571 |
Microstructure and deformation behaviour of ductile iron under tensile loadingKasvayee, Keivan Amiri January 2015 (has links)
The current thesis focuses on the deformation behaviour and strain distribution in the microstructure of ductile iron during tensile loading. Utilizing Digital Image Correlation (DIC) and in-situ tensile test under optical microscope, a method was developed to measure high resolution strain in microstructural constitutes. In this method, a pit etching procedure was applied to generate a random speckle pattern for DIC measurement. The method was validated by benchmarking the measured properties with the material’s standard properties. Using DIC, strain maps in the microstructure of the ductile iron were measured, which showed a high level of heterogeneity even during elastic deformation. The early micro-cracks were initiated around graphite particles, where the highest amount of local strain was detected. Local strain at the onset of the micro-cracks were measured. It was observed that the micro-cracks were initiated above a threshold strain level, but with a large variation in the overall strain. A continuum Finite Element (FE) model containing a physical length scale was developed to predict strain on the microstructure of ductile iron. The materials parameters for this model were calculated by optimization, utilizing Ramberg-Osgood equation. For benchmarking, the predicted strain maps were compared to the strain maps measured by DIC, both qualitatively and quantitatively. The DIC and simulation strain maps conformed to a large extent resulting in the validation of the model in micro-scale level. Furthermore, the results obtained from the in-situ tensile test were compared to a FE-model which compromised cohesive elements to enable cracking. The stress-strain curve prediction of the FE simulation showed a good agreement with the stress-strain curve that was measured from the experiment. The cohesive model was able to accurately capture the main trends of microscale deformation such as localized elastic and plastic deformation and micro-crack initiation and propagation.
|
572 |
Contribution à la compréhension du couplage thermomécanique en laminage à chaud sur l’évolution des défauts de coulée / Contribution at the comprehension of thermomechanical coupling on the evolution of the casting defect during rollingChevalier, Damien 21 December 2016 (has links)
Le laminage est un procédé de mise en forme à chaud permettant d’obtenir des barres de différents diamètres en partant de blooms issus de la coulée continue. Dans les bruts de coulée se répartissent des inclusions qui sont de natures, de formes et de tailles différentes. Le laminage va permettre de réduire le diamètre de la barre et d’agir sur la microstructure du matériau, notamment, en fragmentant et dispersant les inclusions. L’objectif des travaux de thèse est de contribuer à la compréhension des effets du chargement thermomécanique sur l’évolution des défauts de coulée en laminage. Vu la dimension des installations, les investigations expérimentales directes sur les moyens industriels ne sont pas envisageables. L’idée développée dans les travaux de thèse concerne la mise en place et la validation d’un essai de caractérisation à échelle réduite reproduisant le chemin thermomécanique subi par la matière au cours du laminage. Pour ce faire la ligne de laminage industrielle est modélisé afin d’obtenir le chargement thermomécanique de la barre au cours du laminage. Seules les sollicitations ayant un rôle majeur sur le comportement des défauts sont reproduites. Un essai dit de « forgeage libre » a ainsi été conçu, réalisé, mis en place sur les moyens de mise en forme de la plateforme VULCAIN de l’ENSAM. L’essai a été utilisé avec des défauts artificiels présentant des similarités comme la malléabilité avec les défauts réels. Une campagne expérimentale paramétrique a été menée sur les différents types de défauts. Les échantillons forgés ont été analysés par des méthodes non destructives comme les ultrasons, la radiographie et la tomographie X. Ces analyses ont permis de suivre le comportement du défaut et d’observer certains phénomènes mis en évidence dans la littérature comme l’apparition de cavité à l’interface défaut-matrice. / Rolling is a hot forming process dedicated to manufacture bars with different diameters. The initial product is a bloom from the continuous casting. The bloom contains inclusions which have different forms, sizes and distributions. The rolling reduces the diameter of the bar and acts on the material microstructure by fragmenting and dispersing the inclusions. The aim of the thesis work is to understand the behavior of the inclusions with the rolling thermo mechanical loading effects. The direct investigations on the rolling mill are not possible because of the size of the installations. To address this problem, the solution is to develop and validate a small scale characterization test reproducing the thermo mechanical loading of the rolled bar. To achieve this, the rolling mill is modeled. Only the solicitations which have a major role on the behavior of the defects are reproduced. An open-die forging test is designed, manufactured and implemented on the VULCAIN installation of the ENSAM. The artificial defects which have a similar malleability to the real defects are integrated into the sample. A parametric experimental campaign has been conducted on the different defects. The forged samples have been analyzed with non-destructive methods such as ultrasound, radiography and tomography. These analyses allowed to follow the behavior of the defects and to observe certain phenomena illustrated in the literature such as the emergence of a cavity on the defect-matrix interface.
|
573 |
Contribution à la formulation symétrique du couplage équations intégrales - éléments finis : application à la géotechnique / Contributing to the symmetric formulation of the coupling integral equations - finite elements : application to the geotechnicsNguyen, Minh Tuan 17 September 2010 (has links)
Un des outils numériques les plus utilisés en ingénierie est la méthode des éléments finis, qui peut être mise en o euvre grâce à l'utilisation de nombreux codes de calcul. Toutefois, une difficulté apparaît lors de l'utilisation de la méthode des éléments finis, spécialement en géotechnique, lorsque la structure étudiée est en interaction avec un domaine de dimensions infinies. L'usage courant en ingénierie est alors de réaliser les calculs sur des domaines bornés, mais la définition de la frontière de tels domaines bornés pose de sérieux problèmes. Pour traiter convenablement les problèmes comportant des frontières à l'infini, l'utilisation d'éléments discrets "infinis" est maintenant souvent délaissée au profit de la méthode des équations intégrales ou "méthode des éléments de frontière" qui permet de résoudre un système d'équations aux dérivées partielles linéaire dans un domaine infini en ne maillant que la frontière du domaine à distance finie. La mise en oeuvre du couplage entre la méthode des éléments finis et la méthode des éléments de frontière apparaît donc comme particulièrement intéressante car elle permet de bénéficier de la flexibilité des codes de calcul par éléments finis tout en permettant de représenter les domaines infinis à l'aide de la méthode des éléments de frontière. La méthode est basée sur la construction de la "matrice de raideur" du domaine infini grâce à l'utilisation de la méthode des équations intégrales. Il suffit alors d'assembler la matrice de raideur du domaine infini avec la matrice de raideur du domaine fini représenté par éléments finis. L'utilisation de la méthode la plus simple de traitement des équations intégrales, dite méthode de « collocation » conduit à une matrice de raideur non-symétrique. Par ailleurs, la méthode dite «Singular Galerkin» conduit à une formulation symétrique, mais au prix du calcul d'intégrales hypersingulières. La thèse porte sur une nouvelle formulation permettant d'obtenir une matrice de raideur symétrique sans intégrales hypersingulières, dans le cas de problèmes plans. Quelques applications numériques sont abordées pour des problèmes courants rencontrés en géotechnique / One of the most used numerical tools in engineering is the finite element method, which can be implemented through the use of many computer codes. However, a difficulty arises when using the finite element method, especially in geotechnical engineering, where the structure is studied in interaction with a field of infinite dimensions. The commonly used in engineering is then performming the calculations on bounded domains, but the definition of the border of the domain also poses serious problems. To properly solve the problems which have the boundary at infinity, the use of discrete elements "infinite" is now often neglected in favor of the integral equations method or "boundary element method", which allows to solve a linear partial differential equations system in an infinite domain by the discretization of the only boundary of the domain at finite distance. The implementation of coupling between the finite element method and boundary element method is therefore particularly interesting because it allows to benefit the flexibility of computer codes by the finite element method, while the infinite domains is represented by the help of the integral equations method. It is sufficient to assemble the stiffness matrix of infinite domain with the stiffness matrix of finite domain represented by finite elements. Using the simplest method of treatment of integral equations, known as method of "collocation" leads to a non-symmetric stiffness matrix. Furthermore, a method known “Galerkin Singular” leads to a symmetric formulation, but it is at the cost of computing hypersingular integrals. The thesis focuses on a new formulation to obtain a symmetric stiffness matrix without full hypersingular, in the case of plane problems. Some numerical applications are discussed for common problems encountered in geotechnical engineering
|
574 |
Étude du comportement en post-flambement d’un panneau de fuselage composite infusé avec structures intégrées / Study of the post-buckling behaviour of a composite fuselage panel infused with integrated structuresPerret, Adrien 28 June 2011 (has links)
Ces travaux concernent l’étude numérique et expérimentale d’un panneau composite autoraidi fabriqué par le procédé d’infusion de résine (Liquid Resin Infusion LRI). Le procédé LRI permet d’intégrer des structures sur les peaux d’un panneau représentatif d’un fuselage composite. Dans l’étude numérique, des modèles éléments finis sont réalisés, pour étudier le comportement global du panneau en post-flambement. Cela permet de mettre au point un dispositif d’essai. L’approche expérimentale consiste en l’application de différentes méthodes pour contrôler la pièce et réaliser l’essai. Des essais de caractérisation sont aussi réalisés pour obtenir les propriétés mécaniques nécessaires à l’élaboration de modèles numériques locaux, permettant de décrire la décohésion des structures intégrées. / These works are related to the numerical and experimental study of a composite stiffened panel, which is manufactured by a resin infusion process (Liquid Resin Infusion LRI). This manufacturing process allows structures to be integrated onto the skins of a panel being representative of a composite fuselage. Finite element models are built along with the numerical study, in order to deal with the post-buckling global behaviour of this panel. This leads to perfect a test set-up addressed during the experimental investigation. Several experimental methods are used to check the test panel and achieve the test. Material properties are also determined through material testing intended for the development of local numerical models, describing the integrated structures decohesion.
|
575 |
Identification de modules élastiques in vivo en utilisant l'imagerie par résonance : Application à la paroi des artères carotides / Identification of in vivo elastic moduli from magnetic resonance images : Application to the arterial wall of carotid arteriesFranquet, Alexandre 07 December 2012 (has links)
La rigidité artérielle est un critère clé dans l'analyse de plusieurs maladies cardiovasculaires comme l'athérosclérose. Cette maladie est l'une des causes principales de mortalité dans les pays de l'OCDE. L'analyse des propriétés mécaniques des artères in vivo permettrait d'améliorer le diagnostic de ce type de pathologie. L'originalité de ce travail de recherche est de s'intéresser à la problématique de l'identification non invasive des propriétés mécaniques des artères in vivo en utilisant l'IRM. Une nouvelle méthode d'identification adaptée à la résolution spatiale de l'IRM a été développée. Celle-ci se base sur la minimisation d'une fonction coût caractérisant l'écart entre une image expérimentale déformée et une image recalée numériquement. Cette dernière consiste à utiliser une image expérimentale au repos et à recaler celle-ci à l'aide d'un champ de déplacements issu d'un calcul éléments finis.Cette méthodologie a été appliquée pour identifier les propriétés élastiques d'artères carotides communes de plusieurs sujets sains et de patients atteints d'athérosclérose. Ces travaux ont permis de mettre en évidence la rigidification des artères carotides avec l'âge et l'évolution de la rigidité des artères lors de l'évolution du cycle cardiaque, ainsi que les effets de la mesure de la pression sanguine et des propriétés mécaniques du milieu extérieur à l'artère sur les résultats de l'identification.Cette étude offre de grandes promesses quant à la possibilité d'identifier les propriétés non linéaires hétérogènes d'artères sclérosées en utilisant l'IRM. / Arterial stiffness is a key criterion for the analysis of several cardiovascular diseases such as atherosclerosis. This disease is one of the major causes of mortality in OECD countries. The analysis of the in vivo mechanical properties of arteries could improve the diagnosis of this type of pathology. The originality of this research is to contribute to the non-invasive identification of the in vivo mechanical properties of arteries from MRI images.A new identification method adapted to the spatial resolution of MRI has been developed. It is based on the minimisation of a cost function which measures the similarity between an experimental deformed image, and a numerical registered image. This registered image is calculated from the non-deformed experimental image using a displacements field obtained by finite elements analysis.This methodology has been applied to identify the elastic properties of the common carotid arteries of several healthy subjects and of patients with atherosclerosis. This work highlighted the stiffening of carotid arteries with age and the evolution of the stiffness of arteries throughout the cardiac cycle. An extensive parametric study has underlined the effect of the measurement of blood pressure and the influence of the mechanical properties of the surrounding tissue on the results of the identification.Promising perspectives exist for identifying the non-linear and heterogeneous mechanical properties of sclerosed arteries from MRI.
|
576 |
Analyse de modèles en mécanique des fluides compressiblesFettah, Amal 18 December 2012 (has links)
Dans cette thèse on s'est intéressé à l'étude de problèmes concernant la théorie des écoulements compressibles. Dans une première partie on a traité le problème de transport instationnaire avec un champ de vitesse peu régulier, on a établi un résultat d'existence en passant à la limite sur des schémas numériques volumes finis avec un choix décentré amont qui garantie la positivité de la masse volumique. Pour le problème de Stokes, le résultat est démontré par deux approches : une approche par schéma numérique et une approche par régularité visqueuse.Dans la première méthode on propose une discrétisation qui combine la méthode des éléments finis et la méthode des volumes finis qui repose sur les espaces Crouzeix-Raviart. Une première difficulté de ce travail est de démontrer les estimations sur la solution discrète, en particulier à cause de la présence de la gravité dans le terme source de l'équation de quantité de mouvement. Le fait de considérer une loi d'état très générale conduit des difficultés supplémentaires en particulier dans le passage à la limite sur cette équation.Dans la deuxième méthode, le résultat d'existence est démontré en utilisant une approximation par viscosité. Ceci consiste essentiellement en deux parties : l'étude du problème de convection diffusion (qui apparait dans le problème régularisé) où on démontre l'existence et l'unicité de solution et en deuxième partie le passage à la limite sur le problème régularisé. / This thesis is concerned with the study of problems relating in the theory of compressible flows . We prove the existence of the considered problems in a first part by passing to the limit on the numerical schemes proposed for the discretisation of these problems. In the second part, the existence result is obtained by passing to the limit on the approximate solutions given by a corresponding regularized problem.The main result is to prove the existence of a solution of the stationnary compressible Stokes problem with a general equation of state.We first prove this result by passing to the limit on the numerical scheme as the mesh size tends to zero. The fact to consider a general E.O.S induces some additional difficulties in particular to get estimates on the discrete solution (which comes also from the presence of the gravity in the momentum equation) and in the passage to the limit on the E.O.S.We also prove the existence result by passing to the limit on a regularized problem. We first treat the convection-diffusion problem (which appears in the regularized problem), we give an existence and uniqueness result, and we then prove estimates on the approwimate solutions and pass to the limit on the regularized problem.
|
577 |
Simulation numérique directe multiphasique de la déformation d’un alliage Al-Cu à l’état pâteux – Comparaison avec des observations par tomographie aux rayons X in situ en temps réel / Direct and multiphase numerical simulation of the Al-Cu alloy deformation in the mushy state – Comparison with in situ and real-time X-ray tomography observationsZaragoci, Jean-François 09 July 2012 (has links)
La fissuration à chaud est un défaut majeur rencontré en solidification des alliages d'aluminium. Elle est liée à l'incapacité du liquide de s'écouler dans les zones où des porosités sont présentes, ne permettant pas de les refermer avant qu'elles gagnent en volume. Pour comprendre la fissuration à chaud, il est crucial de développer nos connaissances du comportement mécanique de la zone pâteuse. Pour cela, il est très utile d'effectuer des expériences de microtomographie aux rayons X et des simulations mécaniques sur des volumes élémentaires représentatifs. Dans cette thèse, nous proposons de coupler les deux approches en initialisant une simulation par éléments finis grâce à des données de microtomographie issues d'un test de traction isotherme d'un alliage d'aluminium-cuivre à l'état pâteux. Cette approche originale nous donne directement accès à la réalité expérimentale et permet des comparaisons des évolutions numérique et expérimentale de l'éprouvette. Nous expliquons dans un premier temps comment obtenir la représentation numérique à l'aide de l'algorithme des marching cubes et de la méthode d'immersion de volume. Nous présentons ensuite notre modèle numérique qui s'appuie sur une résolution monolithique des équations de Stokes. Une fois le champ de vitesse obtenu dans l'ensemble des phases solide, liquide et gazeuse, nous utilisons une méthode level set dans un formalisme eulérien afin de faire évoluer la morphologie de notre échantillon numérique. Malgré la simplicité du modèle, les résultats expérimentaux et numériques montrent un accord raisonnable en ce qui concerne la propagation de l'air à l'intérieur de l'échantillon. / Hot tearing is a major defect arising during solidification of aluminium alloys. This defect is associated with the inability of liquid to feed areas where voids have started to appear, not allowing to heal small defects before they grow bigger. To understand hot tearing, it is mandatory to develop a good knowledge of the semi-solid mechanical behaviour. It is thus very useful to carry out X-ray microtomographies experiments and mechanical simulations on representative elementary volumes. In this work, we couple the both approaches by initialising a finite element simulation with the help of microtomography data obtained during an isothermal tensile testing of an aluminium-copper alloy in the mushy state. This innovative approach gives a direct access to the experimental reality and allows comparisons of numerical and experimental evolutions of the sample. We explain in a first time how to get the numerical representation thanks to a marching cubes algorithm and the immersed volume method. Then, we present our numerical model for which we solve the Stokes equations in a monolithic way. Once the velocity computed in all the solid, liquid and gaseous phases, we use a level set method in a Eulerian formalism to obtain the morphological evolution of our numerical sample. Despite the model simplicity, numerical and experimental results show a reasonable agreement concerning the air propagation inside the sample.
|
578 |
Modélisation du comportement dynamique d'un train de tiges de forage pétrolier : application aux vibrations latérales / Drill String Dynamics Behavior Modeling : Study of Lateral VibrationsEzzeddine, Dhaker 19 April 2013 (has links)
Les vibrations des systèmes de forage pétrolier sont à l'origine de nombreux dysfonctionnements (ruptures des tiges par une fatigue accélérée, réduction des performances, endommagement des outils de mesures, endommagement des parois du puits, etc.). Face à la complexité des puits forés aujourd'hui, la maîtrise des vibrations des systèmes de forage est plus que jamais un enjeu majeur dans la réussite économique d'un projet pétrolier. Durant l'opération de forage, les tiges en rotation entrent en interaction avec les parois du puits (tubage et/ou formation) et encaissent dans certains cas des vibrations sévères. On distingue généralement trois modes de vibrations suivant le plan de leur occurrence : axiales, latérales et de torsion. Nous ne nous intéressons dans ce mémoire qu'aux vibrations latérales des tiges de forage. Si les vibrations latérales ont fait l'objet de nombreuses études dans le passé, il reste néanmoins des axes d'amélioration possible, tant sur la compréhension des phénomènes (contact garniture-puits par exemple) que sur la recherche de méthodes numériques permettant de réduire les temps de calcul. Dans le cadre de cette thèse, un modèle a été développé pour étudier les vibrations latérales des garnitures de forage dans des forages à trajectoires complexes. Ce modèle permet de prédire les vibrations latérales des tiges pour des paramètres opératoires donnés (vitesse de rotation, poids sur l'outil de forage). Un modèle numérique en éléments finis a été développé pour résoudre les équations du mouvement et analyser ainsi la sensibilité des vibrations aux paramètres opératoires du forage en particulier la vitesse de rotation et l'effort axial dans les tiges. Le modèle permet en outre d'analyser la réponse dynamique d'une garniture en cours du forage (conception). En outre, cette étude a permis de mieux élucider le phénomène sévère de précession des tiges (whirling), très nuisible à l'intégrité mécanique des systèmes de forage. Un nouveau banc d'essais a été mis au point par le Centre de Géosciences de Mines ParisTech pour reproduire les vibrations latérales, mieux comprendre le phénomène du whirling et valider les résultats numériques du modèle. Par ailleurs, des mesures dynamiques en surfaces et en fond de puits au cours de forages réels ont été analysées afin de mettre en évidence les vibrations latérales les plus sévères et en particulier le whirling. Ces données de terrain ont permis de comparer les fréquences propres du système mesurées et celles fournies par le modèle numérique. / Drillstring vibrations are commonly observed during oil & gas well drilling operations. Vibrations are a major cause of drilling tools dysfunction (drillstring breaking because of fatigue, reduced drilling efficiency, measurement-while-drilling tools failure, damaging of drill bits, etc.). Because of the increasing complexity of oil & gas wells drilled nowadays, operators need to mitigate efficiently the drillstring vibrations in order to successfully achieve the drilling process. During the drilling operation, rotating drillstrings are in interaction with the well borehole (casing and/or rock) which may lead to severe vibrations. Different vibrations modes occur simultaneously while drilling, we identify mainly three modes: axial, torsional and lateral. This work deals only with lateral vibrations. Literature survey papers show numerous experimental and numerical studies carried out on drillstring dynamics. The developed models don't take into account sufficiently the complex drillstring-borehole interactions or the efficient numerical methods needed to reduce the computation time. A new drillstring dynamics model has been developed within this thesis in order to compute the lateral vibrations of drillstrings in a complex well trajectory. Given the operating parameters (rotary speed, weight on bit) the model predicts the dynamics response of the drillstring in terms of lateral vibrations. A finite element model has been implemented to solve for the equations of motion of the dynamics model and study the dependence of the lateral vibrations on some operating parameters of the system, mainly the rotary speed and the axial load on the drillstrings. The finite element model can be used to compute and enhance the dynamic response of a given drillstring configuration for design issues. Besides, the model can be used to understand some dynamic phenomena encountered while drilling (post-analysis). Moreover, this study was useful to better understand the “whirling” phenomenon which is very harmful for the drilling system components. A new lateral vibrations simulator was built at Mines ParisTech in order to understand the whirling phenomenon and validate the numerical results provided by the dynamics model. Surface and downhole fieldmeasurements have been analyzed in order to understand the occurrence of whirling. The eigenfrequencies evaluated from the field data have been found very close to those provided by the dynamics model.
|
579 |
Simulation des grands espaces et des temps longs / Numerical modeling of large scales and long timeVeysset, Jérémy 29 September 2014 (has links)
L'interaction fluide structure est présente dans beaucoup de problèmes industriels, dans les domaines d'ingénierie mécanique, civile ou biomécanique. Même si les performances informatiques s'améliorent considérablement et que les méthodes en mécanique numérique gagnent en maturité, certaines difficultés ne permettent pas encore de réaliser des simulations numériques précises. Actuellement deux méthodes numériques gagnent en popularité pour la simulation numérique d'interactions fluide structure: la méthode de partitionnement et la méthode monolithique. Des résultats de la littérature montrent que la première est efficace et précise mais qu'elle peut rencontrer des problèmes d'instabilité si les ratios de densité sont élevés ou que les géométries sont complexes. Les méthodes d'immersion sont de plus en plus utilisées par la communauté scientifique. Différentes approches ont été développées, dont la Méthode d'Immersion de Volume. Cette méthode permet de faciliter la mise en place des calculs. Ainsi il n'est pas nécessaire de construire des maillages concordant avec la géométrie des objets, et le couplage entre les fluides et les solides se fait naturellement. C'est sur cette analyse qu'a été développé le logiciel Thost. Il permet de simuler des procédés industriels tels que le chauffage de pièces métalliques dans les fours industriels ou la trempe sans caractériser expérimentalement des coefficients de transfert. Le but d'un tel logiciel est de permettre une meilleure compréhension des procédés et ainsi de les optimiser. Cependant les coûts de calcul restant élevés, le but de la thèse est de les diminuer en s'appuyant sur des méthodes numériques innovantes tels que l'adaptation dynamique de maillage anisotrope, des méthodes éléments finis stabilisées ou l'immersion directe des objets à partir de la Conception Assistée par Ordinateur. / Fluid-Structure Interaction (FSI) describes a wide variety of industrial problems arising in mechanical engineering, civil engineering and biomechanics. In spite of the available computer performance and the actual maturity of computational fluid dynamics and computational structural dynamics, several key issues still prevent accurate FSI simulations.Two main approaches for the simulation of FSI problems are still gaining attention lately: partitioned and monolithic approaches. Results in the literature show that the partitioned approach is accurate and efficient but some instabilities may occur depending on the ratio of the densities and the complexity of the geometry. Monolithic methods are still of interest due to their capability to treat the interaction of the fluid and the structure using a unified formulation. In fact it makes the build up of a FSI problem easier as the mesh do not have to fit the geometry of the solids and the transfers are treated naturally.The software Thost has been created based on these analyzes. Thost is a 3D aerothermal numerical software. It has been developped for the numerical simulation of industrial processes like the heating in industrial furnaces as well as quenching. Its target is to model numericaly the thermal history of the industrial pieces in their environment without using any transfer coefficient. However the computational costs are still high and therefore the software is not fully efficient from an industrial point of view to simulate, analize and improve complex processes. All the work in this PhD thesis has been done to reduce the computational costs and optimize the accuracy of the simulations in Thost based on innovatives numerical methods such as dynamic anisotropic mesh adaptation, stabilized finite elements methods and immersing the objects directly from their Computer Aided Design files.
|
580 |
Modélisation numérique thermomécanique de fabrication additive par fusion sélective de lit de poudre par laser : Application aux matériaux céramiques / Thermomechanical numerical modelling of additive manufacturing by selective laser melting of powder bed : Application to ceramic materialsChen, Qiang 10 April 2018 (has links)
L'application du procédé SLM est limitée par la difficulté à contrôler le procédé. Son application aux céramiques est particulièrement difficile en raison de leur faible absorption au laser et de leur faible résistance au choc thermique. La maîtrise de ce procédé nécessite une compréhension complète du transfert de chaleur, de la dynamique des fluides et de la mécanique des solides. Dans ce travail, nous proposons un modèle numérique pour la simulation du procédé SLM appliqué aux céramiques. Le modèle est développé à l'échelle du cordon et avec l'hypothèse d'un lit de poudre continu. Il est basé sur la méthode level set et l'homogénéisation multiphasique, avec laquelle nous sommes capables de suivre l'évolution de l'interface gaz/matière et les transformations de phase. La simulation dévelopée permet d'étudier l'influence des propriétés du matériau et des paramètres du procédé sur la température, la forme du bain liquide, la dynamique des fluides et la mécanique des solides. En dehors de la puissance du laser et de la vitesse de balayage, l'absorption du matériau est également importante pour la thermique et la forme du bain liquide. Avec la dynamique des fluides, la forme convexe du cordon est obtenue sous tension de surface. Les gouttelettes liquides se forment lors de la fusion de la poudre et créent une instabilité du bain. Ceci entraîne une irrégularité du cordon après solidification. L'effet Marangoni, provoqué par le gradient surfacique de la tension de surface, est étudié. Son influence sur la répartition de la température, la forme du bain liquide et la régularité du cordon est évoquée. Cet effet peut lisser la surface du cordon avec ∂γ/∂T négatif. En augmentant la vitesse de balayage, la surface du cordon devient plus irrégulière. L'effet de « balling » est reproduit avec une vitesse de balayage élevée. Cela peut être utile pour trouver le régime donnant une forme de cordon régulière étant données la puissance et la vitesse du laser. Le défaut de fissuration est délétère dans la fabrication additive. L'utilisation d'un laser auxiliaire peut aider à éviter ce défaut en diminuant la contrainte de traction maximale. Le mode de fonctionnement de ce laser auxiliaire reste un sujet intéressant à étudier et quelques pistes ont été données par les simulations présentées. Le modèle est validé par la comparaison de la forme du bain liquide avec des expériences dans différentes conditions de procédé. Les simulations peuvent également révéler la tendance de variation de la surface du cordon dans certains cas. Par la simulation de la déposition de cordons multiples, l'influence de taux de recouvrement sur la surface d'une couche, la température et l'évolution de contrainte est soulignée. / The application of SLM process is limited by the difficulty of process control. Its application to ceramics is especially challengeable due to their weak absorption to laser and weak resistance to thermal shock. The mastery of this process requires a full understanding of heat transfer, fluid dynamics in melt pool and solid mechanics. In this work, we propose a numerical model for the simulation of SLM process applied to ceramics. The model is developed at the track scale and with the assumption of continuous powder bed. It is based on level set method and multiphase homogenization, with which we are able to follow the evolution of gas/material interface and phase transformation. Simulations are performed to study the influence of material properties and process parameters on temperature, melt pool shape, fluid dynamics and solid mechanics. Apart from the laser power and scanning speed, material absorption is also found to be important to the thermal behavior and the melt pool shape. With the fluid dynamics, convex shape of track cross section is achieved under surface tension. Besides that, liquid droplets collapsing formed by the melting of powder create melt pool instability when falling, thus leading to track irregularity after solidification. The Marangoni effect, caused by surface tension gradient at gas/material interface, is investigated. Its influence on temperature distribution, melt pool shape and track regularity is recognized. One interesting finding is the smoothing effect of track surface with negative ∂γ/∂T. When combine surface tension with scanning speed, track surface becomes more irregular with the increase of scanning speed. The well-known balling effect is reproduced with high scanning speed. This can be helpful to find the regime for regular track shape with given laser power and scanning speed. Cracking defect is deleterious in additive manufacturing. The use of an auxiliary laser can help to avoid this defect by decreasing the maximum tensile stress. The process mode of this auxiliary laser remains an interesting subject to be studied and some guidelines have been given by the presented simulations. The model is validated by the comparison of melt pool shape with experiments under different process conditions. Simulations can also reveal the tendency of track surface variation for certain cases. By the application to multi-track deposition, the influence of hatch distance on layer surface, temperature and stress evolution is emphasized.
|
Page generated in 0.0381 seconds