Spelling suggestions: "subject:"fermions."" "subject:"ermions.""
171 |
Effets d'une brisure de symétrie sur les stuctures électroniques d'URu2Si2 et de KTaO3 / Effects of a symmetry breaking on the electronic structure of URu2Si2 and KTaO3Bareille, Cédric 19 December 2013 (has links)
L’étude des symétries d’un système peut en révéler de nombreuses propriétés physiques. La brisure, spontanée ou non, d’une de ces symétries implique alors d’importantes conséquences sur le comportement du système. On le voit dans la description actuelle de la physique des particules, avec notamment la création de la masse, ou dans la physique des solides, domaine de cette thèse, avec l’apparition de phases aux propriétés diverses, comme le magnétisme ou la supraconductivité. Le présent travail étudie par spectroscopie de photoémission résolue en angle (ARPES) les effets d’une brisure de symétrie dans deux systèmes différents : le système de fermions lourds URu2Si2 et l’oxyde de métal de transition (TMO) KTaO3. Le cristal d’URu2Si2 passe d’une phase paramagnétique pour T>THO, sujette à la cohérence de Kondo, vers la phase dite d’ordre caché pour T<THO, avec THO ≈ 17.5 K, brisant potentiellement plusieurs symétries. Bien qu’il y a presque trente ans que cettetransition de phase fut mesurée expérimentalement, aucun modèle théorique n’a encore réussi à faire consensus dans la communauté. Malgré une caractérisation expérimentale désormais très poussé de ce système, des informations résolues en angle manquent cruellement pour la compréhension de cette mystérieuse phase. Ce travail de thèse utilise donc des installations ARPES pour mettre en évidence, entre autre, le gap d’ordre caché, d’une amplitude inférieure à 10 meV. Nous montrons que ces mesures s’accordent avec plusieurs travaux expérimentaux précédents. Finalement, nous trouvons de fortes similarités entre les dispersions mesurées et celles calculées par LSDA, soulignant toutefois la nécessité d’introduire une renormalisation importante des masses effectives. Ce résultat contraint fortement les futures modélisations du comportement électronique de l’URu2Si2, tranchant sur l’approche à adopter.Contrairement au dernier système, où nous étudions une transition de phase, dans le tantalate de potassium KTaO3, notre attention se porte sur la brisure de symétrie de translation provoquée par la surface (111). Faisant suite à des mesures de transport qui revélèrent l’existence d’un gaz d’électron bidimensionnel (2DEG) à l’interface d’une hétérostructure de deux TMOs isolants de bandes, notre groupe mesura, plus tard, des 2DEGs aux surfaces (001) nues de SrTiO3 et de KTaO3, par ARPES. C’est dans la continuité de ces résultats que se place le présent travail, avec le désir d’élargir les caractéristiques de ces 2DEGs. Ainsi, poussé par la prédiction théorique d’état au caractère topologique non-trivial, nous apportons l’évidence d’un 2DEG à la surface (111) de KTaO3. Nous modélisons ensuite avec succès sa dispersion particulière grâce à des calculs de liaisons fortes. Ce travail constitue une étape dans la possible mise en évidence d’états au caractère topologique non-trivial dans les TMOs. / Several physical properties of a system can be understood by looking at the symmetries involved. Breaking of a symmetry affects the behavior of the system, regardless ifit happens spontaneously or not. This is observed with the emergence of the mass inparticle physics models, or with the diverse phases arising in condensed matter systems,as magnetism or superconductivity. Using angle-resolved photoemission spectroscopy (ARPES), this work studies theeffects of a symmetry breaking for two different systems : the heavy fermion systemURu2Si2 and the transition metal oxide (TMO) KTaO3. In URu2Si2, a transition occurs from a paramagnetic phase at T>THO to the hiddenorder phase at T<THO, with THO ≈ 17.5 K. This new order potentially breaks several symmetries. Although this transition was measured almost thirty years back, usingelectrical transport, no theoretical model could yet bring a consensus in the community. Since then, various characterizations of this system have been realized, howevermomentum-resolved informations are still missing to help unravel this mystery. Thus,during this thesis, we used state-of-the-art ARPES setups to measure several gaps located at different points in the Brillouin zone, and with amplitudes below 10 meV. Someof them are related to the Kondo coherence, and one is the hidden order gap. We showthat these measurements are consistent with previous experimental works. Finally, weobserved that our measurements differ from LSDA calculations solely by a renormalization of the effective masses by, at least, a factor 10 close to the Fermi level. Taking intoaccount some interactions, such as electronic ones, could lead to a more accurate model.Our measurements provide the constraints for this possible modeling. Unlike the transition we just described, the symmetry breaking in potassium tantalate KTaO3 is not spontaneous. In this system, we look at the (111) surface, wherethe translation symmetry is broken. A metallic two-dimensional electron gas (2DEG)has been measured in 2004 by Ohtomo at the interface between two insulating TMOs :strontium titanate SrTiO3 and lanthanum aluminate LaAlO3. The possible electronicapplications of exotic properties in TMOs, resulting from the d orbitals, has brought anew wave of activity to this topic. Later, our group measured 2DEGs at the (001) baresurfaces of SrTiO3 and KTaO3. Following these results, we wished to tailor the characteristic of such 2DEGS. Led by the theoretical prediction of states with non-trivialtopological character, we are presenting the evidence of a 2DEG at the (111) surface ofKTaO3. We also discuss its dispersion and introduce a tight binding calculation modelsuccessfully. This work is a step towards the realization of non-trivial topological statesin transition metal oxides.
|
172 |
Aspects of higher-spin theory with fermions / Aspects des théories de spin élevé avec fermionsLucena Gomez, Gustavo 18 April 2014 (has links)
The present thesis is divided into three parts. In Part I we address a problem within Higher-Spin Gauge Theory in dimension three: namely, that of computing the asymptotic symmetry algebra of supersymmetric models, describing an infinite spectrum of integer and half-integer higher-spin fields. In Part II we investigate higher-spin theories in dimension four or greater, where we classify the consistent cross interactions between free gauge fermions of arbitrary spin and a photon or a graviton. A third part supplements the bulk of the manuscript with technical appendices. <p><p>Part I is concerned with the Higher-Spin Theory extending the anti-de Sitter orthosymplectic Supergravity in three dimensions. After recalling the construction of the latter we exhibit the structure of the former, and then explain how to generalize the boundary conditions for Supergravity to the higher-spin case. Following the usual procedure, we compute the form of the residual gauge parameter and then identify the Poisson-bracket algebra governing the asymptotic dynamics. It is found to be a nonlinear, supersymmetric algebra of the W-infinity type with same central charge as pure Gravity in the Virasoro sector, which is a subalgebra thereof. The simply supersymmetric case is treated explicitly whereas the details of the extended cases are relegated to the appendices. <p><p>Part II deals with the interaction problem for gauge fermions coupled to Electromagnetism and Gravity in flat spacetime of arbitrary dimension. First we recall the so-called BRST-Antifield techniques, which reformulate the deformation problem as a cohomological one, recasting the familiar Noether procedure for finding out interactions in a mathematically systematic way. We then use these methods to classify and obtain expressions for the gauge-invariant cubic couplings between a symmetric tensor-spinor and a spin-1 and spin-2 gauge field. With no input from previous works, we find the complete list of interaction terms with minimal assumptions and in particular shed light on the quartic obstructions to full consistency. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
173 |
Kitaev Honeycomb ModelZschocke, Fabian 12 July 2016 (has links) (PDF)
Eine Vielzahl von interessanten Phänomenen entsteht durch die quantenmechanischeWechselwirkung einer großen Zahl von Teilchen. In den meisten Fällen ist die Beschreibung der relevanten physikalischen Eigenschaften extrem schwierig, da die Komplexität des Systems exponentiell mit der Anzahl der wechselwirkenden Teilchen anwächst und das Lösen der zugrunde liegenden Schrödingergleichung unmöglich macht. Trotzdem gab es in der Geschichte der Festkörperphysik eine Reihe von bahnbrechenden Entdeckungen, die unser Verständnis von komplexen Phänomenen deutlich voran gebracht haben. Dazu zählt die Entwicklung der Landau’schen Theorie der Fermiflüssigkeit, der BCS-Theorie der Supraleitung, der Theorie der Supraflüssigkeit und der Theorie des fraktionalen Quanten-Hall-Effekts. In all diesen Fällen ist ein theoretisches Verständnis mithilfe sogenannter Quasiteilchen gelungen. Anstatt ein komplexes Phänomen durch das Verhalten von fundamentalen Teilchen wie der Elektronen zu erklären, ist es möglich, die entsprechenden Eigenschaften durch das simple Verhalten von Quasiteilchen zu beschreiben, die allein auf Grund der komplexen kollektiven Wechselwirkung entstehen.
Eines der seltenen Beispiele, bei dem ein stark korreliertes quantenmagnetisches Problem analytisch lösbar ist, ist das Kitaev Modell. Es beschreibt wechselwirkende Spins auf einem Sechseck-Gitter und zeichnet sich durch einen Spinflüssigkeits-Grundzustand aus. Auch hier gelang die Lösung mittels spezieller Quasiteilchen, den Majorana Fermionen. Experimentell ist es jedoch noch nicht gelungen eine Spinflüssigkeit eindeutig nachzuweisen, da diese sich gerade durch das Fehlen jeglicher klassischer Ordnung und üblicher experimenteller Kenngrößen auszeichnet. Dagegen kann die Beobachtung von Quasiteilchenanregungen einen Hinweis auf den zugrunde liegenden Zustand liefern. Aber auch der definitive Nachweis von Majorana Fermionen in jeglicher Art System, bleibt ein ausstehendes Ziel in der modernen Festkörperphysik. Diese Arbeit befasst sich daher mit der Frage, wie solche Quasiteilchen experimentell sichtbar gemacht werden könnten. Dazu untersuchen wir den Einfluss von Unordnung auf die Zustände und Messgrößen des Kitaev Modells. Dies ist in zweierlei Hinsicht relevant. Einerseits ist Unordnung in der Natur allgegenwärtig, andererseits kann sie auch strategisch herbeigeführt werden, um die Reaktion eines System gezielt zu testen. Das zentrale Ergebnis dieser Arbeit ist, dass den Majorana Fermionen dabei in der Tat eine physikalische, messbare Bedeutung zukommt.
Die Arbeit beginnt mit einer Einführung in frustrierte quantenmagnetische Systeme und Spinflüssigkeiten und diskutiert einige Effekte, die durch Gitterverzerrungen oder Verunreinigungen entstehen können. Anschließend zeigen wir, wie sich durch die frustrierte Wechselwirkung im Kitaev Modell ein Spinflüssigkeits-Grundzustand herausbildet. Die analytische Lösung des Modells gelingt mit Hilfe von Majorana Fermionen, jedoch verdoppelt sich der Hilbertraum pro Spin durch die Einführung dieser Quasiteilchen. Ein zentraler Aspekt dieser Arbeit ist daher die richtige Auswahl der „physikalischen“ Zustände, also solcher, die einem Zustand im ursprünglichen Spin Modell entsprechen. Dabei unterscheiden wir zwischen offenen und periodischen Randbedingungen. Wir konnten beweisen, dass sich, in der Phase ohne Bandlücke und für periodische Systeme, stets ein angeregtes Fermion befindet. Dies führt zu großen Effekten in endlichen Systemen, wie wir anhand der Suszeptibilität und der Anregungslücke für magnetische Flüsse zeigen. Außerdem berechnen wir numerisch die statische und dynamische Suszeptibilität abhängig von der Unordnung in der Wechselwirkungsstärke.
Diese Art der Unordnung entsteht beispielsweise durch unregelmäßige Gitterstrukturen oder chemische Verunreinigungen auf den nicht-magnetischen Gitterplätzen. Insbesondere ergibt die Verteilung der lokalen Suszeptibilitäten das Linienspektrum, welches sich in Kernspinresonanz Experimenten messen lässt. Für große Unordnung postulieren wir einen Übergang zu einem Zustand mit einer zufälligen Verteilung magnetischer Flüsse. Ein weiterer Kern der Dissertation ist die Untersuchung eines magnetischen Defekts im Kitaev Modell. Diese Situation beschreibt den ungewöhnlichen Fall eines Kondoeffekts in einer Spinflüssigkeit. In der Majorana Fermionen Darstellung gelingt es uns, das Problem in eine Form zu bringen, die mit Hilfe von Wilson’s numerischer Renormalisierungsgruppe untersucht werden kann. Es zeigt sich, dass dadurch eine Nullpunktsentropie des Defekts entsteht, die durch lokalisierte Majorana Fermionen erklärt werden kann.
Durch die Darstellung des Kitaev Modells mithilfe von Quasiteilchen ist es möglich eine elegante Beschreibung eines komplexen, stark wechselwirkenden Systems zu finden. Die Ergebnisse dieser Arbeit zeigen, dass den Majorana Fermionen dabei durchaus eine physikalische Bedeutung zukommt. Gelingt es sie z.B. durch magnetische Störstellen zu lokalisieren, wäre ein direkter experimenteller Nachweis möglich. / Many interesting phenomena in quantum physics arise through the quantum mechanical interaction of a large number of particles. In most cases describing the relevant physical properties is extremely difficult, because the complexity of the system increases exponentially with the number of interacting particles and solving the underlying Schrödinger equation becomes impossible. Nevertheless, our understanding of complex phenomena has progressed through some groundbreaking discoveries in the history of condensed matter physics. Examples include the development of Landau’s theory of Fermi liquids, the BCStheory of superconductivity, the theory of superfluidity and the theory of the fractional quantum Hall effect. In all these cases a theoretical understanding was achieved with so-called quasi-particles. Instead of explaining a phenomenon through the behavior of fundamental particles, such as electrons, the corresponding properties can be described by the simple behavior of quasi-particles, which are themselves a result of the complex collective interaction.
One of the rare examples, where a strongly correlated quantum mechanical problem can be solved analytical, is the Kitaev model. It describes interacting spins on a honeycomb lattice and exhibits a spin liquid ground state. Here the solution was achieved by means of certain quasi-particles, called Majorana fermions. However, it has not been possible to clearly identify such a spin liquid experimentally, because its defining feature is the absence of any conventional order, in particular magnetic order. In contrast, the observation of quasiparticle excitations may hint at the nature of the ground state. But also a definite detection of Majorana fermions in any kind of system remains one of the outstanding issues in modern condensed matter physics. Therefore this thesis is devoted to the question how such quasiparticles may be found experimentally. For this reason we study the influence of disorder on the states and observables of the Kitaev model. This is relevant in two respects: Firstly, disorder is ubiquitous in nature and secondly, it may be used strategically to probe the response of a system. The central result of this work is that Majorana fermions hereby indeed obtain a true physical and observable significance.
The thesis starts with an introduction of frustrated quantum mechanical systems and spin liquids, and discusses some of the effects that arise through lattice distortions or impurities. Afterwards we show how the frustrated interactions in the Kitaev model lead to a spin liquid ground state. The analytical solution of the model is achieved through the introduction of Majorana fermions. However, resulting from the introduction of these quasi-particles the Hilbert space per spin doubles. A central aspect of this thesis is therefore the right selection of the “physical” states, which correspond to a state of the original spin Hamiltonian. To do this, we distinguish between periodic and open boundary conditions explicitly. We were able to prove that there is always one excited fermion in the gapless phase of the periodic system. This leads to large finite-size effects, as we will illustrate for the susceptibility and the magnetic flux gap. Moreover we compute the static and dynamic spin susceptibilities for finite-size systems subject to disorder in the exchange couplings. In a possible experimental realization, this kind of disorder arises from lattice distortions or chemical disorder on nonmagnetic sites. Specifically, we calculate the distribution of local susceptibilities and extract the lineshape, which can be measured in nuclear-magnetic-resonance experiments. Further, for increasing disorder we predict a transition to a random-flux state.
Another core of this dissertation is the investigation of a magnetic impurity in the Kitaev model. This setup represents the unusual case of a Kondo effect in a quantum spin liquid. Utilizing the Majorana representation we are able to formulate the problem in a way that can be analyzed using Wilson’s numerical renormalization group. The numerics reveal an impurity entropy which can be explained by localized Majorana fermions. Through the representation of the Kitaev model in terms of quasi-particles an elegant description of a complex, strongly correlated system is possible. The results of this thesis indicate that these Majorana acquire a relevant physical meaning. If one can localize them, for example with the help of magnetic impurities, a direct experimental observation would be feasible.
|
174 |
Coulomb drag, mesoscopic physics, and electron-electron interactionPrice, Adam Scott January 2008 (has links)
The first part of this thesis deals with the study of mesoscopic fluctuations of the Coulomb drag resistance in double-layer GaAs/AlGaAs heterostructures, both in weak magnetic fields and strong magnetic fields. In the second part, measurements are made in a monolayer graphene structure, specifically of the quantum lifetime, and the mesoscopic resistance fluctuations at quantising magnetic fields.
|
175 |
Exotic order in magnetic systems from Majorana fermionsBennett, Edmund January 2016 (has links)
This thesis explores the theoretical representation of localised electrons in magnetic systems, using Majorana fermions. A motivation is provided for the Majorana fermion representation, which is then developed and applied as a mean-field theory and in the path-integral formalism to the Ising model in transversal-field (TFIM) in one, two and three dimensions, on an orthonormal lattice. In one dimension the development of domain walls precludes long-range order in discrete systems; this is as free energy savings due to entropy outweigh the energetic cost of a domain wall. An argument due to Peierls exists in 2D which allows the formation of domains of ordered spins amidst a disordered background, however, which may be extended to 3D. The forms of the couplings to the bosons used in the Random Phase Analysis (RPA) are considered and an explanation for the non-existence of the phases calculated in this thesis is discussed, in terms of spare degrees of freedom in the Majorana representation. This thesis contains the first known application of Majorana fermions at the RPA level.
|
176 |
Implications of physics beyond the Standard Model in the quark and lepton sectorsRasmussen, Rasmus Westphal 22 May 2018 (has links)
Das Standardmodell (SM) der Teilchenphysik hat sich in der Praxis als vielseitige Theorie bewährt, dennoch deuten nichtverschwindende Neutrinomassen, dunkle Materie und Baryonenasymmetrie auf Physik jenseits des SM (BSM) hin. Um also ein mit den Beobachtungen konsistentes Modell zu entwickeln, ist eine umfassendere Theorie nötig. Experimentell kann entweder in Abweichungen von den Vorhersagen des SM nach neuer Physik gesucht werden. So kann jedes BSM-Szenario getestet werden.
In dieser Arbeit werden BSM-Szenarien im Quark- sowie im Leptonen-Sektor und deren phänomenologische Konsequenzen auf messbare Observablen betrachtet. Ein konkretes Beispiel in dieser Dissertation sind Neutrino massen modellierung mit der Einführung von sterilen Neutrinos. Wir untersuchen die phänomenologische Konsequenz ihrer Einführung auf verschiedenen Massenskalen im Zusammenhang mit symmetriegenerierten oder strukturlosen Neutrinomassenmodellen. Unter den geschmacksabhängigen aktivsterilen Mischungen in den durch Symmetrie erzeugten Massenmodellen finden wir deutliche Hierarchien, die als Modelldiskriminator für zukünftige Experimente dienen.
Ähnlich wie beim Ausnutzen von Symmetrien im Neutrinosektor, kann man Symmetrien auch in Modellen für Quarkmassen nutzen. In dieser Arbeit werden Symmetrien behandelt, die den Cabibbo-Winkel für Quarkmischung in führender Ordnung quantisieren können. Dies führt zu einer Vielzahl möglicher Symmetrien, welche genutzt werden können um spezifische Modelle für Quarkmassen zu entwickeln.
BSM-Physik indirekt mit Hilfe astrophysikalischer Neutrinos zu testen stellt eine Alternative zur direkten Detektion dar, und führt bei Betrachtung der Zusammensetzung des NeutrinoFlavours zu klaren Abweichungen von den Erwartungen. Neben der Behandlung verschiedenster BSM-Szenarien wird auch das Potenzial zukünftiger Experimente betrachtet, vor Allem im Hinblick auf deren Effektivität Physik jense. / The Standard Model (SM) of particle physics is a well-tested and predictive theory, however non-zero neutrino masses, the existence of dark matter, and the baryon asymmetry suggest physics beyond the SM. Thus, in order to have a model consistent with observations, a more complete theory is needed. Experimentally, one can search for new physics, thereby differentiate different BSM scenarios.
We consider BSM scenarios in the quark and lepton sectors, and study their phenomenological consequence on measurable observables. A specific example is neutrino mass modeling with the introduction of sterile neutrinos. We study the phenomenological consequence of introducing them at different mass scales in the context of symmetry-generated or structureless neutrino mass models. We find distinct hierarchies among the flavor-dependent active-sterile mixings in the symmetry-generated mass models, which acts as a model discriminator for future experiments.
Similarly as using symmetries in the neutrino sector, one can also use symmetries in quark mass models. This thesis consider symmetries capable of quantizing the Cabibbo quark mixing angle to leading order. As a result, a variety of possible symmetries are obtained, which can be used to build specific quark mass models.
Probing BSM physics indirectly via astrophysical neutrinos, acts as an alternative to direct detection, and using the neutrino flavor composition as observable, BSM physics leads to clear deviations from expectation. Additional information comes from other effects, and it helps in constraining the parameter space further. Beside discussing different BSM scenarios, we illustrate the potential of future experiments, emphasizing their effectiveness to test and discriminate BSM physics.
|
177 |
Espalhamento de Férmions sob Influencia da Violação de Lorentz no Setor Fotônico / Scattering of Fermions under Influence of Violation Lorentz Sector PhotonicSantos, Frederico Elias Passos dos 15 December 2010 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-07T18:34:00Z
No. of bitstreams: 1
FredericoSantos.pdf: 963672 bytes, checksum: 82f7ae1b28b9c136b94c6c04439b8c32 (MD5) / Made available in DSpace on 2017-06-07T18:34:00Z (GMT). No. of bitstreams: 1
FredericoSantos.pdf: 963672 bytes, checksum: 82f7ae1b28b9c136b94c6c04439b8c32 (MD5)
Previous issue date: 2010-12-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) / The standard model extension is a theoretical framework which includes the possibility of Lorentz symmetry violation in the Standard Model of elementary interactions. In electrodynamics, this possibility is represented by the term, Kμν∝βFμνF∝β , that violates Lorentz symmetry without jeopardizing CPT symmetry, and the term ε∝μβνV∝Aμ∂βAν, which violates Lorentz and CPT symmetries. These additional terms are inserted in the Maxwell Lagrangena and alter the field equations, as well. In this work we study the influence of Lorentz violation in the photonic sector on fermion scattering processes, regarding individually the CPT-odd and CPT-even coefficients. At first, we present a review through some topics of great interest, as the Dirac equation, Dirac propagator, scattering matrix, Feynman rules, Casimir trick, and the evaluation of the differential cross sections. Next, we implemented the developed techniques to carry out the corrections (to the cross sections) induced by the Lorentz-violating terms. Our results reveal as each Lorentz-violating component changes the cross section. In the CPT-even case, we observed that the contribution of the term tr to the process e− + μ− → e− + μ− is of difficult detection once it can be disguised between the radioactive corrections. The contributions coming from the vector i imply an angular dependence in the differential cross section of the process e− + μ− → e− + μ−, and do not contribute for the process e− + e+ → μ− + μ+. The CPT-even coefficients, (Ke−)ij , lead to significant contributions in both cases. We highlight its influence in the pair electron-positron annihilation process, where they act as the only components that imply sensitive contributions. The contribution stemming from the CPT-odd sector, represented by the Carroll-Field-Jackiw term, is of less relevance, since the contribute are second order ones. Although we have initially developed a perturbative procedure for evaluating the cross section correction, it was also possible to evaluate the exact propagators of the CPT-odd and CPT-even sectors in a tensor closed form. Such tensor expressions may be used to rederive the cross section corrections. / O Modelo Padrão Estendido (MPE)é um arcabouço teórico que considera a possibilidade de violação de simetria de Lorentz no Modelo Padrão das interações elementares. Na eletrodinâmica, esta possibilidade é representada pelo termo Kμν∝βFμνF∝β , que viola a simetria de Lorentz sem violar a simetria CPT, e o termo ε∝μβνV∝Aμ∂βAν, que viola a simetria de Lorentz, juntamente com a simetria CPT. Estes termos extras são incluídos na lagrangena de Maxwell e, consequentemente, também alteram a equação de movimento dos campos. Neste trabalho consideramos a influência da violação de Lorentz no setor fotônico em processos de espalhamento de férmions, e− + μ− ! e− + μ− e e− + e+ ! μ− + μ+, considerando individualmente o setor CPT-ímpar e CPT-par em suas componentes não-birrefringentes. No primeiro momento, apresentamos uma revisão de tópicos de interesse, passando pela equação de Dirac, propagador de Dirac, matriz de espalhamento, regras de Feynman, truque de Casimir, finalizando com o cálculo das seções de choque diferenciais para processos elementares. Em seguida, implementamos as técnicas desenvolvidas para calcular o incremento à seção de choque, oriundo da violação de simetria de Lorentz no setor fotônico. Em nossos resultados, obtivemos como cada componente de violação de Lorentz altera a seção de choque. No caso CPT-par, observamos que a contribuição do termo Kir ao processo e− + e+ → μ− + μ+ é de difícil verificação, pois se confunde com as contribuições radioativas. Já as contribuições advindas do vetor Ki, inserem uma dependência angular na seção de choque diferencial do processo e− + μ− → e− + μ−, mas não contribui no processo e− + e+ → μ− + μ+. Os coeficientes paridade-par, (Ke−)ij , implicam em contribuições relevantes em ambos os processos, e destacamos sua influência no processo de aniquilação elétron-pósitron, onde atuam como únicas componentes que contribuem de forma notável. A contribuição do setor CPT-ímpar (termo de Carroll-Field-Jackiw) é comparativamente de menor relevância, já que as contribuições à seção de choque aparecem apenas em segunda ordem. Embora tenhamos inicialmente desenvolvido um procedimento perturbativo para calcular as contribuições dos parâmetros de quebra de Lorentz à seção de choque, também foi possível obter os propagadores de Feynman exatos tanto para o setor CPT-ímpar quanto para o setor CPT-par. Tais expressões podem ser usadas para recalcular as seções de choque.
|
178 |
Férmions em QCD na rede / Fermions in lattice QCDViscardi, Leandro Alex Moreira 27 June 2019 (has links)
O presente trabalho propõe o estudo da cromodinâmica quântica (QCD) através de simulações numéricas da teoria na rede. Inicialmente será apresentada a formulação de integral de trajetória da mecânica quântica para em seguida generalizar os resultados para a teoria quântica de campos. A teoria na rede exigirá a discretização do espaço-tempo e mostraremos como colocar os graus de liberdade bosônicos e fermiônicos na rede. Usaremos a formulação de Wilson para a ação de glúons e férmions na rede. Simulações numéricas em QCD na rede envolvendo férmions são consideravelmente complicadas e têm um custo computacional altamente limitante. Mais precisamente, não é possível simular a estrutura do vácuo fermiônico sem algum tipo de aproximação. Neste trabalho usaremos a aproximação quenched da QCD, que consiste em negligenciar os efeitos de loops de quarks do vácuo. Também empregaremos apenas dois sabores de quarks degenerados, correspondendo às duas espécies de quarks leves presentes na teoria. Ao longo deste trabalho serão exploradas as dificuldades encontradas em colocar quarks na rede e também será determinado o espectro de hádrons como uma aplicação de interesse. Contudo, também estudaremos um problema simples envolvendo a teoria de gauge pura na rede, isto é, calcularemos o valor esperado para o operador plaqueta. Este estudo servirá como um pré aquecimento antes de lidar com o problema mais desafiador do espectro de hádrons e também permitirá aprender algumas técnicas de simulação que serão utilizadas na determinação do espectro de hádrons, a saber, o método de Monte Carlo e os algoritmos banho térmico e sobre-relaxação, que servem para construir configurações de gauge (glúons). A interpretação dos resultados obtidos deverá ser realizada a partir da análise estatística dos dados. Estimaremos o tempo de termalização do operador plaqueta a partir da visualização da equilibração do resultado e usaremos o método bloco de dados para estimar o tempo de correlação das configurações de gauge. Essas estimativas serão importantes para decidirmos os parâmetros de simulação adequados para o espectro de hádrons, pois neste caso não teremos acesso à quantidade suficiente de dados para determinar o valor desses parâmetros. Para a determinação de erros estatísticos será usado o método de jackknife. O cálculo do espectro de hádrons envolve a inversão de uma matriz esparsa não positiva definida, mais precisamente, o operador de Dirac. Esta será a parte que mais consumirá tempo nas simulações e usaremos o algoritmo gradiente biconjugado estabilizado (Bi-CGStab) para a inversão. A determinação da massa de hádrons somente será possível após a fixação da massa experimental de algum hádron (usaremos o píon), e após a extrapolação quiral dos resultados, que será realizada a partir do método dos mínimos quadrados não linear. Ao final deste trabalho obteremos uma estimava para a massa do próton e do méson rho. / This work proposes the study of quantum cromodynamics (QCD) through numerical simulations of the lattice theory. Initially we will present the path integral formulation of quantum mechanics and then generalize these results to quantum field theory. The lattice theory requires the discretization of space-time and we will show how to put the fermionic and gluonic degrees of freedom on the lattice. We will use Wilson’s formulation for the action of fermions and gluons. Numerical simulations in lattice QCD with fermions are considerably complicated and their cost is highly limiting. More precisely, it is not possible to simulate the fermionic structure of the vacuum without any kind of approximation. We will use the quenched approximation in this work, which consists of neglecting the effects of vacuum quark loops. We also will employ only two flavors of degenerate quarks corresponding to the two species of light quarks present in the theory. Throughout the work we will discuss the difficulties related to putting quarks on the lattice and we will evaluate the hadron spectrum as an application of interest. However, we also must study a simple problem involving the lattice pure-gauge theory, i.e., we will compute the mean value of the plaquette operator. This will be a warm-up study before dealing with the more challenging problem of the hadron spectrum and will allow us to learn some simulation techniques that will be used in the hadron spectrum determination, namely the Monte Carlo method and the heat bath and overrelaxation algorithms, which are useful to build gauge configurations (i.e. gluon configurations). The interpretation of the results obtained should be performed using statistical analysis of the data. We will estimate the thermalization time of the plaquette operator from the visualization of the equilibration result and will estimate the correlation time of gauge configurations using the data blocking method. These estimates are important to decide the suitable simulation parameters for the hadron spectrum, because in that case we will not have access to a quantity of data large enough to determine the value of these parameters. For the statistical error determination we will use the jackknife method. The calculation of the hadron spectrum involves the inversion of a non positive definite sparse matrix, more precisely, the Dirac operator. This will be the most time-consuming step of the simulation and we will use the Bi-Conjugate Gradient Stabilized (Bi-CGRStab) algorithm to do the inversion. The determination of hadron masses will only be possible after fixing an experimental mass of some hadron (we will use the pion), and after the quiral extrapolation of the results, which will be performed using the non-linear least square method. At the end of this work we will obtain an estimate of the mass of the proton and of the rho meson.
|
179 |
Superfluidité dans un gaz de fermions ultrafroidsTarruell, Leticia 30 June 2008 (has links) (PDF)
Ce mémoire de thèse est divisé en deux parties. La première est consacrée à l'étude de la superfluidité dans un gaz de fermions ultra-froids. En utilisant un gaz dégénéré de lithium 6 au voisinage d'une résonance de Feshbach nous avons obtenu un superfluide fermionique et étudié son évolution en fonction de l'énergie de liaison des paires. Afin de caractériser la transition BEC-BCS entre un condensat de Bose-Einstein de molécules et un état BCS de paires de Cooper faiblement liées, nous avons étudié l'expansion du nuage en absence ou en présence d'interactions. Nous avons ainsi extrait la distribution en impulsion du système et sondé son caractère hydrodynamique. La seconde partie concerne la conception et la réalisation d'un montage expérimental de seconde génération. Par rapport à l'ancien dispositif, ses principaux atouts sont un gain d'un ordre de grandeur sur le nombre d'atomes piégés, un bon accès optique, une grande stabilité et reproductibilité ainsi qu'un taux de répétition cinq fois supérieur. La nouvelle expérience a déjà permis d'atteindre le seuil de dégénérescence quantique du lithium 7 avec des performances très satisfaisantes et donne accès à la simulation de hamiltoniens de matière condensée avec des fermions ultra-froids.
|
180 |
Fermions et Bosons Dégénérés au Voisinage d'une Résonance de Feshbach : Production de Molécules et Solitons d'Ondes de MatièreCubizolles, Julien 22 June 2004 (has links) (PDF)
Ce mémoire de thèse présente les résultats d'expériences menées sur des gaz atomiques dégénérés de lithium bosonique 7Li et fermionique 6Li. L'état fondamental à N corps de ces gaz dépend de manière cruciale de l'interaction atomique dont on peut ajuster l'intensité et changer la nature, attractive ou répulsive en variant un champ magnétique autour d'une résonance de Feshbach. L'utilisation d'une telle résonance dans 7Li nous permet de produire le premier soliton d'ondes de matière. Il s'agit d'une fonction d'onde atomique unidimensionelle dans laquelle l'interaction attractive compense la dispersion naturelle : elle se propage donc sans déformation. Nous produisons un soliton à partir d'un condensat de Bose-Einstein de 7Li transféré dans un guide d'ondes optique unidimensionnel. Sa propagation caractéristique est observée sur une distance de plus d'un millimètre. Dans un gaz de fermions 6Li en interaction, une autre résonance de Feshbach est utilisée pour former très efficacement des molécules de 6Li2 ultra-froides piégées. De façon surprenante, ces dimères de fermions présentent une durée de vie considérablement plus longue que les dimères de bosons formés de manière similaire. C'est une conséquence du principe de Pauli. Cette grande stabilité nous permet de produire un condensat de Bose-Einstein pur de ces molécules bosoniques, qui réalise une des limites du superfluide fermionique.
|
Page generated in 0.0988 seconds