. Certains défis techniques ont été surmontés en mettant en place des conditions adéquates de fonctionnement pour un rendement accru d'H2. Un rendement maximal de 3,3 mols de H2/ mol de glucose a été trouvé pour les cultures en batch tandis que pour les cultures en continu, il était de 10,3 mols H2/ mol de glucose, beaucoup plus élevé que celui rapporté antérieurement et proche de la valeur maximale théorique de 12 mols H2/ mol de glucose. Dans les cultures en batch l'efficacité maximale de conversion d’énergie lumineuse était de 0,7% alors qu'elle était de 1,34% dans les cultures en continu avec un rendement de conversion maximum de la valeur de chauffage du glucose de 91,14%. Diverses autres approches pour l'augmentation des rendements des processus de photofermentation sont proposées. Les résultats globaux indiquent qu'un processus photofermentatif efficace de production d'H2 à partir du glucose en une seule étape avec des cultures en continu dans des photobioréacteurs pourrait être développé ce qui serait un processus beaucoup plus prometteur que les processus en deux étapes ou avec les co-cultures étudiés antérieurément. En outre, l'expression hétérologue d’hydrogenase a été utilisée comme une stratégie d'ingénierie métabolique afin d'améliorer la production d'H2 par fermentation. La capacité d'exprimer une hydrogénase d'une espèce avec des gènes de maturation d'une autre espèce a été examinée. Une stratégie a démontré que la protéine HydA orpheline de R. rubrum est fonctionnelle et active lorsque co-exprimée chez Escherichia coli avec HydE, HydF et HydG provenant d'organisme différent. La co-expression des gènes [FeFe]-hydrogénase structurels et de maturation dans des micro-organismes qui n'ont pas une [FeFe]-hydrogénase indigène peut entraîner le succès dans l'assemblage et la biosynthèse d'hydrogénase active. Toutefois, d'autres facteurs peuvent être nécessaires pour obtenir des rendements considérablement augmentés en protéines ainsi que l'activité spécifique des hydrogénases recombinantes. Une autre stratégie a consisté à surexprimer une [FeFe]-hydrogénase très active dans une souche hôte de E. coli. L'expression d'une hydrogénase qui peut interagir directement avec le NADPH est souhaitable car cela, plutôt que de la ferrédoxine réduite, est naturellement produit par le métabolisme. Toutefois, la maturation de ce type d'hydrogénase chez E. coli n'a pas été rapportée auparavant. L'opéron hnd (hndA, B, C, D) de Desulfovibrio fructosovorans code pour une [FeFe]-hydrogénase NADP-dépendante, a été exprimé dans différentes souches d’E. coli avec les gènes de maturation hydE, hydF et hydG de Clostridium acetobutylicum. L'activité de l'hydrogénase a été détectée in vitro, donc une NADP-dépendante [FeFe]-hydrogénase multimérique active a été exprimée avec succès chez E. coli pour la première fois. Les recherches futures pourraient conduire à l'expression de cette enzyme chez les souches de E. coli qui produisent plus de NADPH, ouvrant la voie à une augmentation des rendements d'hydrogène via la voie des pentoses phosphates. / Biological hydrogen (H2) production represents a possible technology for the large scale sustainable production of H2 needed for a future hydrogen economy. However, the major obstacle to developing a practical process has been the low yields that are obtained, typically around 25%, well below those achievable for the production of other biofuels from the same feedstock. The goal of this thesis was to improve H2 production through physiological manipulation and metabolic engineering. One investigated hypothesis was that H2 production could be improved and made more economical by using a microaerobic dark fermentation process since this could provide the extra reducing power required for driving substrate conversion to completion and hence more H2 production might be obtained without using light energy. The optimal O2 concentrations for microaerobic H2 production were examined as well as the impact of carbon and nitrogen sources on the process. The research reported here proved the capability of Rhodobacter capsulatus JP91 hup- (an uptake-hydrogenase deficient mutant) to produce H2 under microaerobic dark conditions with limiting amounts of O2 and fixed nitrogen. Further work should be undertaken to increase H2 yields using this technology. In addition, a photofermentation process was established to improve H2 yield from glucose using R. capsulatus JP91 hup- strain either in batch and/or continuous culture conditions. Some technical challenges in establishing the proper operational conditions for increased H2 yield were overcome. A maximum yield of 3.3 mols of H2/ mol of glucose was found for batch cultures whereas in continous cultures it was 10.3 mols H2/ mol glucose, much higher than previously reported and close to the theoretical maximum value of 12 mols H2/ mol glucose. In batch cultures the maximum light conversion efficiency was 0.7% whereas it was 1.34% in continuous cultures with a maximum conversion efficiency of the heating value of glucose of 91.14%. Various approaches to further increasing yields in photofermentation processes are proposed. The overall results suggest that an efficient single stage photofermentative H2 production process from glucose using continuous cultures in photobioreactors could be developed which would be a much more promising alternative process to the previously studied two stage photofermentation or co-culture approaches. Furthermore, the heterologous expression of hydrogenases was used as a metabolic engineering strategy to improve fermentative H2 production. The capability of expressing a hydrogenase from one species with the maturation genes from another was examined. One strategy demonstrated that the orphan hydA of R. rubrum is functional and active when co-expressed in E. coli with hydE, hydF and hydG from different organisms. Co-expression of the [FeFe]-hydrogenase structural and maturation genes in microorganisms that lack a native [FeFe]-hydrogenase can successfully result in the assembly and biosynthesis of active hydrogenases. However, other factors may be required for significantly increased protein yields and hence the specific activity of the recombinant hydrogenases. Another strategy was to overexpress one of the highly active [FeFe]-hydrogenases in a suitable E. coli host strain. Expression of a hydrogenase that can directly interact with NADPH is desirable as this, rather than reduced ferredoxin, is naturally produced by its metabolism. However, the successful maturation of this type of hydrogenase in E. coli had not been previously reported. The Desulfovibrio fructosovorans hnd operon (hndA, B, C, and D genes), encoding a NADP-dependent [FeFe]-hydrogenase, was expressed in various E. coli strains with the maturation genes hydE, hydF and hydG of Clostridium acetobutylicum. Hydrogenase activities were detected in vitro, thus a multi-subunit NADP-dependent [FeFe]-active hydrogenase was successfully expressed and matured in E. coli for the first time. Future research could lead to the expression of this hydrogenase in E. coli host strains that overproduce NADPH, setting the stage for increased hydrogen yields via the pentose phosphate pathway.
754

Improving the microbial production of biofuels through metabolic engineering

Ghosh, Dipankar 07 1900 (has links)
Les défis conjoints du changement climatique d'origine anthropique et la diminution des réserves de combustibles fossiles sont le moteur de recherche intense pour des sources d'énergie alternatives. Une avenue attrayante est d'utiliser un processus biologique pour produire un biocarburant. Parmi les différentes options en matière de biocarburants, le bio-hydrogène gazeux est un futur vecteur énergétique attrayant en raison de son efficacité potentiellement plus élevé de conversion de puissance utilisable, il est faible en génération inexistante de polluants et de haute densité d'énergie. Cependant, les faibles rendements et taux de production ont été les principaux obstacles à l'application pratique des technologies de bio-hydrogène. Des recherches intensives sur bio-hydrogène sont en cours, et dans les dernières années, plusieurs nouvelles approches ont été proposées et étudiées pour dépasser ces inconvénients. À cette fin, l'objectif principal de cette thèse était d'améliorer le rendement en hydrogène moléculaire avec un accent particulier sur l'ingénierie métabolique et l’utilisation de bioprocédés à variables indépendantes. Une de nos hypothèses était que la production d’hydrogène pourrait être améliorée et rendue plus économiquement viable par ingénierie métabolique de souches d’Escherichia coli producteurs d’hydrogène en utilisant le glucose ainsi que diverses autres sources de carbone, y compris les pentoses. Les effets du pH, de la température et de sources de carbone ont été étudiés. La production maximale d'hydrogène a été obtenue à partir de glucose, à un pH initial de 6.5 et une température de 35°C. Les études de cinétiques de croissance ont montré que la μmax était 0.0495 h-1 avec un Ks de 0.0274 g L-1 lorsque le glucose est la seule source de carbone en milieu minimal M9. .Parmi les nombreux sucres et les dérivés de sucres testés, les rendements les plus élevés d'hydrogène sont avec du fructose, sorbitol et D-glucose; 1.27, 1.46 et 1.51 mol H2 mol-1 de substrat, respectivement. En outre, pour obtenir les interactions entre les variables importantes et pour atteindre une production maximale d'hydrogène, un design 3K factoriel complet Box-Behnken et la méthodologie de réponse de surface (RSM) ont été employées pour la conception expérimentale et l'analyse de la souche d'Escherichia coli DJT135. Le rendement en hydrogène molaire maximale de 1.69 mol H2 mol-1 de glucose a été obtenu dans les conditions optimales de 75 mM de glucose, à 35°C et un pH de 6.5. Ainsi, la RSM avec un design Box-Behken était un outil statistique utile pour atteindre des rendements plus élevés d'hydrogène molaires par des organismes modifiés génétiquement. Ensuite, l'expression hétérologue de l’hydrogénases soluble [Ni-Fe] de Ralstonia eutropha H16 (l'hydrogénase SH) a tenté de démontrer que la mise en place d'une voie capable de dériver l'hydrogène à partir de NADH pourrait surpasser le rendement stoechiométrique en hydrogène.. L’expression a été démontrée par des tests in vitro de l'activité enzymatique. Par ailleurs, l'expression de SH a restaurée la croissance en anaérobie de souches mutantes pour adhE, normalement inhibées en raison de l'incapacité de réoxyder le NADH. La mesure de la production d'hydrogène in vivo a montré que plusieurs souches modifiées métaboliquement sont capables d'utiliser l'hydrogénase SH pour dériver deux moles d’hydrogène par mole de glucose consommé, proche du maximum théorique. Une autre stratégie a montré que le glycérol brut pourrait être converti en hydrogène par photofermentation utilisant Rhodopseudomonas palustris par photofermentation. Les effets de la source d'azote et de différentes concentrations de glycérol brut sur ce processus ont été évalués. À 20 mM de glycérol, 4 mM glutamate, 6.1 mol hydrogène / mole de glycérol brut ont été obtenus dans des conditions optimales, un rendement de 87% de la théorie, et significativement plus élevés que ce qui a été réalisé auparavant. En prolongement de cette étude, l'optimisation des paramètres a également été utilisée. Dans des conditions optimales, une intensité lumineuse de 175 W/m2, 30 mM glycérol et 4.5 mM de glutamate, 6.69 mol hydrogène / mole de glycérol brut ont été obtenus, soit un rendement de 96% de la valeur théorique. La détermination de l'activité de la nitrogénase et ses niveaux d'expression ont montré qu'il y avait relativement peu de variation de la quantité de nitrogénase avec le changement des variables alors que l'activité de la nitrogénase variait considérablement, avec une activité maximale (228 nmol de C2H4/ml/min) au point central optimal. Dans la dernière section, la production d'hydrogène à partir du glucose via la photofermentation en une seule étape a été examinée avec la bactérie photosynthétique Rhodobacter capsulatus JP91 (hup-). La méthodologie de surface de réponse avec Box-Behnken a été utilisée pour optimiser les variables expérimentales de façon indépendante, soit la concentration de glucose, la concentration du glutamate et l'intensité lumineuse, ainsi que d'examiner leurs effets interactifs pour la maximisation du rendement en hydrogène moléculaire. Dans des conditions optimales, avec une intensité lumineuse de 175 W/m2, 35 mM de glucose, et 4.5 mM de glutamate,, un rendement maximal d'hydrogène de 5.5 (± 0.15) mol hydrogène /mol glucose, et un maximum d'activité de la nitrogénase de 246 (± 3.5) nmol C2H4/ml/min ont été obtenus. L'analyse densitométrique de l'expression de la protéine-Fe nitrogenase dans les différentes conditions a montré une variation significative de l'expression protéique avec un maximum au point central optimisé. Même dans des conditions optimales pour la production d'hydrogène, une fraction significative de la protéine Fe a été trouvée dans l'état ADP-ribosylée, suggérant que d'autres améliorations des rendements pourraient être possibles. À cette fin, un mutant amtB dérivé de Rhodobacter capsulatus JP91 (hup-) a été créé en utilisant le vecteur de suicide pSUP202. Les résultats expérimentaux préliminaires montrent que la souche nouvellement conçue métaboliquement, R. capsulatus DG9, produit 8.2 (± 0.06) mol hydrogène / mole de glucose dans des conditions optimales de cultures discontinues (intensité lumineuse, 175 W/m2, 35 mM de glucose et 4.5 mM glutamate). Le statut d'ADP-ribosylation de la nitrogénase-protéine Fe a été obtenu par Western Blot pour la souche R. capsulatus DG9. En bref, la production d'hydrogène est limitée par une barrière métabolique. La principale barrière métabolique est due au manque d'outils moléculaires possibles pour atteindre ou dépasser le rendement stochiométrique en bio-hydrogène depuis les dernières décennies en utilisant les microbes. À cette fin, une nouvelle approche d’ingénierie métabolique semble très prometteuse pour surmonter cette contrainte vers l'industrialisation et s'assurer de la faisabilité de la technologie de la production d'hydrogène. Dans la présente étude, il a été démontré que l’ingénierie métabolique de bactéries anaérobiques facultatives (Escherichia coli) et de bactéries anaérobiques photosynthétiques (Rhodobacter capsulatus et Rhodopseudomonas palustris) peuvent produire de l'hydrogène en tant que produit majeur à travers le mode de fermentation par redirection métabolique vers la production d'énergie potentielle. D'autre part, la méthodologie de surface de réponse utilisée dans cette étude représente un outil potentiel pour optimiser la production d'hydrogène en générant des informations appropriées concernant la corrélation entre les variables et des producteurs de bio-de hydrogène modifiés par ingénierie métabolique. Ainsi, un outil d'optimisation des paramètres représente une nouvelle avenue pour faire un pont entre le laboratoire et la production d'hydrogène à l'échelle industrielle en fournissant un modèle mathématique potentiel pour intensifier la production de bio-hydrogène. Par conséquent, il a été clairement mis en évidence dans ce projet que l'effort combiné de l'ingénierie métabolique et la méthodologie de surface de réponse peut rendre la technologie de production de bio-hydrogène potentiellement possible vers sa commercialisation dans un avenir rapproché. / The joint challenges of anthropogenic climate change and dwindling fossil fuel reserves are driving intense research into alternative energy sources. One attractive avenue is to use a biological process to produce a biofuel. Among the various biofuel options, biohydrogen gas is an attractive future energy carrier due to its potentially higher efficiency of conversion to usable power, low to non-existent generation of pollutants and high energy density. However, low yields and production rates have been major barriers to the practical application of biohydrogen technologies. Intensive research on biohydrogen is underway, and in the last few years several novel approaches have been proposed and studied to surpass these drawbacks. To this end the main aim of this thesis was to improve the molar hydrogen yield with special emphasis of metabolic engineering using the interactive effect with bioprocess independent variable. One investigated hypothesis was that H2 production could be improved and made more economically viable by metabolic engineering on the facultative hydrogen producer Escherichia coli from glucose as well as various other carbon sources, including pentoses. The effects of pH, temperature and carbon source were investigated in batch experiments. Maximal hydrogen production from glucose was obtained at an initial pH of 6.5 and temperature of 35°C. Kinetic growth studies showed that the μmax was 0.0495 h−1 with a Ks of 0.0274 g L−1 when glucose was the sole carbon source in M9 (1X) minimal medium. Among the many sugar and sugar derivatives tested, hydrogen yields were highest with fructose, sorbitol and d-glucose; 1.27, 1.46 and 1.51 mol H2 mol−1 substrate respectively. In addition, to obtain the interactions between the variables important for achieving maximum hydrogen production, a 3K full factorial Box–Behnken design and response surface methodology (RSM) were employed for experimental design and analysis on a metabolically engineered Escherichia coli strain, DJT135. A maximum molar hydrogen yield of 1.69 mol H2 mol−1 glucose was obtained under the optimal conditions of 75 mM glucose, 35°C and pH 6.5. Thus, RSM with Box–Behnken design was a useful statistical tool for achieving higher molar hydrogen yields by metabolically engineered organisms. Furthermore, the heterologous expression of the soluble [Ni-Fe] hydrogenase from Ralstonia eutropha H16 (the SH hydrogenase) was attempted to demonstrate the introduction of a pathway capable of deriving hydrogen from NADH to surpass the stoichiometric molar hydrogen yield. Successful expression was demonstrated by in vitro assay of enzyme activity. Moreover, expression of SH restored anaerobic growth on glucose to adhE strains, normally blocked for growth due to the inability to re-oxidize NADH. Measurement of in vivo hydrogen production showed that several metabolically engineered strains were capable of using the SH hydrogenase to derive 2 mol H2 per mol of glucose consumed, close to the theoretical maximum. Using another strategy, it was shown that crude glycerol could be converted to hydrogen, a possible future clean energy carrier, by photofermentation using Rhodopseudomonas palustris through photofermentation. Here, the effects of nitrogen source and different concentrations of crude glycerol on this process were assessed. At 20 mM glycerol, 4 mM glutamate, 6.1 mol hydrogen/mole of crude glycerol were obtained under optimal conditions, a yield of 87% of the theoretical, and significantly higher than what was achieved previously. As a continuation of this study, multiprocess parameter optimization was also involved. Under optimal conditions, a light intensity of 175 W/m2, 30 mM glycerol, and 4.5 mM glutamate, 6.69 mol hydrogen/mole of crude glycerol were obtained, a yield 96% of theoretical. Determination of nitrogenase activity and expression levels showed that there was relatively little variation in levels of nitrogenase protein with changes in process variables whereas nitrogenase activity varied considerably, with maximal nitrogenase activity (228 nmol of C2H4/ml/min) at the optimal central point. In the final section, hydrogen production from glucose via single-stage photofermentation was examined with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup-). Response surface methodology with Box–Behnken design was used to optimize the independent experimental variables of glucose concentration, glutamate concentration and light intensity, as well as examining their interactive effects for maximization of molar hydrogen yield. Under optimal condition with a light intensity of 175 W/m2, 35 mM glucose, and 4.5 mM glutamate, a maximum hydrogen yield of 5.5 (±0.15) mol H2/mol glucose, and a maximum nitrogenase activity of 246 (±3.5) nmol C2H4/ml/min were obtained. Densitometric analysis of nitrogenase Fe-protein expression under different conditions showed significant variation in Fe-protein expression with a maximum at the optimized central point. Even under optimum conditions for hydrogen production, a significant fraction of the Fe-protein was found in the ADP-ribosylated state, suggesting that further improvement in yields might be possible. To this end an AmtB- derivative of Rhodobacter capsulatus JP91 (hup-) was created by conjugating in amtB::Km using the suicide vector pSUP202. Preliminary experimental results showed that the newly metabolically engineered strain, R. capsulatus DG9, produced 8.2 (±0.06) mol hydrogen/mole of glucose under optimal conditions in batch cultures (light intensity, 175 W/m2; 35 mM glucose, and 4.5 mM glutamate). Western blot analyses of the ADP-ribosylation status of the nitrogenase Fe-protein were investigated on metabolically engineered strain R. capsulatus DG9. In brief, the progress on hydrogen production technology has been limited due to the metabolic barrier. The major metabolic barrier is due to lacking of potential consistent molecular tools to reach or surpass the stochiometric biohydrogen yield since last decades using microbes. To this end a novel approach “metabolic engineering” seems very promising to overcome this constraint towards industrialization to ensure the feasibility of hydrogen production technology. In this present study it has been shown that metabolically engineered facultative (Escherichia coli) anaerobe and photosynthetic bacteria (Rhodobacter capsulatus and Rhodopseudomonas palustris) can produce hydrogen as a major product through fermentative mode by metabolic redirection toward potential energy generation. On the other hand, response surface methodology has depicted in this study as another potential tool to statistically optimize the hydrogen production by generating suitable information concerning interactive correlation between process variables and metabolically engineered biohydrogen producers. Thus, multi process parameter optimization tool has been creating a novel avenue to make a crosslink between lab scale and pilot scale hydrogen production by providing potential mathematical model for scaling up biohydrogen production using metabolically engineered biohydrogen producers. Therefore, it has been clearly revealed in this project that combined effort of metabolic engineering and response surface methodology can make biohydrogen production technology potentially feasible towards its commercialization in near future.
755

Impact des facteurs biotiques sur le réseau métabolique des écosystèmes producteurs d’hydrogène par voie fermentaire en culture mixte / Impact of biotic factors on the metabolic network of fermentative hydrogen-producing ecosystems in mixed culture

Rafrafi, Yan 28 June 2012 (has links)
De nos jours, les cultures mixtes sont considérées comme une sérieuse alternative aux cultures pures pour les procédés de biotechnologie. En effet, les cultures mixtes peuvent fonctionner en réacteur continu, dans des conditions non-stériles et traiter une grande variété de substrats organiques. La principale restriction de l'utilisation de ces bioprocédés en cultures mixtes réside dans leur instabilité liée à la présence de voies métaboliques non désirées résultant d'interactions microbiennes complexes. Notamment, le rôle des bactéries de faible abondance reste à être élucidé. Ce travail a donc consisté, dans un premier temps à déterminer le rôle des bactéries minoritaires dans la production d'hydrogène par voie fermentaire en utilisant un chémostat alimenté en continu avec un milieu à base de glucose. Sept inocula ont été cultivés dans les mêmes conditions opératoires. De façon remarquable, Clostridium pasteurianum a été retrouvé comme espèce dominante de l'écosystème six fois sur sept. Seules la nature et la diversité des espèces minoritaires variaient d'un écosystème à l'autre. Ainsi, il a été montré que la structure des communautés microbiennes a une influence significative sur la production de bio-hydrogène. Au sein de ces communautés, les bactéries en proportion minoritaires jouent un rôle clé en orientant le métabolisme globale de l'écosystème. La deuxième étape de ce travail a consisté à utiliser certaines de ces espèces minoritaires comme Ingénieurs Ecologiques des Ecosystèmes microbiens (IEEM). Pour cela, la structure d'une communauté microbienne productrice d'hydrogène a été modifiée artificiellement en introduisant des souches bactériennes exogènes aux fonctions redondantes et/ou complémentaires des souches indigènes. Les résultats en réacteur batch ont montré que les performances de production d'hydrogène pouvaient être améliorées jusqu'à un facteur 3,5 par l'ajout de certaines souches. Dans l'ensemble, les résultats obtenus ne peuvent être expliqués par de simples interactions trophiques et suggèrent la présence de mécanismes d'interactions de coopération entre microorganismes. De plus, sous des conditions opératoires plus favorables (inoculum, milieu), l'insertion de certaines espèces minoritaires a permis plutôt de stabiliser le métabolisme de l'écosystème microbien sans pour autant en affecter favorablement la production d'hydrogène. Dans tous les cas, les interactions compétitives n'ont pas été favorables à la production d'hydrogène. Enfin, des essais en réacteur continu ont montré que le mode d'implantation des souches peut être un facteur primordial pour l'utilisation d'IEEM. En conclusion, ce travail a montré la potentialité d'utiliser des bactéries exogènes, en proportions minoritaires, comme facteurs biotiques pour stabiliser et/ou orienter les métabolismes microbiens vers des fonctions d'intérêt au sein des cultures mixtes microbiennes. / Nowadays mixed cultures are considered as a serious alternative to pure cultures in biotechnological processes. Mixed cultures can be operated continuously, under unsterile conditions and from various organic substrates. One of the most constraints remains the chronic instability of the mixed culture processes due to the presence of unwanted metabolic pathways resulting from complex microbial interactions. More particularly the role of bacteria in low abundance remains to be elucidated. Therefore this work consisted initially to determine the contribution of sub-dominant bacteria to fermentative hydrogen production using a chemostat continuously fed with a glucose-based medium. Seven inocula were grown under the same operating conditions. Interestingly, Clostridium pasteurianum was found as dominant in six assays on seven at steady state. Only the minority bacterial population differed with regards to their identity and diversity. Acting as true keystone species, these minority bacteria impacted substantially the metabolic network of the overall ecosystem despite their low abundance. In a second step, this work consisted in using some of these minority species as Ecological Engineers of Microbial Ecosystem (EEME). In order to study this aspect, the structure of a hydrogen-producing microbial community has been artificially modified by adding exogenous bacterial strains with redundant functions and/or complementary native strains. Results in batch reactors have shown that the hydrogen production performances could be improved to a 3.5 factor by the addition of certain strains. Results obtained can not be explained by simple trophic interactions and suggest the presence of interaction mechanism of cooperation among microorganisms. Moreover, under more favourable operating conditions (inoculum, culture medium), the addition of certain species in low abundance could stabilize the metabolism of microbial ecosystem without necessarily favourably affect the hydrogen production. In all cases, competitive interactions were not favourable for hydrogen production. Trials were then realised in continuous reactors. These trials have shown that the method used to implant strains in reactors could be a key factor for using the EEME.As a conclusion, this study has shown the potential to use exogenous bacteria, in minority proportions, as biotic factors to stabilised and/or guides microbial metabolisms to functions of interest within microbial mixed cultures.
756

Étude des interactions entre bactéries lactiques œnologiques Œnococcus œni. Analyses cinétiques et modélisation / Study of interactions between œnological lactic acid bacteria Œnococcus œni. Kinetic analysis and modeling

Fahimi, Noura 29 February 2012 (has links)
La Fermentation Malo-Lactique (FML) réalisée par OEnococcus oeni est une étape importante de la vinification qui doit être maîtrisée. Bien que les vinificateurs aient à leur disposition des souches OE. oeni selectionnees la FML n’est pas toujours réussie. Les conditions physico-chimiques (pH, éthanol, température), la composition du vin et les facteurs biologiques influencent l’activite de cette bacterie ; parmi ces dernières les interactions entre micro-organismes sont primordiales. Souvent, après la fermentation alcoolique par la levure, des souches indigenes d’OE. oeni sont naturellement présentes dans le vin. Des interactions négatives peuvent alors se produire entre les souches autochtones et les souches sélectionnées apportées. Des connaissances sur ces interactions sont donc necessaires. L’objectif de ce travail etait d’etudier les interactions pendant la FML entre 5 souches d’OEnococcus oeni issues de différentes niches écologiques. Pour cela, des expériences ont été effectuées dans du milieu MRS modifié et dans des conditions proches à celles du vin (20 °C ; pH 3,5 et 10 % d’ethanol). Nous avons tout d’abord caracterise le comportement des souches en cultures pures à la fois dans les conditions de micro-aerobie et d’anaerobiose. Une grande variabilité a été retrouvée entre les souches dans les 2 conditions : trois des 5 souches sont favorisées en conditions d’anaerobiose tandis que les deux autres se sont mieux développées en conditions de micro-aérobie. La présence de 4 g.L-1 d’acide L-malique dans le milieu permet de produire, pour toutes les souches, une biomasse environ 2 fois plus élevée que celle obtenue dans le milieu sans acide L-malique. La totalite de l’acide malique est consommee par les 5 souches mais avec des vitesses différentes. Pour une souche donnée la vitesse spécifique de consommation d’acide L-malique (ν) et la vitesse specifique de croissance (μ) presentent des profils similaires au cours de la FML. Elles ont été reliées par un modèle mathématique qui a permis de quantifier ce lien pour chaque souche. Les interactions lors des cultures mixtes des 10 couples formés par les 5 souches ont ensuite été étudiées dans un Bio-Réacteur à Membrane (BRM) en anaérobiose. Trois catégories ont été mises en évidence: interactions à effets négatifs réciproques sur la croissance des 2 souches en culture mixte ; interactions à effet négatif sur la croissance de la souche la plus rapide en culture pure et à effet positif sur la croissance de la souche la plus lente en culture pure et interactions à effets positifs sur la souche la plus rapide en culture pure. La comparaison des cultures pures et mixtes a révélé que l’activite specifique de croissance des souches est affectee en culture mixte, ce qui provoque le prolongement de la phase de la latence dans le cas de l’inhibition et son raccourcissement dans le cas de la stimulation. La modelisation de la consommation d’acide L-malique a révélé pour certains couples une activation de la consommation de cet acide bien que la croissance soit fortement inhibée. Ces interactions, qui affectent le déroulement de la FML, ne peuvent etre dues qu’a l’effet de metabolite(s) extracellulaire(s) excretee(s) dans le milieu de fermentation. Ces métabolites restent à identifier. / In winemaking, the control of malolactic fermentation (MLF) by OEnococcus oeni is an essential step for this process. Although winemakers have the availability for selected OE.oeni strains, the MLF is not always successful. The physical-chemical conditions (pH, ethanol, and temperature), the composition of wine, and biological factors, all together influence the activity of this bacterium; regarding biological factors, the interactions between microorganisms are essential. Often, after alcoholic fermentation by yeast, indigenous strains of OE.oeni are naturally present in wine, negative interactions can then occur between the indigenous strains and selected strains; therefore, knowledge on these interactions is needed. The goal of the present work was to study the interactions during MLF between five strains of OE.oeni from different origins. Experiments were performed in the modified MRS medium to be in nearly conditions to those of wine (20 °C, pH 3.5, and 10% ethanol). The characterization of the behavior of strains in pure cultures was done under both, micro-aerobic and anaerobic conditions; a large variability was found between the strains in the two conditions: three out of five strains were favored under anaerobic conditions while the two others were better developed in micro-aerobic conditions. The presence of 4 g.L-1 of L-malic acid in the culture medium increased the biomass produced, about two-fold higher than that obtained in medium without L-malic acid. All of the L-malic acid is consumed by the five strains but at different specific rates. A mathematical model allowed to quantifying the relationship between the specific consumption rate of L-malic acid (ν) and the specific growth rate two specific rates for each strain; for a given strain, both rates have similar profiles during the MLF. Interactions in mixed cultures of 10 couples formed by the five strains were then examined in a Membrane Bioreactor (BRM) under anaerobic conditions. Three different interaction types were identified: 1) negative reciprocal interactions of the both strains in mixture culture, 2) interaction that affect negatively the favored strain in pure culture and positively the slowest one, and 3) interaction with positive effect on the fastest strain in pure culture. Comparison of pure and mixed culture showed that the specific activity of strains was affected in mixture culture causing the extension of the lag phase in the case of inhibition and its shortcut in the case of stimulation. Modeling of the consumption of the L-malic acid revealed activation of the consumption of this acid for some couples however, growth is strongly affected. The interactions affecting the course of the MLF are due solely to the effect of excreted extracellular metabolite(s); these metabolites remain to be identified
757

Fermentation de surface d’une viande pré-traitée par Déshydratation-Imprégnation par Immersion : étude cinétique sur aliment réel et milieu modèle / Surface fermentation of meat pre-treated by Dehydration-Impregnation by Soaking : kinetic study in real and model food

Bros, Manuela 27 March 2013 (has links)
Les procédés de fabrication de produits carnés stables à température ambiante s'articulent autour de la théorie des barrières et du couplage d'opérations unitaires telles que le salage, le séchage, la fermentation, le fumage. Dans les pays du Nord, ces procédés traditionnels ou industrialisés, aboutissent à des produits finis à la fois stables à température ambiante et prêts-à-consommer. Pour contrecarrer l'altération de la viande, accrue en conditions tropicales ou en conditions d'hygiène non maîtrisées, les procédés traditionnels du Sud mettent en œuvre des traitements plus drastiques et aboutissent à des produits nécessitant une préparation ultérieure pour être consommés (cuisson, dessalage).L'objectif général de ce travail est de proposer un procédé innovant adapté aux pays du Sud aboutissant à un produit carné salé/séché/fermenté stable à température ambiante et prêt-à-consommer. L'innovation consiste à traiter des morceaux de viande en couplant une pré-stabilisation par Déshydratation-Imprégnation par Immersion (DII) à une étape maîtrisée de fermentation de surface. Par une stratégie expérimentale progressive associée à la modélisation, cette thèse étudie le couplage DII/fermentation de surface et détermine quels leviers sont à disposition pour optimiser ce couplage. Les réponses apportées s'appuient sur trois parties. Une première étude sur aliment réel a validé le couplage de la DII avec une fermentation de surface par Lactobacillus sakei. Dans un deuxième temps, une étude en milieu modèle a mis en évidence l'influence des facteurs environnementaux d'intérêt (activité en eau, teneur en sel, pH et teneur en acide lactique) sur la croissance en surface de L. sakei. Enfin, un modèle global a été construit pour analyser le couplage entre les transferts de matière (eau, sel, sucres et acide) entre la surface et le cœur de l'aliment, et le métabolisme fermentaire à la surface du produit.Mots-clés : produits carnés, Déshydratation-Imprégnation par Immersion, fermentation de surface, Lactobacillus sakei, cinétiques de croissance, transferts de matière. / The fabrication of shelf-stable cured meat products is based on the hurdle technology and on the coupling of unit-operations such as salting, drying, fermentation and smoking. In Northern countries, these processes whether traditional or industrialized, lead to end-products which are both shelf-stable and ready-to-eat. Meat spoilage is accelerated in tropical conditions or when the general hygiene is not controlled. In order to counteract it, traditional processes in these conditions use more drastic treatments leading to end-products which require an additional preparation step before being consumed (cooking, desalting).The general objective of this work is to propose an innovative process adapted to Southern countries and leading to a salted/dried/fermented meat product which is shelf-stable and ready-to-eat. The innovation consists in treating meat pieces by coupling a pre-stabilization by Dehydration-Impregnation by Soaking (DIS) with a controlled surface fermentation step. By means of a progressive experimental strategy associated with modelization, this thesis studies the DIS/surface fermentation coupling and determines which levers are available to optimize it.The answers comprised three parts. Firstly, a study on the real food product validated the coupling of DIS with a surface fermentation by Lactobacillus sakei. Secondly, a study on a model device showed the influence of relevant environmental factors (water activity, salt content, pH and lactic acid content) on the surface growth of L. sakei. Finally, a global model was built to analyze the coupling of mass transfers (water, salt, sugars, acid) between the surface and the core of the product, and the fermentative metabolism at the surface of the product.Keywords: meat products, Dehydration-Impregnation by Soaking, surface fermentation, , Lactobacillus sakei, growth kinetics, mass transfers.
758

Production d’acide itaconique par des souches d’Aspergilli par fermentation en milieu solide / Itaconic acid production by Aspergillus strains by solid state fermentation

Restino, Clémence 05 December 2012 (has links)
Depuis quelques années, un des défis de la Recherche est de valoriser les co-produits agro-industriels. Une des voies permettant la valorisation de ces « déchets » est la fermentation en milieu solide.Le but de ce travail est de produire de l'acide itaconique par des souches d'Aspergilli (Aspergillus itaconicus et Aspergillus terreus) à partir de ressources renouvelables. Le substrat choisi dans cette étude est le son de blé, coproduit largement disponible en Champagne-Ardenne.L'acide itaconique a été classé dans le TOP 12 des molécules plateformes par le Department Of Energy Américain. Ces molécules plateformes peuvent être produites à partir de biomasse ligno-cellulosique et peuvent être utilisées à la place de molécules d'origine pétrochimique.Dans notre étude, nous n'avons pas mis en évidence de production d'acide itaconique par la souche Aspergillus terreus NRRL 1960 mais nous avons observé, pour la première fois, la production d'acide fumarique par fermentation en milieu solide. L'acide fumarique est tout aussi intéressant que l'acide itaconique puisqu'il fait également partie du TOP 12 des molécules plateformes. La production maximale obtenue est de 0,44 mg/g de matière sèche par fermentation en milieu solide sur son de blé humidifié à 70% et à pH 3, après 5 jours d'incubation à 30°C.De plus, nous avons montré qu'Aspergillus itaconicus NRRL 161 est capable de produire 6,77 mg d'acide itaconique/g de matière sèche par fermentation en milieu solide sur son de blé humidifié à 60% par une solution de saccharose à 400 g/L et à pH 3, après 4 jours d'incubation à 30°C.Dans une dernière partie, nous avons mis en évidence, chez Aspergillus itaconicus NRRL 161, la présence potentielle du gène codant pour la Cis-Aconitic acid Decarboxylase, enzyme clé dans la production d'acide itaconique. / Since a few years, one of research's challenges is to valorise agro-industrial by-products. One of the ways permitting the valorisation of these “wastes” is solid-state fermentation.The aim of this work is to produce itaconic acid with Aspergilli (Aspergillus itaconicus and Aspergillus terreus) strains from renewable resources. The chosen substrate in this study is wheat bran, by-product widely available in Champagne-Ardenne.Itaconic acid is classified among the TOP 12 of building blocks by the American Department Of Energy. Building blocks can be produced from ligno-cellulosic biomass and can be used instead of petrochemical-based molecules.In our study, we have not highlighted itaconic acid production by Aspergillus terreus NRRL 1960, but we have observed fumaric acid production by solid state fermentation. Fumaric acid is as interesting as itaconic acid since it also belongs to the TOP 12 of building blocks. Maximal production of fumaric acid is 0.44 mg/g dry matter by solid-state fermentation on wheat bran moistened at 70% and at pH 3, after 5 days of incubation at 30°C.Furthermore, we have shown that Aspergillus itaconicus NRRL 161 is able to produce 6.77 mg of itaconic acid/g dry matter by solid state fermentation on wheat bran moistened at 60% with sucrose solution at 400 g/L and at pH 3, after 4 days of incubation at 30°C.In a last part, we have highlighted, in Aspergillus itaconicus NRRL 161, the potential presence of the Cis-Aconitic acid Decarboxylase encoding gene, key enzyme in itaconic acid production.
759

Distribution des moisissures post-récolte et action antifongique des bactéries lactiques isolées du blé dur en Tunisie

Belkacem, Nesrine 16 December 2013 (has links)
Au cours du stockage et sous de mauvaises conditions de conservation, les grains de blé peuvent subir diverses altérations causées par le développement fongique. Les moisissures peuvent produire des toxines pouvant avoir un impact sur la santé du consommateur. L’évaluation de la diversité fongique sur blé de stockage produit localement dans les régions céréalières du Nord de la Tunisie durant deux années successives (2010-2011 et 2011-2012) a montré une dominance du genre Alternaria. L’étude de la cinétique d’évolution de cette mycoflore au cours du stockage s’est caractérisée par un profil particulier dépendant des paramètres géographiques et temporels et des conditions écophysiologiques. L’évaluation du pouvoir toxinogène a révélé un faible pourcentage d’isolats ochratoxinogènes. L’évaluation de la présence de l’OTA dans le blé ont montré des taux de contaminations largement inférieurs aux normes européennes. L’étude sur la physiologie de sporulation et la production d’OTA en Fermentation en Milieu Solide par A. carbonarius à montré une amplification de la production des conidiospores et de l’OTA par aération humide forcée. L’évaluation de l'activité antifongique de 15 bactéries lactiques isolées du blé de stockage à l’égard de 8 moisissures post-récolte a montré une bonne aptitude de Lb. plantarum à inhiber la croissance de ces moisissures. L’étude du pouvoir anti-ochratoxinogène de Lb. plantarum LabN10, Lb. graminis LabN11 and P. Pentosaceus LabN12 ont montré un effet significatif de la température, du pH et de la biomasse bactérienne sur l’inhibition de la biomasse fongique ainsi que sur la réduction d’OTA. / During storage and under bad storage conditions, wheat grains can undergo various alterations caused by fungal growth. Molds can produce toxins that can have an impact on consumer health. Assessment of fungal diversity on wheat storage locally produced cereal in northern Tunisia during two successive years (2010-2011 and 2011-2012) showed a dominance of the genus Alternaria. Study of kinetics evolution of mycoflora during storage is characterized by a particular pattern depending on geographic and temporal parameters and ecophysiological conditions. Evaluation of toxigenic fungal revealed a low percentage of ochratoxinogenic isolates. Occurence of OTA in wheat showed contamination levels under European standards. The study on sporulation physiology and production of OTA by Solid State Fermentation by A. carbonarius shown amplification and production of conidiospores OTA wet forced by aeration. The evaluation of the antifungal activity of lactic acid bacteria (LAB) isolated from the 15 wheat storage against 8 post-harvest molds showed good ability of Lb. plantarum to inhibit the growth of these fungi. The study of anti-ochratoxinogène activity Lb. LabN10 plantarum, Lb. and P. graminis LabN11 LabN12 pentosaceus showed a significant effect of temperature, pH and the bacterial biomass on the inhibition of the fungal biomass and on the reduction of OTA.
760

Mise au point d'un bioréacteur de fermentation en milieu solide fonctionnant en continu pour la production de métabolites secondaires antioxydants par Aspergillus niger G131 / Development of a continuous pilote-scaled bioreactor for the production of antioxidant secondary metabolites by Aspergillus niger G131 using solid state fermentation

Carboué, Quentin 04 June 2018 (has links)
Aspergillus niger souche G131 est un champignon qui produit en quantité des métabolites secondaires appartenant à la famille des naphtho-gamma-pyrones (NγPs). Ces NγPs sont des pigments qui présentent des intérêts industriels de par leurs importants potentiels antiradicalaires. L’objectif de ce doctorat est la production à l’échelle pilote et en continu de NγPs à travers la culture du champignon sur milieu solide. Le choix de la fermentation en milieu solide (FMS) comme processus de culture repose sur des aspects d’ordre qualitatif et quantitatif de production, ainsi que sur des raisons économiques et éthiques, relatives à la protection de l’environnement avec notamment la possibilité de valoriser des coproduits agricoles comme milieu de culture pour le champignon. Dans un premier temps, ce travail s’intéresse à la caractérisation de la composition et des potentialités associées aux molécules produites par la souche. Ces potentialités incluent les activités anti-radicalaires et les mesures de cytotoxicité. La thèse porte également sur la caractérisation de la physiologie de croissance de la souche en FMS et sur l’optimisation des conditions de culture par la méthodologie des plans d’expériences pour l’augmentation de la production de NγPs. Une stratégie originale d’optimisation adaptée aux contraintes posées par la FMS est d’ailleurs proposée. Finalement, un transfert d’échelle de production est réalisé au moyen d’un bioréacteur prototype innovant permettant la production à l’échelle pilote de milieu fermenté en continu. Dans son dernier chapitre, ce travail s’intéresse donc à la mise au point des paramètres opératifs qui entourent la production continue de NγPs par FMS. / Aspergillus niger strain G131 is a non-ochratoxigenic filamentous fungus producing high quantities of secondary metabolites known as naphtha-gamma-pyrones (NγPs). NγPs are pigments of industrial interest in reason of their high antioxidant properties. The aim of this dissertation is the continuous, pilote-scaled production of these NγPs through the cultivation of the fungus on solid medium. The choice of solid state fermentation (SSF) as cultivation method is not only driven by quantitative and qualitative considerations, but also by economical and ethical concerns related to environmental protection. SSF allows, in fact, a direct valorization of agricultural byproducts as the solid medium for the fungal growth. First, this work deals with the characterization of the composition and potentialities associated with the molecules produced by the strain, which include antioxidant and cytotoxic activities. Second, the dissertation focuses on the characterization of the fungal growth’s physiology on solid medium and on the optimization of the culture conditions using experimental methodology in order to increase NγPs production. For this purpose, an original optimization strategy is proposed to overcome specific constraints connected to SSF. Finally, a scale transfer of the production is advanced by means of an innovative prototype bioreactor continuously producing fermented material. The final chapter of this work addresses the development of parameters regarding the continuous NγPs production using SSF.

Page generated in 0.3929 seconds