• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 10
  • 2
  • 1
  • Tagged with
  • 86
  • 86
  • 29
  • 24
  • 21
  • 17
  • 15
  • 15
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Resumovaná chirální poruchová teorie a studium Kl4 rozpadů / Resumovaná chirální poruchová teorie a studium Kl4 rozpadů

Motloch, Pavel January 2012 (has links)
The F and G formfactors of Kl4 decays are calculated to O(p4 ) in isospin limit in Resummed Chiral Perturbation Theory. Formulae for reparametrization of low-energy constants L1 - L3 in terms of physical observables are derived. They are used to obtain values of these low-energy constants from recent experimental data, theoretical error of the result is estimated and dependence on parameters X, Z of spontaneous symmetry breaking of SU(3) × SU(3) chiral symmetry and quark mass ratio r is investigated. Convergence of the formfactors in Resummed Chiral Perturbation Theory is discussed and it is suggested that inclusion of σ as an explicit degree of freedom into Chiral Perturbation Theory could significantly improve overall covergence of chiral series. 1
72

Studies of effective theories beyond the Standard Model

Riad, Stella January 2014 (has links)
The vast majority of all experimental results in particle physics can be described by the Standard Model (SM) of particle physics. However, neither the existence of neutrino masses nor the mixing in the leptonic sector, which have been observed, can be described within this model. In fact, the model only describes a fraction of the known energy in the Universe. Thus, we know there must exist a theory beyond the SM. There is a plethora of possible candidates for such a model, such as supersymmetry, extra dimensional theories, and string theory. So far, there are no evidence in favor of these models. These theories often reside at high energies, and will therefore be manifest as effective theories at the low energies experienced here on Earth. A first example in extra-dimensional theories. From our four-dimensional point of view, particles which propagate through the extra dimensions will effectivel be perceived as towers of heavy particles. In this thesis we consider an extra-dimensional model with universal extra dimensions, where all SM particles are allowed to propagate through the extra dimensions. Especially, we place a bound on the range of validity for this model. We study the renormalization group running of the leptonic parameters as well as the Higgs self-coupling in this model with the neutrino masses generated by a Weinberg operator. Grand unified theories, where the gauge couplings of the SM are unified into a single oe at some high energy scale, are motivated by the electroweak unification. The unification must necessarily take place at energies many orders of magnitude greater than those that ever can be achieved on Earth. In order to make sense of the theoru, ehich is given at the grand unified scale, at the electroweak scale, the symmetry at the grand unified scale is broken down to the SM symmetry. Within these models the SM is considered as an effective field theory. We study renormalization group running of the leptonic parameters in a non-supersymmetric SO(10) model which is broken in two steps via the Pati-Salam group. Finally, the discovery of the new boson at the LHC provides a new opportunity to search for physics beyond the SM. We consider an effective model where the magnitudes of the couplings in the Higgs sector are scaled by so-called coupling scale factors. We perform Bayesian parameter inference based on the LHC data. Furthermore, we perform Bayesian model comparison, comparing models where one or several of the Higgs couplings are allowed, to the SM, where the couplings are fixed. / <p>QC 20141020</p>
73

Astrophysical and Collider Signatures of Extra Dimensions

Melbéus, Henrik January 2010 (has links)
<p>In recent years, there has been a large interest in the subject of extra dimensions in particle physics. In particular, a number of models have been suggested which provide solutions to some of the problems with the current Standard Model of particle physics, and which could be tested in the next generation of high-energy experiments. Among the most important of these models are the large extra dimensions model by Arkani-Hamed, Dimopoulos, and Dvali, the universal extra dimensions model, and models allowing right-handed neutrinos to propagate in the extra dimensions. In this thesis, we study phenomenological aspects of these three models, or simple modifications of them.</p><p> </p><p>The Arkani-Hamed-Dimopoulos-Dvali model attempts to solve the gauge hierarchy problem through a volume suppression of Newton's gravitational constant, lowering the fundamental Planck scale down to the electroweak scale. However, this solution is unsatisfactory in the sense that it introduces a new scale through the radius of the extra dimensions, which is unnaturally large compared to the electroweak scale. It has been suggested that a similar model, with a hyperbolic internal space, could provide a more satisfactory solution to the problem, and we consider the hadron collider phenomenology of such a model.</p><p> </p><p>One of the main features of the universal extra dimensions model is the existence of a potential dark matter candidate, the lightest Kaluza-Klein particle. In the so-called minimal universal extra dimensions model, the identity of this particle is well defined, but in more general models, it could change. We consider the indirect neutrino detection signals for a number of different such dark matter candidates, in a five- as well as a six-dimensional model.</p><p> </p><p>Finally, right-handed neutrinos propagating in extra dimensions could provide an alternative scenario to the seesaw mechanism for generating small masses for the left-handed neutrinos. Since extra-dimensional models are non-renormalizable, the Kaluza-Klein tower is expected to be cut off at some high-energy scale. We study a model where a Majorana neutrino at this cutoff scale is responsible for the generation of the light neutrino masses, while the lower modes of the tower could possibly be observed in the Large Hadron Collider. We investigate the bounds on the model from non-unitarity effects, as well as collider signatures of the model.</p>
74

Particle Phenomenology of Compact Extra Dimensions

Melbéus, Henrik January 2012 (has links)
This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza–Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models. / QC 20120427
75

Modelling the critical success factors of agile software development projects in South Africa

Chiyangwa, Tawanda Blessing 01 1900 (has links)
There are several critical success factors suggested for why agile software development projects succeed, including organisational and process factors. Although there are an increasing number of identified critical success factors, IT professionals lack the modelling techniques and the theoretical framework to help them meaningfully understand their influences. To solve this problem, this study developed a model by employing the following theories: Theory of Reasoned Action (TRA), Theory of Planned Behaviour (TPB), and Unified Theory of Acceptance and Use of Technology (UTAUT) to create a fit model for agile software development projects. The research sought to answer the question: What are the critical success factors that influence the success of agile software development projects? The literature review considers the continued failure of agile and traditional software development projects which have led to the consideration of, and dispute over, critical success factors — the aspects most vital to a methodology’s success. Though TRA, TPB and UTAUT have previously been applied to agile methodologies, empirical models have not been completely integrated to develop a fit model. This research sought to fill this gap. Data was collected in South Africa through a web-based survey using structured questionnaires and an interview guide. Face-to-face interviews were done to identify the critical success factors in agile projects. The data was captured and analysed for descriptive statistics, convergent and discriminant validity, composite and internal reliability, and correlation in order to inform the structural equation modelling (SEM). SEM was used to test the research model and hypotheses to answer the research questions. The results informed development of a comprehensive model that could provide guidelines to the agile community. The study contributes towards understanding the critical success factors for agile projects. It examined direct, indirect and moderating effects, and the findings contribute towards developing a framework to be used by agile professionals. These key result shows that organisational factors have a great influence on performance expectancy characteristics. To ensure success of agile projects, managers are advised to focus on the effect of the organisation’s environment, culture and policies on performance and effort expectancy. / School of Computing / Ph. D. (Computer Science)
76

Aspects of Higher Spin Theories Conformal Field Theories and Holography

Raju, Avinash January 2017 (has links) (PDF)
This dissertation consist of three parts. The first part of the thesis is devoted to the study of gravity and higher spin gauge theories in 2+1 dimensions. We construct cosmological so-lutions of higher spin gravity in 2+1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary CFT partition function, and reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using a prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS3. For the case of negative cosmological constant we show that interpreting the inverse AdS3 radius 1=l as a Grassmann variable results in a formal map from gravity in AdS3 to gravity in flat space. The underlying reason for this is the fact that ISO(2,1) is the Inonu-Wigner contraction of SO(2,2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS3 maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS3 case. Our results straightforwardly generalize to the higher spin case: the flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We also demonstrate the power of our approach by doing singularity resolution in the BMS gauge as an application. Finally, we construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, the left-moving solution has Drinfeld-Sokolov reduced form, but on the right-moving solution all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the “most general” AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine sl(3)k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. The second part is devoted to the problem of Neumann boundary condition in Einstein’s gravity. The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well defined, but no such general term seems to be known for Neumann boundary conditions. In our work, we view Neumann boundary condition not as fixing the normal derivative of the metric (“velocity”) at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric (“momentum”). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions this boundary term reduces to a “one-half” GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We also argue that a natural boundary condition for gravity in asymptotically AdS spaces is to hold the renormalized boundary stress tensor density fixed, instead of the boundary metric. This leads to a well-defined variational problem, as well as new counter-terms and a finite on-shell action. We elaborate this in various (even and odd) dimensions in the language of holographic renormalization. Even though the form of the new renormalized action is distinct from the standard one, once the cut-off is taken to infinity, their values on classical solutions coincide when the trace anomaly vanishes. For AdS4, we compute the ADM form of this renormalized action and show in detail how the correct thermodynamics of Kerr-AdS black holes emerge. We comment on the possibility of a consistent quantization with our boundary conditions when the boundary is dynamical, and make a connection to the results of Compere and Marolf. The difference between our approach and microcanonical-like ensembles in standard AdS/CFT is emphasized. In the third part of the dissertation, we use the recently developed CFT techniques of Rychkov and Tan to compute anomalous dimensions in the O(N) Gross-Neveu model in d = 2 + dimensions. To do this, we extend the “cow-pie contraction” algorithm of Basu and Krishnan to theories with fermions. Our results match perfectly with Feynman diagram computations.
77

Search of new physics through flavor physics observables / Recherche de la nouvelle physique à travers les observables de la physique de la saveur

Sumensari, Olcyr 27 September 2017 (has links)
La recherche indirecte des effets de la physique au-delà du Modèle Standard à travers les processus de la saveur est complémentaire aux efforts au LHC pour observer directement la nouvelle physique. Dans cette thèse nous discutons plusieurs scénarios au-delà du Modèle Standard (a) en utilisant une approche basée sur les théories de champs effective et (b) en considérant des extensions explicites du Modèle Standard, à savoir les modèles à deux doublets de Higgs et les scénarios postulant l'existence des bosons leptoquarks scalaires à basse énergie. En particulier, nous discutons le phénomène de la brisure de l'universalité des couplages leptoniques dans les désintégrations basées sur les transitions b → sℓℓ et b → cτν, et la possibilité de chercher les signatures de la violation de la saveur leptonique à travers les modes de désintégration similaires. Une proposition pour tester la présence d'un boson pseudoscalaire léger à travers les désintégrations des quarkonia est aussi présentée. / Indirect searches of physics beyond the Standard Model through flavor physics processes at low energies are complementary to the ongoing efforts at the LHC to observe the New Physic phenomena directly. In this thesis we discuss several scenarios of physics beyond the Standard Model by (a) reusing the effective field theory approach and (b) by considering explicit extensions of the Standard Model, namely the two-Higgs doublet models and the scenarios involving the low energy scalar leptoquark states. Particular emphasis is devoted to the issue of the lepton flavor universality violation in the exclusive decays based on b → sℓℓ and b → cτν, and to the possibility of searching for signs of lepton flavor violation through similar decay modes. A proposal for testing the presence of the light CP-odd Higgs through quarkonia decays is also made.
78

Astrophysical and Collider Signatures of Extra Dimensions

Melbéus, Henrik January 2010 (has links)
In recent years, there has been a large interest in the subject of extra dimensions in particle physics. In particular, a number of models have been suggested which provide solutions to some of the problems with the current Standard Model of particle physics, and which could be tested in the next generation of high-energy experiments. Among the most important of these models are the large extra dimensions model by Arkani-Hamed, Dimopoulos, and Dvali, the universal extra dimensions model, and models allowing right-handed neutrinos to propagate in the extra dimensions. In this thesis, we study phenomenological aspects of these three models, or simple modifications of them.   The Arkani-Hamed-Dimopoulos-Dvali model attempts to solve the gauge hierarchy problem through a volume suppression of Newton's gravitational constant, lowering the fundamental Planck scale down to the electroweak scale. However, this solution is unsatisfactory in the sense that it introduces a new scale through the radius of the extra dimensions, which is unnaturally large compared to the electroweak scale. It has been suggested that a similar model, with a hyperbolic internal space, could provide a more satisfactory solution to the problem, and we consider the hadron collider phenomenology of such a model.   One of the main features of the universal extra dimensions model is the existence of a potential dark matter candidate, the lightest Kaluza-Klein particle. In the so-called minimal universal extra dimensions model, the identity of this particle is well defined, but in more general models, it could change. We consider the indirect neutrino detection signals for a number of different such dark matter candidates, in a five- as well as a six-dimensional model.   Finally, right-handed neutrinos propagating in extra dimensions could provide an alternative scenario to the seesaw mechanism for generating small masses for the left-handed neutrinos. Since extra-dimensional models are non-renormalizable, the Kaluza-Klein tower is expected to be cut off at some high-energy scale. We study a model where a Majorana neutrino at this cutoff scale is responsible for the generation of the light neutrino masses, while the lower modes of the tower could possibly be observed in the Large Hadron Collider. We investigate the bounds on the model from non-unitarity effects, as well as collider signatures of the model. / QC 20110324
79

Renormalization in Field Theories

Söderberg, Alexander January 2015 (has links)
Several different approaches to renormalization are studied. The Callan-Symanzik equation is derived and we study its beta functions. An effective potential for the Coleman-Weinberg model is studied to find that the beta function is positive and that spontaneous symmetry breaking will occur if we expand around the classical field. Lastly we renormalize a non-abelian gaugetheory to find that the beta function in QCD is negative.
80

Entanglement Entropy in Cosmology and Emergent Gravity

Akhil Jaisingh Sheoran (15348844) 25 April 2023 (has links)
<p>Entanglement entropy (EE) is a quantum information theoretic measure that quantifies the correlations between a region and its surroundings. We study this quantity in the following two setups : </p> <ul> <li>We look at the dynamics of a free minimally coupled, massless scalar field in a deSitter expansion, where the expansion stops after some time (i.e. we quench the expansion) and transitions to flat spacetime. We study the evolution of entanglement entropy (EE) and the Rényi entropy of a spatial region during the expansion and, more interestingly, after the expansion stops, calculating its time evolution numerically. The EE increases during the expansion but the growth is much more rapid after the expansion ends, finally saturating at late times, with saturation values obeying a volume law. The final state of the subregion is a partially thermalized state, reminiscent of a Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.</li> <li>We study the EE in a theory that is holographically dual to a BTZ black hole geometry in the presence of a scalar field, using the Ryu-Takayangi (RT) formula. Gaberdiel and Gopakumar had conjectured that the theory of N free fermions in 1+1 dimensions, for large N, is dual to a higher spin gravity theory with two scalar fields in 2+1 dimensions. So, we choose our boundary theory to be the theory of N free Dirac fermions with a uniformly winding mass, m e<sup>iqx</sup>, in two spacetime dimensions (which describes for instance a superconducting current in an N-channel wire). However, to O(m<sup>2</sup>), thermodynamic quantities can be computed using Einstein gravity. We aim to check if the same holds true for entanglement entropy (EE). Doing calculations on both sides of the duality, we find that general relativity does indeed correctly account for EE of single intervals to O(m<sup>2</sup>).</li> </ul>

Page generated in 0.0389 seconds