• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 65
  • 51
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 288
  • 115
  • 69
  • 46
  • 42
  • 40
  • 39
  • 39
  • 33
  • 31
  • 29
  • 26
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Superconductivity, Magnetism, Quantum Criticality, and Hidden Order in Quantum Materials

Kunwar, Dom Lal 05 July 2022 (has links)
No description available.
162

Scanning Tunneling Microscopy of Three Twisted Graphene Heterostructures and the Two-Dimensional Heavy Fermion Material CeSiI

Turkel, Simon Eli January 2023 (has links)
The exploration of physical extremes drives technological innovation. Recent decades have seen a push towards materials engineering at the absolute limit of space with electronic systems that are a single atom thick. When electrons are confined to two-dimensional structures, exotic and often unexpected phenomena emerge due to enhanced interaction effects and crystalline anisotropies. The study of such unconventional phenomena offers the opportunity to extend knowledge of fundamental physics with an eye towards advancing the state of the art in control over quantum matter. In this thesis we use scanning tunneling microscopy to study the electronic structure of a collection of novel two-dimensional materials: twisted double-bilayer graphene (TDBG), mirror symmetric twisted trilayer graphene (TTG), small angle twisted double trilayer graphene (TDTG), and the van der Waals heavy Fermion material CeSiI. In TDBG, we directly image spontaneous symmetry breaking of the electronic states as a function of carrier density and attribute this to an intrinsic nematic instability of the metallic Fermi liquid. In TTG, we find evidence for a novel form of lattice relaxation, in which twist angle disorder leads to the formation of moiré lattice defects that can act to lock trilayer devices into a magic angle configuration while strongly modulating the local electronic structure, with implications for the superconducting state. In TDTG, we discover yet another form of lattice relaxation in which a global transformation of the stacking structure creates a net energy reduction, even while the stacking energy density in roughly half of the moiré lattice rises. Lastly, we show through quasiparticle interference spectroscopy and theoretical modeling that CeSiI hosts a nodal hybridization between itinerant conduction electrons and a lattice of local moments, giving rise to a strong angular dependence of the heavy Fermion mass enhancement in this van der Waals material.
163

Spin Fluctuations and non-Fermi Liquid Behavior Close to a Quantum Critical Point in CeNi<sub>2</sub>Ge<sub>2</sub>

Zoghbi, Bilal 22 October 2009 (has links)
No description available.
164

Studies of the Ferromagnetic Superconductors URhGe and UCoGe

Williams, Travis J. 09 1900 (has links)
<p>This thesis comprises studies on two ferromagnetic superconductors, URhGe (Tcurie=9.SK and Tsc=2S0mK) and UCoGe (Tcurie=2.SK and Tsc=800mK). These properties are interesting because the current theory to explain superconductivity predicts that ferromagnetism should destroy superconductivity. Not only is that not true in these materials, but ferromagnetism and superconductivity are thought to arise from a common mechanism. The studies conducted on these materials arise from that possibility, in an attempt to understand the unconventional nature of these materials.<br />Original work is contained in chapters 4, Sand 6. All of this work is currently not published in sources other than this thesis. <br /> Chapter 1 will give an introduction to these materials, and the work that has been done on them by other groups, and work done on related materials. <br /> Chapter 2 will give details of the various experimental methods used in measuring the structure and properties of the materials studied. This work was conducted by the author at McMaster University, with the assistance of individuals from the Brockhouse Institute for Materials Research, and the Center for Electron Microscopy at McMaster University.<br /> Chapter 3 will provide an introduction to the technique of muon Spin Resonance/Relaxation (μSR). This work was done at the TRIUMF facility in Vancouver, British Columbia, with the assistance of several TRIUMF staff. The data was collected by the author, and other members of Dr. Luke's research group as well as collaborators from TRlUMF and from Columbia University. <br /> Chapter 4 will present the measurements made on UCoGe, while Chapter 5 presents the measurements of URhGe. Details of the crystal growth and structure characterization measurements are included in these chapters, along with resistivity, bulk magnetization and μSR measurements. <br /> Both zero- field (ZF) and transverse field (TF) μSR has been performed. This work focuses on studying the magnetic moment size, and the magnetic volume fraction around the ferromagnetic transition, and to temperatures as low as 20mK. Consideration is also given to the magnetic and superconducting properties in the low-temperature region. <br /> In the Introduction, URhGe is presented first, followed by UCoGe, since this was the order in which they were discovered. The results obtained from UCoGe are presented first, since work on that compound was started before the work on URhGe. <br /> Chapter 6 focuses on the conclusions drawn from this work, comparing the measurements of both materials.</p> / Master of Science (MS)
165

Fermions in Yang-Mills gauge theories: invariance, covariance and topology

Liang, Yigao January 1987 (has links)
I present a study on the invariance and covariance properties of the Dirac operator describing fermions in Yang-Mills fields. This includes the study of anomalies of the gauge currents. We are particularly interested in the geometric and topological features in the problem. The complicated topological structures and properties present in these theories are made clear by elementary calculations in several simple models. We show explicitly how non-trivial phase and sign ambiguities arise to give the so-called anomalies. The Atiyah-Singer index theorem is seen to be a very powerful tool to calculate the topological invariants that characterize the anomalies. The index theorem also gives topological invariants describing the failure of covariance of the fermion propagator. / Ph. D.
166

Exploring Heavy Fermion Physics in van der Waals Materials

Posey, Victoria January 2024 (has links)
First, I introduce the concept of heavy fermion systems and discuss the ease of tuning their properties with external parameters including pressure, chemical doping, and magnetic fields to induce new quantum states such as unconventional superconductivity. I then delve into the limited use of dimensionality as a tuning knob for quantum criticality and highlight the new possibilities available if heavy fermion behavior is discovered in the single-layer limit. Chapter 1 establishes the van der Waals material, CeSiI, as a heavy fermion system and is the first material where heavy fermion behavior exists down to the few-layer limit. The chapter further explores the bulk magnetic properties and electronic structure of CeSiI at high magnetic fields. The quasi-two-dimensional electronic character of CeSiI leads to anisotropic hybridization between local moments and conduction electrons, a phenomenon previously only realized in theoretical calculations. With the heavy fermion properties of CeSiI established, Chapter 2 investigates the effects of pressure and La-doping on CeSiI, aiming to push it from the antiferromagnetic region of the Doniach phase diagram towards a quantum critical point. Preliminary evidence suggests that CeSiI is too distant from quantum criticality. Instead, La-doping is utilized to explore single-ion Kondo physics at the dilute Ce limit in CeSiI. Additionally, CeGaI, with a crystal structure similar to CeSiI, is examined. Although no Kondo physics is observed, the magnetic and electronic properties remain coupled to each other. Chapter 3 delves into a separate project focusing on the study of polymers composed of perylene diimide and various organic linkers. It explores how the structure of the polymer influences its pseudocapacitance properties. The chapter demonstrates the significance of contortion in device performance, aiming to provide insights for future endeavors in developing environmentally friendly energy storage systems.
167

Algorithmic studies of compact lattice QED with Wilson fermions

Zverev, Nikolai 18 December 2001 (has links)
Wir untersuchen numerisch und teilweise analytisch die kompakte Quantenelektrodynamik auf dem Gitter mit Wilson-Fermionen. Dabei konzentrieren wir uns auf zwei wesentliche Teilprobleme der Theorie: der Einfluss von Eichfeld-Moden mit verschwindendem Impuls in der Coulomb-Phase und die Effizienz von verschiedenen Monte-Carlo-Algorithmen unter Berücksichtigung dynamischer Fermionen. Wir zeigen, dass der Einfluss der Null-Impuls-Moden auf die eichabhängigen Gitter-Observablen wie Photon- und Fermion-Korrelatoren nahe der kritischen chiralen Grenzlinie innerhalb der Coulomb Phase zu einem Verhalten führt, das vom naiv erwarteten gitterstörungstheoretischen Verhalten abweicht. Diese Moden sind auch für die Abschirmung des kritischen Verhaltens der eichinvarianten Fermion-Observablen nahe der chiralen Grenzlinie verantwortlich. Eine Entfernung dieser Null-Impuls-Moden aus den Eichfeld-Konfigurationen führt innerhalb der Coulomb-Phase zum störungstheoretisch erwarteten Verhalten der eichabhängigen Observablen. Die kritischen Eigenschaften der eichinvarianten Fermion-Observablen in der Coulomb-Phase werden nach dem Beseitigen der Null-Impuls-Moden sichtbar. Der kritische Hopping-Parameter, den man aus den invarianten Fermion-Observablen erhält, stimmt gut mit demjenigen überein, der aus den eichabhängigen Observablen extrahiert werden kann. Wir führen den zweistufigen Multiboson-Algorithmus für numerische Untersuchungen im U(1)-Gittermodell mit einer geraden Anzahl von dynamischen Fermion-Flavour-Freiheitsgraden ein. Wir diskutieren die geeignete Wahl der technischen Parameter sowohl für den zweistufigen Multiboson-Algorithmus als auch für den hybriden Monte-Carlo-Algorithmus. Wir geben theoretische Abschätzungen für die Effizienz dieser Simulationsmethoden. Wir zeigen numerisch und theoretisch, daß der zweistufige Multiboson-Algorithmus eine gute Alternative darstellt und zumindestens mit der hybriden Monte-Carlo-Methode konkurrieren kann. Wir argumentieren, daß eine weitere Verbesserung der Effizienz des zweistufigen Multiboson-Algorithmus durch eine Vergrößerung der Zahl lokaler Update-Schleifen und auch durch die Reduktion der Ordnungen der ersten und zweiten Polynome zu Lasten des sogenannten 'Reweighting' erzielt werden kann. / We investigate numerically and in part analytically the compact lattice quantum electrodynamics with Wilson fermions. We studied the following particular tasks of the theory: the problem of the zero-momentum gauge field modes in the Coulomb phase and the performance of different Monte Carlo algorithms in the presence of dynamical fermions. We show that the influence of the zero-momentum modes on the gauge dependent lattice observables like photon and fermion correlators within the Coulomb phase leads to a behaviour of these observables different from standard perturbation theory. These modes are responsible also for the screening of the critical behaviour of the gauge invariant fermion values near the chiral limit line. Within the Coulomb phase the elimination of these zero-momentum modes from gauge configurations leads to the perturbatively expected behaviour of gauge dependent observables. The critical properties of gauge invariant fermion observables upon removing the zero-momentum modes are restored. The critical hopping-parameter obtained from the invariant fermion observables coincides with that extracted from gauge dependent values. We implement the two-step multiboson algorithm for numerical investigations in the U(1) lattice model with even dynamical Wilson fermion flavours. We discuss the scheme of an appropriate choice of technical parameters for both two-step multiboson and hybrid Monte Carlo algorithms. We give the theoretical estimates of the performance of such simulation methods. We show both numerically and theoretically that the two-step multiboson algorithm is a good alternative and at least competitive with the hybrid Monte Carlo method. We argue that an improvement of efficiency of the two-step multiboson algorithm can be achieved by increasing the number of local update sweeps and also by decreasing the orders of first and second polynomials corrected for by the reweighting step.
168

Fermions lourds et métaux de Hund dans les supraconducteurs à base de fer / Heavy fermions and Hund's metals in iron-based superconductors

Villar Arribi, Pablo 03 December 2018 (has links)
Matériaux dans lesquels les électrons responsables des propriétés de basse énergie son soumis à fortes corrélations sont aujourd'hui très étudiés à la recherche de nouvelles phases émergentes aux propriétés surprenantes et/ou utiles.Les supraconducteurs à base de fer (IBSC) sont maintenant considérés dans cette classe de composés. En utilissant des techniques multi-corps nécessaires pour le traitement théorique de ces corrélations (théorie du champ moyen de spin esclave - SSMFT et théorie du champ moyen dynamique - DMFT - en conjonction avec la théorie du fonctionnelle de la densité, DFT), dans cette thèse, j'etudie plusieurs propriétés d'IBSC.D’abord, j'analyse les composés très dopés de la famille de IBSC, qui montrent expérimentalement certains comportements typiques des ``fermions lourds'', des composés typiquement des terres rares ou des actinides, où des électrons extrêmement corrélés coexistent avec des électrons moins corrélés. En particulier je me concentre sur la chaleur spécifique et le pouvoir thermoélectrique et je montre comment ces propriétés peuvent être comprises dans le paradigme récemment développé ``métaux de Hund''. En effet, l’échange intra-atomique (le ``couplage de Hund'') est responsable de ces matériaux à éléments métal de transition en montrant la physique des fermions lourds. Je montre aussi que les caractéristiques typiquement fermions-lourds du spectre d’excitation, connues car les singularités de Van Hove sont bien capturées par notre modélisation au sein de DFT+SSMFT. J'utilise ensuite DMFT dans un modèle afin d'étudier l'impact direct des singularités de Van Hove sur la force des corrélations.Dans une seconde partie, je montre comment FeSe, le IBSC actuellement le plus étudié, se trouve également dans une phase métal de Hund, mais il est amené à la frontière de cette phase par la pression. Cette frontière est liée à une augmentation de la compressibilité électronique qui est positivement corrélée à l’augmentation de la supraconductivité trouvée dans les expériences.Je réalise une étude analogue sur le détenteur du record pour la température supraconductrice critique la plus élevée, la monocouche FeSe où je trouve également une compressibilité augmentée. Cela appuie la récente proposition selon laquelle la frontière du métal de Hund favorise la supraconductivité à haute température.Enfin, j'étudie la nature du magnétisme dans une autre famille de IBSC, les germanides de fer. J'explore différents ordres magnétiques possibles avec des simulations DFT et leur concurrence (ce qui peut en principe favoriser la supraconductivité) dans plusieurs composés où différents substitutions sont appliquées au composé parent YFe2Ge2. J'étudie également l'effet de la pression chimique sur ce composé. / Materials where the electrons responsible for the low-energy properties experience strong correlations are today very investigated in search of emerging new phases with surprising and/or useful properties. Iron-based superconductors (IBSC) are now considered in this class of compounds. Using the many-body techniques necessary for the theoretical treatment of these correlations (slave-spin mean field theory - SSMFT- and dynamical mean field theory - DMFT- in conjunction with density functional theory, DFT), in this thesis I address several properties of IBSC.First I analyze the very hole-doped compounds in the IBSC family, that show experimentally some behaviors typical of the so-called “heavy fermions”, compounds typically of rare earth or actinides, where extremely correlated electrons coexist with others less correlated. In particular I focus on the specific heat and the thermoelectric power and show how these properties can be understood in the recently developed paradigm of “Hund’s metals”. Indeed the intra-atomic exchange (the “Hund’s coupling”) is responsible for these materials of transition metal elements showing heavy-fermionic physics. I show also that typical heavy-fermionic features of the excitation spectrum, known as Van Hove singularities are well captured by our modelization within DFT+SSMFT. I then use DMFT in a model in order to study the direct impact of the Van Hove singularities on the strength of correlations.In a second part I show how FeSe, the presently most studied IBSC, is also in a Hund’s metal phase, but it is brought to the frontier of this phase by pressure. This frontier is connected to an enhancement of the electronic compressibility which correlates positively then with the enhancement of superconductivity found in experiments. I perform an analogous study on the record holder for the highest critical superconducting temperature, the monolayer FeSe where I also find an enhanced compressibility. This supports the recent proposal that the frontier of a Hund's metal favors high-temperature superconductivity.Finally I study the nature of magnetism in another family of IBSC, the iron-germanides. I explore different possible magnetic orders with DFT simulations and study their competition (which can in principle favor superconductivity) in several compounds where different chemical substitutions are applied to the parent compound YFe2Ge2. I also study the effect of chemical pressure on this compound.
169

Etude des états liés et de diffusion par la théorie quantique des champs sur le cône de lumière

Oropeza Rodriguez, Damian 26 November 2004 (has links) (PDF)
Cette thèse porte sur le calcul des états liés et de diffusion de systèmes à deux corps dans une formulation explicitement covariante de la dynamique sur le front de lumière. Nous traitons dans ce cadre deux particules scalaires en interaction à l'approximation "ladder" (modèle de Wick-Cutkosky massif). Les états liés sont calculés (onde S et P) par une décomposition angulaire du potentiel. Nous montrons que la restriction de cette décomposition à sa première composante suffit pour décrire correctement le système, ce qui revient à approximer le potentiel par sa moyenne sur toutes les directions du front de lumière. Ce résultat facilite le traitement des états de diffusion. Nous calculons donc des déphasages élastiques (onde S et P). Or notre potentiel relativiste prend en compte l'ouverture d'un canal inélastique au-delà du seuil de création. Nous calculons donc des déphasages correspondant à l'émision d'un boson, qui violent cependant l'unitarité de la matrice S. La prise en compte la self-énergie permet de résoudre ce problème comme nous montrons par un calcul perturbatif. L'ajout de la self-énergie permet d'obtenir des déphasages inélastique respectant l'unitarité de S. Nous montrons aussi que la self-énergie modifie considérablement les conditions d'existence d'états liés. Nous considérons aussi le cas des deux fermions en interaction par un échange scalaire ou pseudo-scalaire (état $J^\pi=0^+$). Les états liés sont traités par une décomposition angulaire, mais la propriété de moyenne n'apparaît pas pour le couplage pseudo-scalaire. Elle apparaît pour le couplage scalaire, ce qui nous permet de calculer des déphasages élastiques et inélastiques à l'approximation ladder. Abstract : This thesis concerns the two-body scattering and bound states in an explicitly covariant formulation of the light-front dynamics. We consider, in this framework, two scalar particles in interaction at the "ladder" approximation (massive Wick-Cutkosky model). S and P-waves bound states are calculated by an angular decomposition of the potential. We show that the first term of the decomposition gives already a very good description of the system, what is equivalent to take an averaged potential over the light-front directions. This results simplifies the treatment of the scattering states. We obtain the elastics phase shifts (S and P waves). Yet our relativistic potential take into account the first inelastic threshold, what corresponds to the one boson emission. These phase shifts do not respects the S-matrix unitarity. We show by a perturbative calculation that the addition of self-energy contributions permits to solve this problem. Adding this term, allows to obtain an inelastic phase-shift respecting S-matrix unitarity. We show also that the self-energy contribution strongly modifies the conditions of existence of a bound state. We consider also two fermions interacting by a scalar or pseudoscalar exchange ($J^\pi=0^+$ state). The bound states are calculated by the angular decomposition method, that works well here but fails in the pseudoscalar coupling. The average method is finally used to calculate the scattering states in the ladder approximation fo the scalar coupling.
170

Exploring quantum circuits with a cQed architecture : application to compressibility measurements / Explorer des circuits quantiques avec une architecture cQED : application à des mesures de compressibilité

Desjardins, Matthieu 16 December 2016 (has links)
Les circuits électroniques mesurés à des températures cryogéniques permettent d'étudier le comportement quantique des électrons. En particulier, les circuits de boites quantiques sont des systèmes accordables modèles pour l'étude des électrons fortement corrélés, symbolisée par l'effet Kondo. Dans cette thèse, des circuits de boîtes quantiques à base de nanotube de carbone sont intégrés à des cavités micro-onde coplanaires, avec lesquelles l'électrodynamique quantique en cavité (cQED) a atteint un degré de contrôle remarquable de l'interaction lumière-matière. Les photons de la cavité micro-onde sont ici utilisés pour sonder la dynamique de charge dans le circuit de boîtes quantiques. Plus précisément, la cavité micro-onde de grande finesse nous a permis de mesurer la compressibilité du gas d'électrons dans une boîte avec une sensibilité sans précédent. Des mesures simultanées de transport électronique et de la compressibilité montrent que la résonance Kondo observées dans la conductance est transparente aux photons micro-ondes. Cela révèle le gel de la dynamique de charge dans la boîte quantique pour ce mécanisme particulier de transport d'électrons et illustre que la résonance Kondo à N-corps dans la conductance est associée aux corrélations issues des fluctuations de spin d'une charge gelée. Nous étudions aussi dans cette thèse la possible émergence d'une nouvelle quasi-particule, appelée état lié de Majorana, et qui serait sa propre anti-particule. Dans ce but, une grille ferromagnétique a été placée sous le nanotube pour créer un couplage spin-orbit artificiel. L'observation d'états d'Andreev dans un tel dispositif est un premier pas prometteur vers la détection avec une architecture cQED d'états liés de Majorana dans les nanotubes de carbone. / On-chip electronic circuits at cryogenic temperature are instrumental to studying the quantum behavior of electrons. In particular, quantum dot circuits represent tunable model systems for the study of strong electronic correlations, epitomized by the Kondo effect. In this thesis, carbon nanotube based-quantum dot circuits are embedded in coplanar microwave cavities, with which circuit quantum electrodynamics (cQED) has reached a high degree of control of the light-matter interaction. Here, microwave cavity photons are used to probe the charge dynamics in the quantum dot circuit. More precisely, the high finesse cavity allows us to measure the compressibility of the electron gas in the dot with an unprecedented sensitivity. Simultaneous measurements of electronic transport and compressibility show that the Kondo resonance observed in the conductance is transparent to microwave photons. This reveals the predicted frozen charge dynamics in the quantum dot for this peculiar electron transport mechanism and illustrates that the many-body Kondo resonance in the conductance is associated to correlations arising from spin fluctuations of a frozen charge. A second quantum phenomenon addressed in this thesis is the possible emergence of a new quasi-particle in condensed matter, called Majorana bound state, which would be its own anti-particle. For that purpose, a ferromagnetic gate has been placed below a nanotube in order to generate a synthetic spin-orbit coupling. The observation of Andreev bound states in such a device is a first promising step towards the detection with a cQED architecture of Majorana bound states in a carbon nanotube.

Page generated in 0.0716 seconds