• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 9
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 60
  • 23
  • 13
  • 13
  • 11
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The proof of Fermat's last theorem

Trad, Mohamad 01 January 2000 (has links)
Fermat, Pierre de, is perhaps the most famous number theorist who ever lived. Fermat's Last Theorem states that the equation xn + yn = zn has no non-zero integer solutions for x, y and z when n>2.
32

Associative property on the group of elliptic curves

Pérez Avellaneda, Iván 08 November 2017 (has links)
La conjetura de Fermat fue uno de los acertijos matemáticos más misteriosos hasta 1995. El problema fue formulado en 1637 por Pierre de Fermat. Él afirmó saber cómo resolverlo, sin embargo, no podía mostrar la prueba debido a que el espacio en el margen de su copia de Arithmetica de Diofanto era insuficiente. Desde entonces mucho misticismo rodeó a la conjetura. Mientras tanto, independientemente, nuevas ramas de las matemáticas se desarrollaban. La geometría algebraica y el análisis complejo permitieron a Andrew Wiles resolver finalmente la conjetura. La solución involucra, entre otras herramientas, el uso de curvas elípticas. Esto es suficiente motivo para estudiarlas. En líneas generales las curvas elípticas son polinomios cúbicos no singulares en dos variables con un punto especial de coordenadas racionales en los que podemos establecer una estructura de grupo. Para manipular las operaciones cómodamente transformamos la ecuación de la curva elíptica en una más apropiada con menos términos. Para lograr esto exploramos los aspectos fundamentales de los espacios proyectivos que facilitarían la transición. Como ya es conocido, existen casos en las matemáticas en los que hay un intercambio entre simpleza y elegancia. Uno debe profundizar un poco para alcanzar la estética. Nuestro objetivo es probar la propiedad de asociatividad del grupo en las curvas elípticas por medio del grupo de Picard de una variedad algebraica asociada. Esto provee una prueba alternativa de dicha propiedad y reemplaza los cálculos engorrosos de la prueba directa que usa solo la definición de la operación del grupo. Para lograr esto desarrollamos la teoría de divisores. Esto nos conduce al estudio de funciones racionales sobre las curvas y de este modo nos enfrentamos a uno de los resultados más importantes de la geometría algebraica: el teorema de Riemann-Roch. Basados en esto probamos que las curvas elípticas sobre los cuerpos de característica cero tienen genero uno. Finalmente definimos el grupo de Picard. Este grupo mide el grado de cuánto del conjunto de divisores no tiene origen en las funciones racionales. Luego establecemos un homomorfismo entre este grupo y la curva elíptica: esta es en una manera elaborada de afirmar que la asociatividad de una estructura se preserva en la otra. / The Fermat conjecture was one of the most mysterious puzzles of mathematics until 1995. The problem was formulated in 1637 by Pierre de Fermat. He claimed that he knew how to solve it, but was however unable to exhibit the proof because of the lack of space on the margin of his copy of Diophantus's Arithmetica. Since then a lot of mysticism surrounded the conjecture. Meanwhile, independently, new branches of mathematics were developed. Algebraic geometry and complex analysis allowed Andrew Wiles to finally solve the conjecture. The solution involves, among other tools, the use of elliptic curves. That is enough reason for their study. Roughly speaking elliptic curves are non-singular cubic polynomials in two variables with a special point of rational coordinates where a group structure can be set. In order to handle computations comfortably we transform the equation of the elliptic curve into an appropriate one with fewer terms. To achieve this goal we explore fundamental aspects of projective spaces which facilitate the transition. As it is known, in some cases there is a trade-o_ in mathematics between simplicity and elegance. One must dig a little deep to reach aesthetics. We aim to prove the associativity law of the group on elliptic curves by means of the Picard group of an associated algebraic variety. This provides an alternative proof of the property and replaces the usual burdensome computations of the straight proof by definition of the group operation. In order to achieve this, we develop the theory of divisors. This leads us to the study of rational functions on curves, and thus face one of the crucial results of algebraic geometry: the Riemann-Roch theorem. Based on this we prove that elliptic curves over fields of characteristic zero have genus one. Finally we define the Picard group. This group measures the extent of how much of the set of divisors fails to have its origin on rational functions. Then we establish a homomorphism between this group and the elliptic curve: this yields a fancy way of saying that associativy of one structure is preserved in the other.
33

The Stickelberger ideal in the spirit of Kummer with application to the first case of Fermat's last theorem /

Jha, Vijay. January 1993 (has links)
Thesis (Ph. D.)--Punjab University, 1992. / Includes bibliographical references (p. 174-181).
34

Algoritmos de aproximação de raízes quadradas

CAMPOS, Danilo Albuquerque de 22 August 2014 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-28T15:03:54Z No. of bitstreams: 1 Danilo Albuquerque de Campos.pdf: 453917 bytes, checksum: 1b07ec11128857b2e96af37543e335fe (MD5) / Made available in DSpace on 2017-03-28T15:03:55Z (GMT). No. of bitstreams: 1 Danilo Albuquerque de Campos.pdf: 453917 bytes, checksum: 1b07ec11128857b2e96af37543e335fe (MD5) Previous issue date: 2014-08-22 / In this work we are interested in showing three algorithms rational approximation of square roots by methods unknown or underutilized by teachers of elementary and secondary education. We begin by defining numerical sequence and convergence of sequences, will discuss the need to expand the concept of rational number and demonstrate the irrationality of the diagonal of a square. Prove an important theorem known in the literature as Dirichlet’s theorem and finally elencaremos three methods of approximating the square roots of natural non-perfect square numbers, very simple to be worked on in the classroom that are rational algorithm aproximção of Hiero of Alexandria, Theon’s Ladder and the Pell-Fermat equation, sende latter discursão fundamental to who will perform on the relationship of the three methods presented. / Neste trabalho estamos interessados em mostrar três algoritmos de aproximação racional de raízes quadradas por métodos pouco utilizados ou desconhecidos pelos professores do ensino fundamental e médio. Iniciaremos definindo sequência numérica e convergência de sequências, discutiremos sobre a necessidade de ampliação do conceito de número racional e demonstraremos a irracionalidade da diagonal de um quadrado. Provaremos um importante Teorema conhecido na literatura como o Teorema de Dirichlet, e por fim elencaremos três métodos de aproximação de raízes quadradas de números naturais não quadrados perfeitos, muito simples de serem trabalhados em sala de aula que são: O algoritmo de aproximação racional de Hierão de Alexandria, A escada de Theon e a Equação de Pell-Fermat, sendo este último fundamental para discussão que iremos realizar sobre a relação dos três métodos apresentados.
35

Pontos notáveis do triângulo: quantos você conhece?

Magalhães, Elton Jones da Silva 12 April 2013 (has links)
This thesis aims to show that the notable points of the triangles are not limited to Incentro, circumcenter, Baricentro and Orthocenter which are the best known. In fact, the Encyclopedia of Triangle Centers (ETC), see [5], features over five thousand notable points. Are points with several interesting properties as we will see throughout this work. In addition to the points already mentioned will also present the points of Feuerbach, the Lemoine point, the point Gergonne, the Nagel point, the Spieker point and the points of Fermat. Will be also presented some important theorems, among them we highlight the Ceva theorem that will be used to prove the existence of several points mentioned. We realize that it is a matter of understanding that can be easily inserted into the basic education. / A presente dissertação tem como objetivo mostrar que os pontos notáveis dos triângulos não se resumem ao Incentro, Circuncentro, Baricentro e ao Ortocentro que são os mais conhecidos. Na verdade, a Encyclopedia of Triangle Centers (ETC), ver [5], apresenta mais de cinco mil pontos notáveis. São pontos com várias propriedades interessantes como veremos ao longo deste trabalho. Além dos pontos já citados apresentaremos também os pontos de Feuerbach, o ponto de Lemoine, o ponto de Gergonne, o ponto de Nagel, o ponto de Spieker e os pontos de Fermat. Serão apresentados também alguns teoremas importantes, entre eles podemos destacar o Teorema de Ceva que será usado para provar a existência de vários pontos citados. Podemos perceber que é um assunto de fácil compreensão que pode ser inserido no ensino básico.
36

Números primos: pequenos tópicos / Prime numbers: small topics

Carvalho, Glauber Cristo Alves de 15 March 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-23T12:34:52Z No. of bitstreams: 2 Dissertação - Glauber Cristo Alves de Carvalho - 2013.pdf: 2320575 bytes, checksum: 5671a75a3a3b2b110d7431a79726479c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-23T12:38:41Z (GMT) No. of bitstreams: 2 Dissertação - Glauber Cristo Alves de Carvalho - 2013.pdf: 2320575 bytes, checksum: 5671a75a3a3b2b110d7431a79726479c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-10-23T12:38:41Z (GMT). No. of bitstreams: 2 Dissertação - Glauber Cristo Alves de Carvalho - 2013.pdf: 2320575 bytes, checksum: 5671a75a3a3b2b110d7431a79726479c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper presents a brief history about the numbers. After some important definitions to understand the texts. Following, we encounter the world of prime numbers. This part is presented some important properties, findings and open problems. The study of these figures have managed to find some formulas to generate them, which are presented throughout the text. It presents some numbers especias such as Fermat primes, Mersene, Shopie German and others. Finally, we have an application that uses many properties presented. / Neste trabalho é apresentado um breve histórico sobre os números. Após, algumas definições importantes para compreensão dos textos. Seguindo, nos deparamos com o universo dos números primos. Nesta parte é apresentado algumas propriedades importantes, descobertas e problemas em aberto. O estudo sobre estes números já conseguiu encontrar algumas fórmulas para gerá-los, que são apresentadas no decorrer do texto. Apresenta-se alguns números especias, como os primos de Fermat, Mersene, Shopie German e outros. Por fim, temos uma aplicação que utiliza muitas propriedades apresentadas.
37

Coordenadas baricêntricas e aplicações

Kapitanovas, Regis January 2013 (has links)
Orientador: Marcio Fabiano da Silva / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Mestrado Profissional em Matemática em Rede Nacional - PROFMAT, 2013
38

Spécificités et potentialités de l'arithmétique élémentaire pour l'apprentissage du raisonnement mathématique.

Battie, Véronique 12 December 2003 (has links) (PDF)
A l'articulation entre analyse épistémologique et analyse didactique, notre recherche vise à identifier les potentialités de l'arithmétique pour l'apprentissage du raisonnement mathématique et à étudier l'écologie de celles-ci en classe de terminale scientifique où ce champ a été réintroduit depuis peu. L'analyse épistémologique s'est appuyée sur la distinction entre deux dimensions du raisonnement que nous avons qualifiées respectivement de dimension organisatrice et dimension opératoire. Elle s'est attachée à identifier les formes que prennent ces dimensions dans le cas particulier de l'arithmétique, à travers l'étude de nombreux exemples de preuves, et a mis en évidence les potentialités qui en résultent pour l'apprentissage du raisonnement mathématique. L'analyse didactique a conjugué l'étude de différents corpus : sujets du baccalauréat, brochures destinées aux enseignants, copies d'une épreuve d'entraînement au baccalauréat, transcriptions d'une séance de recherche en groupes en classe de terminale scientifique. A travers l'étude menée sur le versant institutionnel (sujets de baccalauréat, documents pour les enseignants), elle a montré une exploitation certaine mais limitée des potentialités identifiées a priori et mis en évidence certains ressorts de la réduction opérée. L'analyse de travaux d'élèves a, quant à elle, montré à la fois une créativité mathématique certaine des élèves mais aussi des difficultés de raisonnement indéniables et permis d'en préciser la nature. L'analyse didactique nous a conduit à mieux percevoir à la fois l'intérêt et les limites de l'étude épistémologique qui l'avait précédée.
39

Kai kurie skaičių teorijos uždaviniai / Several problems from number theory

Alkauskas, Giedrius 08 October 2009 (has links)
Daktaro disertacijoje sprendžiami trys uždaviniai. Pirmasis nagrinėja Minkovskio “klaustuko” funkcijos Stieltjes’o transformacijos (tai yra, šios funkcijos momentų generuojančios funkcijos, taip vadinamosios diadinės periodo funkcijos), analizines savybes ir jos išraišką uždara ar beveik uždara forma. Pagrindinis rezultatas teigia, kad diadinę periodo funkciją galima išreikšti racionaliųjų funkcijų su racionaliaisiais koeficientais konverguojančia eilute. Įrodyme naudojama kompleksinės dinamikos, analizinės grandininių trupmenų teorijos, kelių kompleksinių kintamųjų funkcijų teorijos technika. Antrasis uždavinys nagrinėja funkcines lygtis, susietas su norminėmis ir kitomis kelių kintamųjų formomis. Yra parodoma, kad šios funkcinės lygtys kartais turi kitų, netrivialiųjų sprendinių. Galiausiai, yra pateikiamas naujas mažosios Fermat teoremos įrodymas. / Doctoral thesis is devoted to investigation of three problems. The first one deals with the analytic properties and representation in closed or almost closed form of the Stieltjes tranform of the Minkowski question mark function (that is, the generating function of moments, the so called dyadic period function). The main result claims that the dyadic period function can be represented as a convergent series of rational functions with rational coefficients. In the proof the techniques from complex dynamics, analytic theory of continued fractions, the theory of several complex variables are being used. The second problem is dealing with functional equations associated with norm and other forms. It is shown that these functional equations sometimes have other solutions apart from the trivial ones. Finally, we present a new proof of Fermat’s little theorem.
40

Several problems from number theory / Kai kurie skaičių teorijos uždaviniai

Alkauskas, Giedrius 08 October 2009 (has links)
Doctoral thesis is devoted to investigation of three problems. The first one deals with the analytic properties and representation in closed or almost closed form of the Stieltjes tranform of the Minkowski question mark function (that is, the generating function of moments, the so called dyadic period function). The main result claims that the dyadic period function can be represented as a convergent series of rational functions with rational coefficients. In the proof the techniques from complex dynamics, analytic theory of continued fractions, the theory of several complex variables are being used. The second problem is dealing with functional equations associated with norm and other forms. It is shown that these functional equations sometimes have other solutions apart from the trivial ones. Finally, we present a new proof of Fermat’s little theorem. / Daktaro disertacijoje sprendžiami trys uždaviniai. Pirmasis nagrinėja Minkovskio “klaustuko” funkcijos Stieltjes’o transformacijos (tai yra, šios funkcijos momentų generuojančios funkcijos, taip vadinamosios diadinės periodo funkcijos), analizines savybes ir jos išraišką uždara ar beveik uždara forma. Pagrindinis rezultatas teigia, kad diadinę periodo funkciją galima išreikšti racionaliųjų funkcijų su racionaliaisiais koeficientais konverguojančia eilute. Įrodyme naudojama kompleksinės dinamikos, analizinės grandininių trupmenų teorijos, kelių kompleksinių kintamųjų funkcijų teorijos technika. Antrasis uždavinys nagrinėja funkcines lygtis, susietas su norminėmis ir kitomis kelių kintamųjų formomis. Yra parodoma, kad šios funkcinės lygtys kartais turi kitų, netrivialiųjų sprendinių. Galiausiai, yra pateikiamas naujas mažosios Fermat teoremos įrodymas.

Page generated in 0.0477 seconds