• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 22
  • 12
  • 9
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 155
  • 155
  • 49
  • 33
  • 25
  • 22
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Možnosti využití nanočástic různých kovů jako markerů pro imunoznačení ve skenovacím mikroskopu s autoemisní tryskou / The possibilities of using nanoparticles of various metals as the markers for immunocytochemical labelling in field emission scanning electron microscopy

EIBLOVÁ, Veronika January 2011 (has links)
Nowadays, electron microscopy is a widespread method used in many biological branches like medicine, physical science, mikrobiology or material technology. Scanning electron microscope is a type of an electron microscope that shows the sample surface by scanning it with a high-energy beam of electrons in a raster scan pattern. The signal of electrons reveals information about the sample such as morphology, chemical composition and structure and materials. Gold nanoparticles are widely used as a marker for immunolabeling in these days. The main point of this research was to find other nanoparticles, which can be used for multiple immunolabeling. The main task of this study is to conjugate these particles with atibodies, to use them for immunolocalisation on the convenient biological sample and to observe it in FESEM JEOL JSM-7401F.
132

Síntese e estabilização de nanopartículas de ouro para fins biotecnológicos e cosméticos / Synthesis and stabilization of gold nanoparticles for biotechnological and cosmetics uses

SILVA, ANDRESSA A. da 25 May 2017 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2017-05-25T13:39:09Z No. of bitstreams: 0 / Made available in DSpace on 2017-05-25T13:39:09Z (GMT). No. of bitstreams: 0 / As sínteses de nanopartículas de ouro (AuNPs) com os agentes redutores e estabilizantes citrato de sódio e goma arábica bem como sua caracterização foram estudadas neste trabalho. As sínteses foram realizadas por meio de aquecimento e uso de radiação gama em fonte de 60Co nas doses 1, 7,5 e 15 kGy. Neste contexto, foram estudadas as propriedades e a estabilidade das AuNPs formadas por meio de técnicas de caracterização tais como espectroscopia de absorção UV-Vis, verificando as bandas características das AuNPs assim como a estabilidade física das mesmas. As amostras sintetizadas com citrato de sódio (AuCit) apresentaram comprimentos de onda que variaram entre 520 e 525 nm e as amostras sintetizadas com goma arábica (AuGA) apresentaram comprimentos de onda entre 530 e 540 nm. A análise de espalhamento de luz dinâmica, do inglês \"Dynamic Light Scattering\" (DLS) foi utilizada para determinar o tamanho hidrodinâmico das nanopartículas formadas no período de três meses, demonstrando que as amostras AuCit apresentaram tamanhos hidrodinâmicos médios que variaram de 20 a 50 nm enquanto que as amostras AuGA sintetizadas por aquecimento e com uso de radiação gama apresentaram tamanhos hidrodinâmicos médios que variaram de 50 a 115 nm. As análises de microscopia eletrônica de varredura com emissão de campo (MEV-FEG) e microscopia eletrônica de transmissão (MET) foram utilizadas para determinar a distribuição real de tamanhos das nanopartículas e sua forma geométrica. Nesta caracterização as AuGA apresentaram diâmetros menores do que os analisados por DLS, sugerindo assim possível encapsulamento das AuNPs. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
133

Preparação e caracterização de nanoestruturas de carbono contendo nitrogênio / Synthesis and characterization of carbon nanostructires containing nitrogen

Paredez Angeles, Pablo Jenner 07 October 2007 (has links)
Orientador: Fernando Alvarez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-09T10:47:17Z (GMT). No. of bitstreams: 1 ParedezAngeles_PabloJenner_D.pdf: 4194390 bytes, checksum: 8881d83ee8bcb5a5ad4bfb23b7ff1028 (MD5) Previous issue date: 2007 / Resumo: Nesta tese são apresentados os efeitos nas propriedades estruturais, eletrônicas e de emissão eletrônica por efeito de campo elétrico induzidos pela incorporação de nitrogênio em nanoestruturas de carbono. As nanoestruturas de carbono contendo nitrogênio foram preparadas por pulverização catódica (sputtering) de um alvo de grafite assistido, ou não, por um feixe iônico. A técnica permite atuar sobre os parâmetros de deposição induzindo mudanças nas propriedades estruturais, eletrônicas e de emissão eletrônica por efeito de campo elétrico. O papel do hélio na formação de nanoes-truturas de carbono contendo nitrogênio foi também explorado, mostrando que o gás nobre promove maior incorporação de nitrogênio. Isto é provavelmente devido à relativa alta condutividade térmica que apresenta o hélio, propriedade que modifica a cinética do crescimento das nanoestruturas. O estudo realizado permitiu entender o mecanismo de formação das nanoestruturas, mostrando que primeiramente o carbono alcança as partículas de Ni por difusão até a saturação do metal, iniciando a formação das camadas grafíticas sobre a partícula de Ni, camadas que foram observadas por microscopia eletrônica de transmissão de alta resolução. O estudo mostra, também, que os parâmetros importantes que controlam a incorporação de nitrogênio no material são a pressão parcial de nitrogênio na câmara de deposição, assim como a energia do feixe de íons assistindo a deposição.Foram estudadas três séries de amostras preparadas em atmosferas controladas. Na primeira série foi utilizado um feixe de íons de nitrogênio como feixe de assistência, e na segunda, uma mistura composta por duas espécies iônicas, íons de nitrogênio e hidrogênio. Com o auxilio da espectroscopia de elétrons fotoemitidos por raios-X observou-se a incorporação de nitrogênio nos filmes. A microscopia de força atômica revelou a presença de estruturas do tipo domo, distribuídas de maneira uniforme na superfície das amostras, apresentando uma densidade média de ~3×10 9 domos/cm 2as da primeira série, e ~1.4×10 9 domos/cm 2as da segunda série. Tanto a distribuição como a forma seguem o padrão estabelecido pelos precursores utilizados na preparação das nanoestruturas, i.e., ilhas de níquel que agem ao mesmo tempo como catalisadores e como suporte para as nanoestruturas. Na terceira série, as nanoestruturas foram crescidas sobre um filme de nitreto de titânio, depositado sobre substratos de Si, pulverizando um alvo de grafite em atmosferas de nitrogênio e hélio-nitrogênio. A densidade dos domos encontrada para esta série foi de ~5.3×10 10 domos/cm 2 . Os espectros Raman das três séries apresentam as bandas G e D, o que indica a presença estruturas grafíticas com distorções representadas pela banda D. A incorporação de nitrogênio ocasiona o alargamento da banda G e aumento da razão das intensidades das bandas D e G, respectivamente, indicando uma redução da ordem estrutural com a incorporação de Nitrogênio. Finalmente, para as três séries de amostras, fez-se também um estudo das propriedades de emissão eletrônica por efeito de campo elétrico. A emissão é predominantemente por tunelamento quântico (as curvas de densidade de corrente vs campo elétrico seguem o modelo de Fowler-Nordheim) e dependem da concentração de nitrogênio assim como do processo usado na preparação das amostras / Abstract: The subject of this thesis is establishing a link among the synthesis, structures, and field emission properties for nanostructured carbon materials containing nitrogen. The materials were prepared by ion beam assisted deposition and ion beam sputtering. The carbon material was obtained sputtering an ultra pure graphite target by an argon ion beam. The method allows controlling the deposition parameters to induce changes in the structural, electronic, and field emission properties. Also, the role of helium on the carbon containing nitrogen nanostructures was investigated. The remarkable thermal conductance of He modifying the growing kinetics was also studied. An important goal of the work was to elucidate the mechanism of the nanostructures formation. It was found that, at first, the carbon atoms reach the Ni particles saturating the metal particle, and then, the formation of stacked graphene starts on the metal particles. The graphene layers were observed by high resolution transmission electron microscopy. The results show that mainly two parameters control the nitrogen incorporation, namely, the deposition chamber nitrogen partial pressure and the energy of the nitrogen ion beam assisting the growth. Three sample series prepared in controlled atmospheres were studied. The first series was prepared assisting the growth with a nitrogen ion beam and, the second series by a nitrogen-hydrogen ion beam. The third sample series were prepared by ion beam sputtering on silicon substrate by sequentially depositing titanium nitride thin film, nanometric nickel particles and carbon. The carbon containing nitrogen nanostructures were grown in nitrogen and helium-nitrogen atmospheres. X-ray photoelectron spectroscopy analysis indicates nitrogen incorporation and it depends predominantly on the ion beam energy or on the nitrogen partial pressure. Atomic force microscopy reveals dome-like structures uniformly distributed on the surface of the samples, with ~3×10 9 domes/cm 2 for the first series, ~1.4×10 9 domes/cm 2 for the second, and ~5.3×10 10 domes/cm 2 for the third. Both distribution and shape follow the Ni island pattern, i.e. the Ni islandsact both as a catalytic and uphold. The three samples series were also analyzed by Raman spectros-copy, showing a defined G bands around 1593 cm -1 indicating the presence of graphitic structures. Also, are observed D bands indicating structural disorder. The disorder increases with the augment of the nitrogen content, as is shown by the augment of the D and G intensities ratio. Finally, the field emission properties of the three series were studied and the electron emission depends on the growing conditions in general, and on the nitrogen content in particular. The results show that the emission is predominantly by quantum tunneling and the current density vs. electric field curves follow the Fowler-Nordheim model / Doutorado / Física / Doutor em Ciências
134

Modelamento computacional de ponteiras de emissão de campo / Computational modeling of field emission tips

Tirolli, Marcelo Nogueira 14 March 2007 (has links)
Orientador: Marco Antonio Robert Alves / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-09T17:44:13Z (GMT). No. of bitstreams: 1 Tirolli_MarceloNogueira_M.pdf: 2758197 bytes, checksum: 08f6e633be3e083c0e72c41959dd296d (MD5) Previous issue date: 2007 / Resumo: Este trabalho tem como objetivo o estudo do comportamento elétrico de uma ponteira de emissão de campo, modelada na forma de um hemisfério sobre um poste, através de recursos computacionais (simulações). Escolhemos o software comercial Ansys, que utiliza o método dos elementos finitos nas análises dos fenômenos físicos para obtenção do campo elétrico na superfície da ponteira. Em seguida, foi desenvolvido também um programa computacional que realiza o cálculo da corrente de emissão baseado na teoria de emissão de campo de Fowler-Nordheim (F-N). Para calcular a corrente, o programa faz uso dos resultados das simulações do campo elétrico obtidos no software Ansys. Apresentamos também os resultados da influência que as dimensões como o raio de curvatura do hemisfério, a altura da ponteira e a distância entre anodo e catodo exercem sobre o comportamento do campo elétrico, da corrente de emissão e de outras grandezas físicas que envolvem emissão de campo / Abstract: This work aims to study the electrical behavior of a field emission tip, shaped in the form hemisphere on a post, through computational resources (simulations). We chose the Ansys commercial software that uses the finite element methods in the analyses of the physical phenomena to obtain the electric field in the surface of the tip. After that, a computational program was also developed to perform the calculation of emission current based on Fowler-Nordheim (F-N) field emission theory. To calculate the current, the program uses the results of the electric field simulations gotten in Ansys software. We also show the results of influences that dimensions such as the hemisphere curvature radius, the height of the tip and the distance between anode and cathode exert on the behavior of the electric field, emission current and other physical quantities that involve field emission / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
135

Synthesis and Electron Emission Properties of Aligned Carbon Nanotube Arrays

Neupane, Suman 04 February 2014 (has links)
Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy. Transmission electron microscopy reveals that a uniform layer of SnO2 is conformally coated on every tapered CNT. The strong adhesion of CNTs with SS guaranteed the formation of the core-shell structures of CNTs with SnO2 or other metal oxides, which are expected to have applications in chemical sensors and lithium ion batteries.
136

Prevention of electron field emission from molybdenum substrates for photocathodes by the native oxide layer

Lagotzky, Stefan, Barday, Roman, Jankowiak, Andreas, Kamps, Thorsten, Klimm, Carola, Knobloch, Jens, Müller, Günter, Senkovsky, Boris, Siewert, Frank 02 September 2020 (has links)
Comprehensive investigations of the electron field emission (FE) properties of annealed single crystal and polycrystalline molybdenum plugs, which are used as substrates for actual alkali-based photocathodes were performed with a FE scanning microscope. Well-polished and dry-ice cleaned Mo samples with native oxide did not show parasitic FE up to a field level of 50 MV/m required for photoinjector cavities. In situ heat treatments (HT) above 400°C, which are usual before photocathode deposition, activated field emission at lower field strength. Oxygen loading into the Mo surface, however, partially weakened these emitters. X-ray photoelectron spectroscopy of comparable Mo samples showed the dissolution of the native oxide during such heat treatments. These results reveal the suppression of field emission by native Mo oxides. Possible improvements for the photocathode preparation will be discussed.
137

Optimalizace zařízení pro měření studené emise elektronů z povrchu GaN nanokrystalů / Optimization of device for measurement field emission from GaN nanocrystals surface

Horák, Stanislav January 2018 (has links)
This diploma thesis deals with the design and optimization of the device for measurement of field emission from gallium nitride (GaN) nanocrystals surface. The first part of the thesis is the topic review, which contains the introduction to the problematics of field emissio focused on GaN. Then there were designed, constructed and optimized two versions of the device for the measurement of field emission. Through the optimization phase, the first successful test has been performed with zinc oxide (ZnO) nanowires. Simultaneously GaN nanocrystals were fabricated on the silicon substrate Si(111) with 2 nm of silicon dioxide SiO2 and also on the copper foil covered by graphene by molecular beam epitaxy (MBE). In the last chapter, there are presented the results of the measurement for emission of GaN nanocrystals. Finally, this study is comparing results with the current research in the area of field emission, which displays the improved characteristics for field emission of GaN nanocrystals on the copper foil covered by graphene.
138

Výzkum a vývoj moderních emisních senzorů typu MEMS / Research and Development of Modern Emission MEMS Sensors

Pekárek, Jan January 2014 (has links)
The dissertation thesis is focused on research and development of modern emission MEMS sensors. The emission sensor based on the field emission from nanostructured materials represents innovative approach to pressure sensing. The nanostructures serve as electron emitter in an electric field between the cathode and anode in the pressure sensor. This electric field is constant and the change in ambient pressure causes the change of distance between electrodes, thereby the electric field is increasing. This intensity is proportional to the emission from the cathode made of nanostructured material. Changing the distance between the electrodes is caused by the deflection of the deformation element - the membrane, which operates the measured pressure. In the current state of the art an extensive research is carried out to find new nanostructured materials with good emission properties. Four nanostructured materials have been chosen and then experimentally prepared and characterized inside the vacuum chamber. For the simulation of diaphragm bending, the chamber is equipped with linear nano-motion drive SmarAct that enables precise changes of the distance between two electrodes inside the vacuum chamber. The computer model to predict the deformation of diaphragm was prepared in the simulation program CoventorWare. The behavior of diaphragm in a wide range of dimensions of the membrane, its thickness and the applied pressure are possible to predict. The dependencies of the current density on the electric field are plotted from the measured emission characteristics of nanostructured materials and thus characterized nanostructured materials can be compared. The dependencies are further converted by Fowler-Nordheimovy theory on the curve (ln(J/E2) vs. 1/E), whose advantage is linear shape. Basic parameters describing the emission properties of characterized nanostructured materials are deducted. Two methods for vacuum packaging of the sensor electrodes are designed. Anodic bonding technology and encapsulating using glass frit bonding are tested. To evaluate the bonding strength, the bonded substrates are tested for tensile strength.
139

Machine thermique nano-électro-mécanique / Nano electro mechanical heat engine

Descombin, Alexis 18 October 2019 (has links)
L'objectif de cette thèse est l'étude des échanges et de la dissipation d'énergie aux échelles mésoscopiques, à travers l'étude de nanotubes, de nanofils ou de pointes taillées par exemple. Notre intérêt pour la dissipation d'énergie nous portera vers les NEMS (Nano Electro Mechanical Systems) et leur facteur de qualité. Pour étudier les échanges d'énergie nous nous intéresserons à la thermodynamique aux petites échelles et notamment aux machines thermiques qui exploitent ces échanges d'énergie pour extraire un travail utile (mécanique, électrique...). Ce travail se concentre dans un premier temps sur la dissipation d'énergie et plus particulièrement sur le facteur de qualité de nanotubes de carbone mono-paroi à température ambiante et sur la façon de l'augmenter par application d'une tension électrique. Cette tension électrique induit un fort tirage sur le nanotube et la modification concomitante de la forme du mode résonant modifie la dissipation d’énergie. Ce phénomène, couplé à une modification des propriétés de l’ancrage (effet d’ancrage mou ajustable en tension) résultant également de la tension, diminue drastiquement la dissipation d’énergie et on atteint alors des facteurs de qualité record. Dans un second temps, nous nous intéressons aux machines thermiques : une machine stochastique cyclique et une machine électrique continue. La machine thermique stochastique est réalisée avec un nanofil vibrant sous ultra haut vide. La thermodynamique stochastique permet de redéfinir le travail et la chaleur pour un objet qui stocke des quantités d’énergies similaires aux fluctuations du bain thermique avec lequel il est en contact. Le premier objectif est de réaliser un cycle de Carnot permettant d'atteindre le rendement du même nom, inaccessible pour les machines macroscopiques. Pour la machine thermique continue nous étudions numériquement un prototype de machine thermique électrique basé sur des effets de résonance d'effet tunnel qui pourrait être une amélioration du principe des machines thermoïoniques. L’utilisation de l’effet tunnel permet à priori de réduire la température de la source chaude de la machine puisque l’on a plus besoin de vaincre le travail de sortie des deux électrodes. Les résonances dans l’effet tunnel, obtenues par confinement dans une dimension, permettent un filtrage en énergie des électrons passant d’un réservoir thermique à l’autre, ce qui a pour effet d’améliorer le rendement de la machine / The purpose of this work is the study of energy transfer and dissipation at the mesoscopic scale, through the study of nanotubes, nanowires, or sharp tips for example. Our interest for energy dissipation will lead us to dive into Nano Electro Mechanical Systems (NEMS) and their quality factor. Energy transfers will be studied with small scale thermodynamics and stochastic heat engines which use those energy transfers to produce useful work (mechanical, electrical…). This work is focused in a first time on the energy dissipation and particularly on the quality factor of single wall carbon nanotubes at room temperature and the ways to improve it by applying an electrical voltage. This voltage induces a strong pulling on the nanotube and the resulting vibrating shape modification changes the dissipation. This phenomenon, coupled with a clamping modification (tunable soft clamping) also stemming from the voltage, drastically reduces the dissipation. We can then achieve record high quality factors. In a second time we take interest in heat engines: a stochastic cyclic heat engine and a continuous electrical heat engine. The stochastic heat engine is realized with a vibrating nanowire under high vacuum. The stochastic thermodynamics allow us to redefine work and heat for an object that stores energies of the order of magnitude of thermal fluctuations in the thermal bath it interacts with. The aim is to build a Carnot cycle and achieve the corresponding yield, out of reach for macroscopic engines. Concerning the continuous heat engine we study numerically a prototype for an electrical heat engine based on resonant tunneling which could be an improvement of the thermionic heat engines. Allowing the thermal reservoirs to exchange electrons through tunneling allows in principle to reduce the temperature of the hot source because overcoming the work function of both electrodes is not necessary anymore. The resonances in the tunnel effect, obtained through confinement of one dimension, is useful for filtering the energy of the electrons tunneling from one reservoir to another, thus increasing the yield of the heat engine
140

ULTRAFAST NANOSCALE PATTERNING SYSTEM: SURFING SCANNING PROBE LITHOGRAPHY

Bojing Yao (12456495) 25 April 2022 (has links)
<p>  </p> <p>The development of the semiconductor industry is encountering a giant leap recently as Moorse’s is extended to the next levels. Advanced nanomanufacturing technology is the major challenge in the way. Higher resolution down to a few nanometers as well as higher throughput is always the key. As the optical lithography determines the feature size, the photomask is still in need of a low-cost and high resolution maskless patterning tool. In another aspect, the growing information allows the generation and storage of data at ever faster rates, which has led to the era of big data reaching a heroic amount of 7 zettabytes of total data in 2020. Future growth requires the total shipment of data storage capacity to double roughly every two years or less. For the future generation of magnetic data storage, the bit patterned medium (BPM) in combination with the current heat assisted magnetic recording (HAMR) is expected to increase the areal storage capacity by another order of magnitude by physically isolating magnetic bits at the nanoscale. Electron beam lithography (EBL) as a universal maskless lithography technique shows great resolution but has a high tool cost and low process throughput. Scanning probe lithography (SPL) is another family of nanoscale patterning techniques with low tool cost but the practical throughput is still limited. For example, dip pen nanolithography utilizes an AFM probe as a writing pen in direct patterning, but the ink delivery is limited by the rate of ink’s capillary transport. Other SPLs such as thermal probes with capabilities of 3D fabrication and surface oxidation via chemical reactions are all facing similar limitations in throughput. One way of breaking this limitation is to use parallel writing with millions of probes which also faces uniformity problems. </p> <p>In this Ph.D. dissertation, we report our Surfing Scanning Probe lithography (SSPL) method which can boost the scanning speed of SPL by several orders of magnitudes at a low cost by using a hydro-aero-dynamic scanning scheme. We use a homemade patterning head to continuously scan over a partially-wet spinning substrate at a linear speed of meters per second. The head carries several metallic tips which emit electrons and induce electrochemical reactions inside a gap of 10 nm scale. We use a liquid phase precursor and deliver it using the near-field electrospinning method and microfluid structures during the fast patterning. The best linewidth demonstrated is about 15 nm in full-width half maximum (FWHM) which can be further improved using smaller scanning gaps and sharp probe tips. Besides direct writing with a liquid precursor, SSPL can work with gas precursors as well enabled by nano plasma. The rate of material deposition is much high than conventional SPL. The SSPL system is a low-cost nanopatterning technology to produce patterns at high throughput and high resolution.</p>

Page generated in 0.0727 seconds