• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 64
  • 38
  • 21
  • 10
  • 7
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 391
  • 99
  • 60
  • 56
  • 54
  • 44
  • 43
  • 42
  • 39
  • 37
  • 37
  • 37
  • 32
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Applications of the coupled cluster method to pairing problems

Snape, Christopher January 2010 (has links)
The phenomenon of pairing in atomic and nuclear many-body systems gives rise to a great number of different physical properties of matter, from areas as seemingly diverse as the shape of stable nuclei to superconductivity in metals and superfluidity in neutron stars. With the experimental realisation of the long sought BCS-BEC crossover observed in trapped atomic gases - where it is possible to fine tune the s-wave scattering length a of a many-fermion system between a dilute, correlated BCS-like superfluid of Cooper pairs and a densely packed BEC of composite bosons - pairing problems in atomic physics have found renewed interest in recent years. Given the high precision techniques involved in producing these trapped gas condensates, we would like to employ a suitably accurate many-body method to study such systems, preferably one which goes beyond the simple mean-field picture.The Coupled Cluster Method (CCM) is a widely applied and highly successful ab initio method in the realm of quantum many-body physics and quantum chemistry, known to be capable of producing extremely accurate results for a wide variety of different many-body systems. It has not found many applications in pairing problems however, at least not in a general sense. Our aim, therefore, is to study various models of pairing using a variety of CCM techniques - we are interested in studying the generic features of pairing problems and in particular, we are especially interested in probing the collective modes of a system which exhibits the BCS-BEC crossover, in either the BCS or BEC limit. The CCM seems a rather good candidate for the job, given the high precision results it can produce.
372

de Haas-van Alphen Untersuchungen nichtmagnetischer Borkarbidsupraleiter

Bergk, Beate 05 February 2010 (has links)
Im Rahmen dieser Doktorarbeit werden de Haas-van Alphen-Untersuchungen an den nichtmagnetischen Borkarbidsupraleitern LuNi2B2C und YNi2B2C präsentiert. Aus den Quantenoszillationen in der normalleitenden Phase in Kombination mit Bandstrukturrechnungen konnten Informationen über die verzweigte Fermiflächenarchitektur und über die Elektron-Phonon-Kopplung der Borkarbide gewonnen werden. Die Kopplung ist stark anisotrop und fermiflächenabhängig. Dies spricht für einen Mehrbandmechanismus der Supraleitung in der Materialklasse. Zusätzlich konnten de Haas-van-Alphen-Oszillationen mehrerer Fermiflächen unterhalb von Bc2 tief in der Shubnikov-Phase beobachtet werden. Das Verhalten dieser Oszillationen lässt sich nicht mit bisher bekannten Theorien beschreiben. Allerdings weist das Bestehen der Oszillationen weit unterhalb von Bc2 auf ein Bestehen von elektronischen Zuständen in der Shubnikov-Phase hin.
373

NOVEL PHYSICAL PHENOMENA IN CORRELATED SUPERFLUIDS AND SUPERCONDUCTORS IN- AND OUT-OF-EQUILIBRIUM

Ammar, Kirmani A. 16 April 2020 (has links)
No description available.
374

Exploring 2D Metal-Insulator Transition in p-GaAs Quantum Well with High rs

Qiu, Lei 21 February 2014 (has links)
No description available.
375

Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture

Duchon, Eric Nicholas January 2013 (has links)
No description available.
376

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes

Schreck, Florian 21 January 2002 (has links) (PDF)
Cette thèse décrit l'étude des gaz de fermions $^6$Li et de bosons<br />$^7$Li dans le régime quantique à très basse température. Le<br />refroidissement est obtenu par évaporation du $^7$Li dans un piège<br />magnétique très confinant. Puisque le refroidissement évaporatif<br />d'un gaz de fermion polarisé est quasiment impossible, le $^6$Li<br />est refroidi sympathiquement par contact thermique avec le $^7$Li.<br />Dans une première série d'expériences, les propriétés des gaz<br />quantiques dans les états hyperfins les plus élevés, piégés<br />magnétiquement, sont étudiées. Un gaz de $10^5$ fermions a une<br />température de 0.25(5) fois la température de Fermi ($T_F$) est<br />obtenu. L'instabilité du condensat pour plus de 300 atomes<br />condensés, à cause des interactions attractives, limite la<br />dégénérescence que l'on peut atteindre. Pour s'affranchir de cette<br />limite, une autre série d'expérience est menée dans les états<br />hyperfins bas, piégeable magnétiquement, où les interactions entre<br />bosons sont faiblement répulsives. Les collisions<br />inter-isotopiques permettent alors la thermalisation du mélange.<br />Le mélange d'un condensat de Bose-Einstein (CBE) de $^7$Li et d'un<br />mer de Fermi de $^6$Li est produit. Le condensat est quasi<br />unidimensionnel et la fraction thermique peut être négligeable. La<br />dégénérescence atteinte correspond à $T/T_C=T/T_F=0.2(1)$. La<br />température est mesurée à partir de la fraction thermique des<br />bosons qui disparaît aux plus basses températures, et limite notre<br />précision de mesure. Dans une troisième série d'expérience, les<br />bosons sont transférés dans un piège optique, et placé dans l'état<br />interne $|F=1,m_F=1\rangle$, l'état fondamental pour les bosons.<br />Une résonance de Feshbach est repérée puis exploitée pour former<br />un condensai où les interactions sont ajustables. Quand les<br />interactions effectives entre les atomes sont attractives, on<br />observe la formation d'un soliton brillant de matière. La<br />propagation de ce soliton sans dispersion sur une distance de<br />$1.1\,$mm est observée.
377

Organic light-emitting diodes with doped charge transport layers / Organische Leuchtdioden mit dotierten Ladungsträgertransportschichten

Blochwitz, Jan 08 July 2001 (has links) (PDF)
Organische Farbstoffe mit einem konjugierten pi-Elektronen System zeigen überwiegend ein halbleitendes Verhalten. Daher sind sie potentielle Materialien für elektronische und optoelektronische Anwendungen. Erste Anwendungen in Flachbildschirmen sind bereits in (noch) geringen Mengen auf dem Markt. Die kontrollierte Dotierung anorganischer Halbleiter bereitete die Basis für den Durchbruch der bekannten Halbleitertechnologie. Die Kontrolle des Leitungstypes und der Lage des Fermi-Niveaus erlaubte es, stabile pn-Übergänge herzustellen. LEDs können daher mit Betriebsspannungen nahe dem thermodynamischen Limit betrieben werden (ca. 2.5V für eine Emission im grünen Spektralbereich). Im Gegensatz dazu bestehen organische Leuchtdioden (OLEDs) typischerweise aus einer Folge intrinsischer Schichten. Diese weisen eine ineffiziente Injektion aus Kontakten und eine relative geringe Leitfähigkeit auf, welche mit hohen ohmschen Verlusten verbunden ist. Andererseits besitzen organische Materialien einige technologische Vorteile, wie geringe Herstellungskosten, große Vielfalt der chemischen Verbindungen und die Möglichkeit sie auf flexible große Substrate aufzubringen. Sie unterscheiden sich ebenso in einigen fundamentalen physikalischen Parametern wie Brechungsindex, Dielektrizitätskonstante, Absorptionskoeffizient und Stokes-Verschiebung der Emissionswellenlänge gegenüber der Absorption. Das Konzept der Dotierung wurde für organische Halbleiter bisher kaum untersucht und angewandt. Unser Ziel ist die Erniedrigung der Betriebsspannung herkömmlicher OLEDs durch den Einsatz der gezielten Dotierung der Transportschichten mit organischen Molekülen. Um die verbesserte Injektion aus der Anode in die dotierte Löchertransportschicht zu verstehen, wurden UPS/XPS Messungen durchgeführt (ultraviolette und Röntgen-Photoelektronenspektroskopie). Messungen wurden an mit F4-TCNQ dotiertem Zink-Phthalocyanin auf ITO und Gold-Kontakten durchgeführt. Die Schlussfolgerungen aus den Experimenten ist, das (i) die Fermi-Energie sich durch Dotierung dem Transportniveau (also dem HOMO im Falle der vorliegenden p-Dotierung) annähert, (ii) die Diffusionspannung an der Grenzfläche durch Dotierung entsprechend verändert wird, und (iii) die Verarmungszone am Kontakt zum ITO sehr dünn wird. Der Kontakt aus organischem Material und leitfähigem Substrat verhält sich also ganz analog zum Fall der Dotierung anorganischer Halbleiter. Es entsteht ein stark dotierter Schottky-Kontakt dessen schmale Verarmungszone leicht durchtunnelt werden kann (quasi-ohmscher Kontakt). Die Leistungseffizienz von OLEDs mit dotierten Transportschichten konnte sukzessive erhöht werden, vom einfachen 2-Schicht Design mit dotiertem Phthalocyanine als Löchertransportschicht, über einen 3-Schicht-Aufbau mit einer Elektronen-Blockschicht bis zu OLEDs mit dotierten 'wide-gap' Löchertransport-Materialien, mit und ohne zusätzlicher Schicht zur Verbesserung der Elektroneninjektion. Sehr effiziente OLEDs mit immer noch niedriger Betriebsspannung wurden durch die Dotierung der Emissionsschicht mit Molekülen erhöhter Photolumineszenzquantenausbeute (Laser-Farbstoffe) erreicht. Eine optimierte LED-Struktur weist eine Betriebsspannung von 3.2-3.2V für eine Lichtemission von 100cd/m2 auf. Diese Resultate entsprechen den zur Zeit niedrigsten Betriebsspannungen für OLEDs mit ausschließlich im Vakuum aufgedampften Schichten. Die Stromeffizienz liegt bei ca. 10cd/A, was einer Leistungseffizienz bei 100cd/m2 von 10lm/W entspricht. Diese hohe Leistungseffizienz war nur möglich durch die Verwendung einer Blockschicht zwischen der dotierten Transportschicht und der Lichtemissions-Schicht. Im Rahmen der Arbeit konnte gezeigt werden, dass die Dotierung die Betriebsspannungen von OLEDs senken kann und damit die Leistungseffizienz erhöht wird. Zusammen mit einer sehr dünnen Blockschicht konnte einen niedrige Betriebsspannung bei gleichzeitig hoher Effizienz erreicht werden (Blockschicht-Konzept). / Organic dyes with a conjugated pi-electron system usually exhibit semiconducting behavior. Hence, they are potential materials for electronic and optoelectronic devices. Nowadays, some applications are already commercial on small scales. Controlled doping of inorganic semiconductors was the key step for today's inorganic semiconductor technology. The control of the conduction type and Fermi-level is crucial for the realization of stable pn-junctions. This allows for optimized light emitting diode (LED) structures with operating voltages close to the optical limit (around 2.5V for a green emitting LED). Despite that, organic light emitting diodes (OLEDs) generally consist of a series of intrinsic layers based on organic molecules. These intrinsic organic charge transport layers suffer from non-ideal injection and noticeable ohmic losses. However, organic materials feature some technological advantages for device applications like low cost, an almost unlimited variety of materials, and possible preparation on large and flexible substrates. They also differ in some basic physical parameters, like the index of refraction in the visible wavelength region, the absorption coefficient and the Stokes-shift of the emission wavelength. Doping of organic semiconductors has only been scarcely addressed. Our aim is the lowering of the operating voltages of OLEDs by the use of doped organic charge transport layers. The present work is focused mainly on the p-type doping of weakly donor-type molecules with strong acceptor molecules by co-evaporation of the two types of molecules in a vacuum system. In order to understand the improved hole injection from a contact material into a p-type doped organic layer, ultraviolet photoelectron spectroscopy combined with X-ray photoelectron spectroscopy (UPS/XPS) was carried out. The experimental results of the UPS/XPS measurements on F4-TCNQ doped zinc-phthalocyanine (ZnPc) and their interpretation is given. Measurements were done on the typical transparent anode material for OLEDs, indium-tin-oxide (ITO) and on gold. The conclusion from these experiments is that (i) the Fermi-energy comes closer to the transport energy (the HOMO for p-type doping), (ii) the built-in potential is changed accordingly, and (iii) the depletion layer becomes very thin because of the high space charge density in the doped layer. The junction between a doped organic layer and the conductive substrate behaves rather similar to a heavily doped Schottky junction, known from inorganic semicondcutor physics. This behavior favors charge injection from the contact into the organic semiconductor due to tunneling through a very small Schottky barrier (quasi-ohmic contact). The performance of OLEDs with doped charge transport layers improves successively from a simple two-layer design with doped phthalocyanine as hole transport layer over a three-layer design with an electron blocking layer until OLEDs with doped amorphous wide gap materials, with and without additional electron injection enhancement and electron blocking layers. Based on the experience with the first OLEDs featuring doped hole transport layers, an ideal device concept which is based on realistic material parameters is proposed (blocking layer concept). Very high efficient OLEDs with still low operating voltage have been prepared by using an additional emitter dopant molecule with very high photoluminescence quantum yield in the recombination zone of a conventional OLED. An OLED with an operating voltage of 3.2-3.2V for a brightness of 100cd/m2 could be demonstrated. These results represent the lowest ever reported operating voltage for LEDs consisting of exclusively vacuum sublimed molecular layers. The current efficiency for this device is above 10cd/A, hence, the power efficiency at 100cd/m2 is about 10lm/W. This high power efficiency could be achieved by the use of a blocking layer between the transport and the emission layer.
378

Organic light-emitting diodes with doped charge transport layers

Blochwitz, Jan 12 July 2001 (has links)
Organische Farbstoffe mit einem konjugierten pi-Elektronen System zeigen überwiegend ein halbleitendes Verhalten. Daher sind sie potentielle Materialien für elektronische und optoelektronische Anwendungen. Erste Anwendungen in Flachbildschirmen sind bereits in (noch) geringen Mengen auf dem Markt. Die kontrollierte Dotierung anorganischer Halbleiter bereitete die Basis für den Durchbruch der bekannten Halbleitertechnologie. Die Kontrolle des Leitungstypes und der Lage des Fermi-Niveaus erlaubte es, stabile pn-Übergänge herzustellen. LEDs können daher mit Betriebsspannungen nahe dem thermodynamischen Limit betrieben werden (ca. 2.5V für eine Emission im grünen Spektralbereich). Im Gegensatz dazu bestehen organische Leuchtdioden (OLEDs) typischerweise aus einer Folge intrinsischer Schichten. Diese weisen eine ineffiziente Injektion aus Kontakten und eine relative geringe Leitfähigkeit auf, welche mit hohen ohmschen Verlusten verbunden ist. Andererseits besitzen organische Materialien einige technologische Vorteile, wie geringe Herstellungskosten, große Vielfalt der chemischen Verbindungen und die Möglichkeit sie auf flexible große Substrate aufzubringen. Sie unterscheiden sich ebenso in einigen fundamentalen physikalischen Parametern wie Brechungsindex, Dielektrizitätskonstante, Absorptionskoeffizient und Stokes-Verschiebung der Emissionswellenlänge gegenüber der Absorption. Das Konzept der Dotierung wurde für organische Halbleiter bisher kaum untersucht und angewandt. Unser Ziel ist die Erniedrigung der Betriebsspannung herkömmlicher OLEDs durch den Einsatz der gezielten Dotierung der Transportschichten mit organischen Molekülen. Um die verbesserte Injektion aus der Anode in die dotierte Löchertransportschicht zu verstehen, wurden UPS/XPS Messungen durchgeführt (ultraviolette und Röntgen-Photoelektronenspektroskopie). Messungen wurden an mit F4-TCNQ dotiertem Zink-Phthalocyanin auf ITO und Gold-Kontakten durchgeführt. Die Schlussfolgerungen aus den Experimenten ist, das (i) die Fermi-Energie sich durch Dotierung dem Transportniveau (also dem HOMO im Falle der vorliegenden p-Dotierung) annähert, (ii) die Diffusionspannung an der Grenzfläche durch Dotierung entsprechend verändert wird, und (iii) die Verarmungszone am Kontakt zum ITO sehr dünn wird. Der Kontakt aus organischem Material und leitfähigem Substrat verhält sich also ganz analog zum Fall der Dotierung anorganischer Halbleiter. Es entsteht ein stark dotierter Schottky-Kontakt dessen schmale Verarmungszone leicht durchtunnelt werden kann (quasi-ohmscher Kontakt). Die Leistungseffizienz von OLEDs mit dotierten Transportschichten konnte sukzessive erhöht werden, vom einfachen 2-Schicht Design mit dotiertem Phthalocyanine als Löchertransportschicht, über einen 3-Schicht-Aufbau mit einer Elektronen-Blockschicht bis zu OLEDs mit dotierten 'wide-gap' Löchertransport-Materialien, mit und ohne zusätzlicher Schicht zur Verbesserung der Elektroneninjektion. Sehr effiziente OLEDs mit immer noch niedriger Betriebsspannung wurden durch die Dotierung der Emissionsschicht mit Molekülen erhöhter Photolumineszenzquantenausbeute (Laser-Farbstoffe) erreicht. Eine optimierte LED-Struktur weist eine Betriebsspannung von 3.2-3.2V für eine Lichtemission von 100cd/m2 auf. Diese Resultate entsprechen den zur Zeit niedrigsten Betriebsspannungen für OLEDs mit ausschließlich im Vakuum aufgedampften Schichten. Die Stromeffizienz liegt bei ca. 10cd/A, was einer Leistungseffizienz bei 100cd/m2 von 10lm/W entspricht. Diese hohe Leistungseffizienz war nur möglich durch die Verwendung einer Blockschicht zwischen der dotierten Transportschicht und der Lichtemissions-Schicht. Im Rahmen der Arbeit konnte gezeigt werden, dass die Dotierung die Betriebsspannungen von OLEDs senken kann und damit die Leistungseffizienz erhöht wird. Zusammen mit einer sehr dünnen Blockschicht konnte einen niedrige Betriebsspannung bei gleichzeitig hoher Effizienz erreicht werden (Blockschicht-Konzept). / Organic dyes with a conjugated pi-electron system usually exhibit semiconducting behavior. Hence, they are potential materials for electronic and optoelectronic devices. Nowadays, some applications are already commercial on small scales. Controlled doping of inorganic semiconductors was the key step for today's inorganic semiconductor technology. The control of the conduction type and Fermi-level is crucial for the realization of stable pn-junctions. This allows for optimized light emitting diode (LED) structures with operating voltages close to the optical limit (around 2.5V for a green emitting LED). Despite that, organic light emitting diodes (OLEDs) generally consist of a series of intrinsic layers based on organic molecules. These intrinsic organic charge transport layers suffer from non-ideal injection and noticeable ohmic losses. However, organic materials feature some technological advantages for device applications like low cost, an almost unlimited variety of materials, and possible preparation on large and flexible substrates. They also differ in some basic physical parameters, like the index of refraction in the visible wavelength region, the absorption coefficient and the Stokes-shift of the emission wavelength. Doping of organic semiconductors has only been scarcely addressed. Our aim is the lowering of the operating voltages of OLEDs by the use of doped organic charge transport layers. The present work is focused mainly on the p-type doping of weakly donor-type molecules with strong acceptor molecules by co-evaporation of the two types of molecules in a vacuum system. In order to understand the improved hole injection from a contact material into a p-type doped organic layer, ultraviolet photoelectron spectroscopy combined with X-ray photoelectron spectroscopy (UPS/XPS) was carried out. The experimental results of the UPS/XPS measurements on F4-TCNQ doped zinc-phthalocyanine (ZnPc) and their interpretation is given. Measurements were done on the typical transparent anode material for OLEDs, indium-tin-oxide (ITO) and on gold. The conclusion from these experiments is that (i) the Fermi-energy comes closer to the transport energy (the HOMO for p-type doping), (ii) the built-in potential is changed accordingly, and (iii) the depletion layer becomes very thin because of the high space charge density in the doped layer. The junction between a doped organic layer and the conductive substrate behaves rather similar to a heavily doped Schottky junction, known from inorganic semicondcutor physics. This behavior favors charge injection from the contact into the organic semiconductor due to tunneling through a very small Schottky barrier (quasi-ohmic contact). The performance of OLEDs with doped charge transport layers improves successively from a simple two-layer design with doped phthalocyanine as hole transport layer over a three-layer design with an electron blocking layer until OLEDs with doped amorphous wide gap materials, with and without additional electron injection enhancement and electron blocking layers. Based on the experience with the first OLEDs featuring doped hole transport layers, an ideal device concept which is based on realistic material parameters is proposed (blocking layer concept). Very high efficient OLEDs with still low operating voltage have been prepared by using an additional emitter dopant molecule with very high photoluminescence quantum yield in the recombination zone of a conventional OLED. An OLED with an operating voltage of 3.2-3.2V for a brightness of 100cd/m2 could be demonstrated. These results represent the lowest ever reported operating voltage for LEDs consisting of exclusively vacuum sublimed molecular layers. The current efficiency for this device is above 10cd/A, hence, the power efficiency at 100cd/m2 is about 10lm/W. This high power efficiency could be achieved by the use of a blocking layer between the transport and the emission layer.
379

The influence of cation doping on the electronic properties of Sr₃Ru₂O₇

Farrell, Jason January 2008 (has links)
Sr₃Ru₂O₇ is a quasi-two-dimensional metal and has a paramagnetic ground state that is heavily renormalised by electron-electron correlations and magnetic exchange interactions. Inextricably linked to this renormalisation is the metamagnetism of Sr₃Ru₂O₇ - a rapid rise in uniform magnetisation over a narrow range of applied magnetic field. Knowledge of the zero-field physics is essential to any description of the metamagnetism. Light may be shed on the enigmatic ground state of Sr₃Ru₂O₇ by doping the crystal lattice with foreign cations: this is the primary purpose of the original research referred to in this thesis, in which studies of some of the electronic properties of crystals of cation-doped Sr₃Ru₂O₇ are reported. Single crystals of Sr₃(Ru[subscript(1-x)]Ti[subscript(x)])₂O₇ and Sr₃(Ru[subscript(1-x)]Cr[subscript(x)])₂O₇ have been synthesised in an image furnace and some of the properties of these crystals have been measured. Evidence that indicates the emergence of a spin density wave as a function of Ti-doping in Sr₃(Ru[subscript(1-x)]Ti[subscript(x)])₂O₇ is presented. Time-dependent magnetic irreversibility has been observed in samples of Sr₃(Ru[subscript(1-x)]Cr[subscript(x)])₂O₇, thus hinting at the involvement of the RKKY mechanism in these materials. Regarding cation doping out of the conducting RuO₂ planes, samples of (Sr[subscript(1-y)]La[subscript(y)])₃Ru₂O₇ have been grown and investigated. Both the Sommerfeld coefficient and the Fermi liquid A coefficient of (Sr[subscript(1-y)]La[subscript(y)])₃Ru₂O₇ are found to decrease as a function of y (0 ≤ y ≤ 0.02); these observations point towards a reduction in the thermodynamic mass of the Landau quasiparticles. Results from magnetoresistance and magnetisation measurements indicate that the metamagnetism of the (Sr[subscript(1-y)]La[subscript(y)])₃Ru₂O₇ series probably cannot be explained by a rigid band-shift model. Also, some aspects of these data imply that the metamagnetism cannot be fully accounted for by a spin fluctuation extension to the Ginzburg-Landau theory of uniform magnetisation.
380

Electronic States of Heavy Fermion Metals in High Magnetic Fields

Rourke, Patrick Michael Carl 25 September 2009 (has links)
Heavy fermion metals often exhibit novel electronic states at low temperatures, due to competing interactions and energy scales. In order to characterize these states, precise determination of material electronic properties, such as the Fermi surface topology, is necessary. Magnetic field is a particularly powerful tool, since it can be used as both a tuning parameter and probe of the fundamental physics of heavy fermion compounds. In CePb3, I measured magnetoresistance and torque for 23 mK ≤ T ≤ 400 mK, 0 T ≤ H ≤ 18 T, and magnetic field rotated between the (100), (110), and (111) directions. For H||(111), my magnetoresistance results show a decreasing Fermi liquid temperature range near Hc, and a T^2 coefficient that diverges as A(H) ∝ |H −Hc|^−α, with Hc ~ 6 T and α ~ 1. The torque exhibits a complicated dependence on magnetic field strength and angle. By comparison to numerical spin models, I find that the “spin-flop” scenario previously thought to describe the physics of CePb3 does not provide a good explanation of the experimental results. Using novel data acquisition software that exceeds the capabilities of a traditional measurement set-up, I measured de Haas–van Alphen oscillations in YbRh2Si2 for 30 mK ≤ T ≤ 600 mK, 8 T ≤ H ≤ 16 T, and magnetic field rotated between the (100), (110), and (001) directions. The measured frequencies smoothly increase as the field is decreased through H0 ≈ 10 T. I compared my measurements to 4f-itinerant and 4f-localized electronic structure calculations, using a new algorithm for extracting quantum oscillation information from calculated band energies, and conclude that the Yb 4f quasi-hole remains itinerant over the entire measured field range, with the behaviour at H0 caused by a Fermi surface Lifshitz transition. My measurements are the first to directly track the Fermi surface of YbRh2Si2 across this field range, and rule out the 4f localization transition/crossover that was previously proposed to occur at H0.

Page generated in 0.0363 seconds