• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 38
  • 17
  • 16
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 433
  • 433
  • 433
  • 433
  • 110
  • 67
  • 63
  • 54
  • 54
  • 50
  • 49
  • 45
  • 44
  • 43
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Incremental Design Techniques with Non-Preemptive Refinement for Million-Gate FPGAs

Ma, Jing 22 January 2003 (has links)
This dissertation presents a Field Programmable Gate Array (FPGA) design methodology that can be used to shorten the FPGA design-and-debug cycle, especially as gate counts increase to many millions. Core-based incremental placement algorithms, in conjunction with fast interactive routing, are investigated to reduce the design processing time by distinguishing the changes between design iterations and reprocessing only the changed blocks without affecting the remaining part of the design. Different from other incremental placement algorithms, this tool provides the function not only to handle small modifications; it can also incrementally place a large design from scratch at a rapid rate. Incremental approaches are inherently greedy techniques, but when combined with a background refinement thread, the incremental approach offers the instant gratification that designers expect, while preserving the fidelity attained through batch-oriented programs. An incremental FPGA design tool has been developed, based on the incremental placement algorithm and its background refiner. Design applications with logical gate sizes varying from tens of thousands to approximately one million are built to evaluate the execution of the algorithms and the design tool. The results show that this incremental design tool is two orders of magnitude faster than the competing approaches such as the Xilinx M3 tools without sacrificing much quality. The tool presented places designs at the speed of 700,000 system gates per second. The fast processing speed and user-interactive property make the incremental design tool potentially useful for prototype developing, system debugging and modular testing in million-gate FPGA designs. / Ph. D.
122

Implementing Scientific Simulation Codes Tailored for Vector Architectures Using Custom Configurable Computing Machines

Rutishauser, David 05 May 2011 (has links)
Prior to the availability of massively parallel supercomputers, the implementation of choice for scientific computing problems such as large numerical physical simulations was typically a vector supercomputer. Legacy code still exists optimized for vector supercomputers. Rehosting legacy code often requires a complete re-write of the original code, which is a long and expensive effort. This work provides a framework and approach to utilize reconfigurable computing resources in place of a vector supercomputer towards the implementation of a legacy source code without a large re-hosting effort. The choice of a vector processing model constrains the solution space such that practical solutions to the underlying resource constrained scheduling problem are achieved. Reconfigurable computing resources that implement capabilities characteristic of the application's original target platform are examined. The framework includes the following components: (1) a template for a parameterized, configurable vector processing core, (2) a scheduling and allocation algorithm that employs lessons learned from the mature knowledge base of vector supercomputing, and (3) the design of the VectCore co-processor to provide a low-overhead interface and control method for instances of the architectural template. The implementation approach applies the framework to produce VectCore instances tailored for specific input problems that meet resource constraints. Experimental data shows the VectCore approach results in efficient implementations with favorable performance compared to both general purpose processing and fixed vector architecture alternatives for the majority of the benchmark cases. Half the benchmark cases scale nearly linearly under a fixed time scaling model. The fixed workload scaling is also linear for the same cases until becoming constant for a subset of the benchmarks due to resource contention in the VectCore implementation limiting the maximum achievable parallelism. The architectural template contributed by this work supports established vector performance enhancing techniques such as parallel and chained operations. As the hardware resources are scaled, the VectCore approach scales the amount of parallelism applied in a problem implementation. In end-to-end hardware experiments, the VectCore co-processor overhead is shown to be small (less than 4%) compared to the schedule length. / Ph. D.
123

Design and Implementation of an FPGA-based Partially Reconfigurable Network Controller

Chaubal, Aditya Prakash 03 September 2004 (has links)
There is currently a strong trend towards embedding Internet capabilities into electronics and everyday appliances. Most network controllers used in small appliances or for specialized purposes are built using micro controllers. However there are many applications where a hardware-oriented approach using Application Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) is more suitable. One of the features of FPGAs that cannot be integrated into ASICs is runtime reconfiguration in which, certain portions of the chip are reconfigured at runtime while the other parts continue to operate normally. This feature is required for network controllers with multiple data transfer channels that need to preserve the state of the static channels while reconfiguration is taking place. It is also required for controllers with space constraints in terms of FPGA resources or time constraints in terms of reconfiguration times. This thesis explores the impact of partial reconfiguration on the performance of a network controller. An FPGA-based network controller that supports partial reconfiguration has been designed and constructed. Partial bitstreams that can configure certain channels of the network controller without a ecting the functioning of others have been created. Experiments have been performed that quantify the manner in which, the performance of the controller can be changed by loading these partial bitstreams onto the FPGA. These experiments demonstrated the advantages of using partial reconfiguration to change network-related parameters at runtime to optimize performance of the network controller. / Master of Science
124

Enhancing GNU Radio for Run-Time Assembly of FPGA-Based Accelerators

Stroop, Richard Henry Lee 17 September 2012 (has links)
Software defined radios (SDRs) have changed the paradigm of slowly designing custom radios, instead allowing designers to quickly iterate designs with a large range of functionality. With the help of environments like the open-source project, GNU Radio, a designer can prototype radios with greatly improved productivity. Unfortunately, due to software performance limitations, there is no way to achieve the range of radio designs made possible with actual physical radio hardware. In order for SDRs to become more prevalent in radio prototyping and development, accelerators must be added to high-throughput and computationally intensive portions. Custom DSPs, GPUs, and FPGAs have all been added to SDRs to try and expand their computational capabilities. One difficulty in this is that by adding these accelerators, the "instant gratification" dynamic of the GNU Radio is lost. In this thesis, an enhanced GNU Radio flow is presented that seamlessly augments the GNU Radio software-only model with FPGAs, yet preserves the GNU Radio dynamics by providing full-custom radio hardware/software structures in seconds. By delegating portions of a GNU Radio flow graph to networked FPGAs, a larger class of software-defined radios can be implemented. Assembly of the signal processing structures within the FPGAs is accomplished using an enhanced flow where modules are customized, placed, and routed in a fraction of the time required by the vendor tools. With rapid FPGA assembly, a GNU Radio designer retains the ability to perform "what-if" experiments, which in turn greatly enhances productivity. Due to the modular nature of GNU Radio and of the FPGA designs, a modular assembly of the FPGA hardware is used. In the flow presented here, optimized hardware library components are designed by a domain expert, and stored as compact placed-and-routed modules. When a designer requests the assembly of one or more components within a given FPGA via a GNU Radio Python script, the necessary library components are accessed and translated to an appropriate location within the chip. Then the ports of the modules are stitched together using a custom FPGA router. This process reduces the large compile times of hardware for an FPGA to reasonable software-like times. To the radio designer, the complexity of the underlying hardware is abstracted away, making it appear as if everything compiles and runs in software, allowing many iterations to be realized quickly. Radio design can continue at the speeds that GNU Radio designers are accustomed to but with the range of possible waveforms and general functionality extended. / Master of Science
125

Stream Communication and Computation in the Eight-meter-wavelength Transient Array (ETA) Radio Telescope

Martin, Brian Scott 11 November 2008 (has links)
The Eight-meter-wavelength Transient Array (ETA) system is a unique implementation of an array-based radio telescope. The instrument is designed to further astronomy by detecting and characterizing dispersed pulses received between 29–47 MHz. To aid data processing of radio signals received through 24 antennas, the ETA system performs real-time stream processing as data is passed from antennas to hard disk storage. The processing includes digital sampling, downconversion, filtering, Fast Fourier Transforms, and beamforming operations and is performed by 28 commercial-off-the-shelf (COTS) FPGA boards. Sixteen of the FPGA boards constitute the reconfigurable computing cluster (RCC) which performs the FFT and beamforming operations and is the focus of this thesis. The FPGA-based architecture allows the RCC to provide the high computational and communication throughput required by the ETA system. In addition, the FPGA design allows for a custom processing data path, parallel processing, global synchronization, and rapid development at a low cost. / Master of Science
126

A Physical Layer Implementation of Reconfigurable Radio

Bhatia, Nikhil S. 10 December 2004 (has links)
The next generation of wireless communications will demand the use of software radio technology as the basic architecture to support multi-standard, multi-mode and future-proof radio designs. Software-defined radios are configurable devices in which the physical layer can be reprogrammed to support various standards. Field programmable architectures provide a suitable platform to achieve such run-time reconfigurations of the physical layer of the radio. This thesis explores the use of FPGAs in the design of reconfigurable radios. The results presented here demonstrate how FPGAs can be used to provide the flexibility, performance, efficiency and better resource utilization while meeting the speed and area constraints set by a particular design. The partial reconfiguration feature available in the state-of-the art FPGAs has been exploited to implement the baseband physical layer of reconfigurable radio which can be altered to support various modulations schemes for different wireless standards. The design flow for partial reconfiguration along with the implementation results on two different FPGA platforms is presented. The experiments presented in this thesis make use of System Generator for DSP, a productivity tool from Xilinx, to design and to simulate system-level models in a MATLAB/Simulink environment, and to obtain timing and resource utilization results before implementing the design on actual hardware. / Master of Science
127

Unstructured Finite Element Computations on Configurable Computers

Ramachandran, Karthik 18 August 1998 (has links)
Scientific solutions to physical problems are computationally intensive. With the increasing emphasis in the area of Custom Computing Machines, many physical problems are being solved using configurable computers. The Finite Element Method (FEM) is an efficient way of solving physical problems such as heat equations, stress analysis and two- and three-dimensional Poisson's equations. This thesis presents the solution to physical problems using the FEM on a configurable platform. The core computational unit in an iterative solution to the FEM, the matrix-by-vector multiplication, is developed in this thesis along with the framework necessary for implementing the FEM solution. The solutions for 2-D and 3-D Poisson's equations are implemented with the use of an adaptive mesh refinement method. The dominant computation in the method is matrix-by-vector multiplication and is performed on the Wildforce board, a configurable platform. The matrix-by-vector multiplication units developed in this thesis are basic mathematical units implemented on a configurable platform and can be used to accelerate any mathematical solution that involves such an operation. / Master of Science
128

A Toolkit for Rapid FPGA System Deployment

Parekh, Umang Kumar 17 November 2010 (has links)
FPGA implementation tools have not kept pace with growing FPGA density. It is common for non-trivial designs to take multiple hours to go through the entire FPGA toolflow (synthesis, mapping, placement, routing, bitstream generation). FPGA implementation tool runtime is a major hindrance to FPGA Productivity. In modern FPGA designs, designers often change logic and/or connections in an already existing design. If small modifications are made to a particular module in a design, then almost the entire design will go through most of the FPGA toolflow again. This can be time consuming for complex designs and hinder productivity of FPGA designers. The main goal of this thesis is to improve FPGA productivity by reducing FPGA design implementation time for modifications made to an already existing design for rapid system deployment. In this thesis, a toolkit is presented, which is capable of making design modifications at a lower level of abstraction for already existing designs on Xilinx FPGAs. The toolkit is a part of the open-source RapidSmith framework and includes the EDIF parser, mapper, placer, and router. It can be used to change logic and/or modify connections. Modules can be placed, unplaced, relocated, and/or duplicated with ease using this toolkit. Significant time-savings were seen by making use of the toolkit along-with the standard Xilinx FPGA toolflow, for making design modifications to already existing designs. / Master of Science
129

A Key Management Architecture for Securing Off-Chip Data Transfers on an FPGA

Graf, Jonathan 04 August 2004 (has links)
Data security is becoming ever more important in embedded and portable electronic devices. The sophistication of the analysis techniques used by attackers is amazingly advanced. Digital devices' external interfaces to memory and communications interfaces to other digital devices are vulnerable to malicious probing and examination. A hostile observer might be able to glean important details of a device's design from such an interface analysis. Defensive measures for protecting a device must therefore be even more sophisticated and robust. This thesis presents an architecture that acts as a secure wrapper around an embedded application on a Field Programmable Gate Array (FPGA). The architecture includes functional units that serve to authenticate a user over a secure serial interface, create a key with multiple layers of security, and encrypt an external memory interface using that key. In this way, the wrapper protects all of the digital interfaces of the embedded application from external analysis. Cryptographic methods built into the system include an RSA-related secure key exchange, the Secure Hash Algorithm, a certificate storage system, and the Data Encryption Standard algorithm in counter mode. The principles behind the encrypted external memory interface and the secure authentication interface can be adjusted as needed to form a secure wrapper for a wide variety of embedded FPGA applications. / Master of Science
130

Logical Representation of FPGAs and FPGA Circuits within the SCA

Carrick, Matthew 04 August 2009 (has links)
A very basic engineering tradeoff is performance versus flexibility and this design choice must be made when developing a software radio. Hardware devices such as General Purpose Processors (GPPs), Digital Signal Processors (DSPs), Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) all provide a designer with choices along the performance versus flexibility spectrum. The designer must choose a combination of GPP, DSP, FPGA and ASIC devices to balance the needs of performance versus flexibility. The Software Communications Architecture (SCA) is a specification for a software radio architecture produced by the Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS). The 2.2 revision of the SCA only implies support for GPPs, with no specified support for additional devices such as FPGAs. However, FPGA integration within the scope of the SCA is still possible. The integration of an additional processing hardware device other than a GPP requires the ability to logically represent the device within the Core Framework. This representation is implemented within the OSSIE Core Framework, an open source implementation of the SCA. The representation requires the support of multiple implementations of signal processing components within the framework, a simple component deployment model, and the abstraction of the FPGA interactions into a software component. / Master of Science

Page generated in 0.0676 seconds