Spelling suggestions: "subject:"finiteelementmethod."" "subject:"randelementemethode.""
361 |
Projection methods for contact problems in elasticityMeyer, Arnd, Unger, Roman 01 September 2006 (has links) (PDF)
The aim of the paper is showing, how projection methods can be used for computing contact problems in elasticity for different classes of obstacles. Starting with the projection idea for handling hanging nodes in finite element discretizations the extension of the method for handling penetrated nodes in contact problems will be described for some obstacle classes.
|
362 |
Betrachtungen zur Spektraläquivalenz für das Schurkomplement im Bramble-Pasciak-CG bei piezoelektrischen ProblemenMeyer, Arnd, Steinhorst, Peter 28 November 2007 (has links) (PDF)
Der Einsatz der Finite-Element-Methode bei linearen piezoelektrischen Problemen führt auf eine Systemmatrix der Struktur \[\left( \begin{array}{lr} C & B \\ B^T & -K \end{array} \right)\] mit positiv definiten Blockmatrizen C und K. Zur Lösung indefiniter Gleichungssysteme, die diese symmetrische Blockstruktur besitzen, kann der Bramble--Pasciak--CG eingesetzt werden. Entscheidend für eine schnelle Lösung ist es dabei, gute Vorkonditionierer für den Block C sowie für ein inexaktes Schurkomplement zu finden. Nachfolgend wird das Schurkomplement auf Spektraläquivalenz zur Blockmatrix K untersucht, für welche gute Vorkonditionierer bekannt sind. / Using the Finite-Element-Method with linear piezoelectric problems leads to a linear system of the structure \[\left( \begin{array}{lr} C & B \\ B^T & -K \end{array} \right)\] with symmetric positive definite matrix blocks C and K. The Bramble--Pasciak--CG is a possible solver for indefinite linear systems of equations with this special symmetric block structure. Essential for fast solving are good preconditioners for the block C as well as for an inexact Schur complement. In the following, the Schur complement is examined to spectral equivalence with the matrix K. For K quite good preconditioners are known.
|
363 |
p-FEM quadrature error analysis on tetrahedraEibner, Tino, Melenk, Jens Markus 30 November 2007 (has links) (PDF)
In this paper we consider the p-FEM for elliptic boundary value problems on tetrahedral meshes where the entries of the stiffness matrix are evaluated by numerical quadrature. Such a quadrature can be done by mapping the tetrahedron to a hexahedron via the Duffy transformation.
We show that for tensor product Gauss-Lobatto-Jacobi quadrature formulas with q+1=p+1 points in each direction and shape functions that are adapted to the quadrature formula, one again has discrete stability for the fully discrete p-FEM.
The present error analysis complements the work [Eibner/Melenk 2005] for the p-FEM on triangles/tetrahedra where it is shown that by adapting the shape functions to the quadrature formula, the stiffness matrix can be set up in optimal complexity.
|
364 |
Obstacle Description with Radial Basis Functions for Contact Problems in ElasticityUnger, Roman 03 February 2009 (has links) (PDF)
In this paper the obstacle description with Radial Basis
Functions for contact problems in three dimensional elasticity
will be done. A short Introduction of the idea of Radial Basis
Functions will be followed by the usage of Radial Basis
Functions for approximation of isosurfaces.
Then these isosurfaces are used for the obstacle-description
in three dimensional elasticity contact problems.
In the last part some computational examples will be shown.
|
365 |
On the Convergence Factor in Multilevel Methods for Solving 3D Elasticity ProblemsJung, Michael, Todorov, Todor D. 01 September 2006 (has links) (PDF)
The constant gamma in the strengthened Cauchy-Bunyakowskii-Schwarz inequality is a basic tool for constructing of two-level and multilevel preconditioning matrices. Therefore many authors consider estimates or computations of this quantity. In this paper the bilinear form arising from 3D linear elasticity problems is considered on a polyhedron. The cosine of the abstract angle between multilevel finite element subspaces is computed by a spectral analysis of a general eigenvalue problem. Octasection and bisection approaches are used for refining the triangulations. Tetrahedron, pentahedron and hexahedron meshes are considered. The dependence of the constant $\gamma$ on the Poisson ratio is presented graphically.
|
366 |
Mindlin-Reissner-Platte: Einige Elemente, Fehlerschätzer und ErgebnisseMeyer, Arnd, Nestler, Peter 08 September 2006 (has links) (PDF)
Some problems and results in connection with error estimators for modern elements of the Mindlin Reissner equation for plates are discussed.
|
367 |
A New Efficient Preconditioner for Crack Growth ProblemsMeyer, Arnd 11 September 2006 (has links) (PDF)
A new preconditioner for the quick solution of a crack growth problem in 2D adaptive finite element analysis is proposed. Numerical experiments demonstrate the power of the method.
|
368 |
Überlegungen zur Parameterwahl im Bramble-Pasciak-CG für gemischte FEMMeyer, Arnd, Steinhorst, Peter 11 September 2006 (has links) (PDF)
Variants on the choice of nessecary control parameters in the generalized Bramble-Pasciak-CG method are discussed.
|
369 |
Mindlin-Reissner-Platte : Vergleich der Fehlerindikatoren in Bezug auf die NetzsteuerungMeyer, Arnd, Nestler, Peter 11 September 2006 (has links) (PDF)
Es werden die vorgestellten Fehlerindikatoren in Bezug auf die Netzsteuerung anhand von drei Beispielen analysiert. Im weiteren werden auch die einzelen MITC-Elemente und ihre Besonderheiten bei dieser Analyse der Netzsteuerung mit berücksichtigt. Als Abschluss werden einige spezielle Fehlerindikatoren vorgestellt, die für die weitere Entwicklung einige interessante Eigenschaften aufzeigen.
Im zweiten Teil geht es um die Auswertung mit dem speziellen Ziel der Findung einer optimalen Netzsteuerung. Dabei wird auf die Besonderheiten der Elemente eingegangen sowie auf die Plattendicke und auf ihre Wirkung bei den Fehlerindikatoren. Mit diesen Erkenntnissen wird ein spezieller Fehlerindikator vorgestellt, der die Vorteile aller Fehlerindikatoren aus Teil I vereint.
|
370 |
Multilevel preconditioning operators on locally modified gridsJung, Michael, Matsokin, Aleksandr M., Nepomnyaschikh, Sergey V., Tkachov, Yu. A. 11 September 2006 (has links) (PDF)
Systems of grid equations that approximate elliptic boundary value problems on locally modified grids are considered. The triangulation, which approximates the boundary with second order of accuracy, is generated from an initial uniform triangulation by shifting nodes near the boundary according to special rules. This "locally modified" grid possesses several significant features: this triangulation has a regular structure, the generation of the triangulation is rather fast, this construction allows to use multilevel preconditioning (BPX-like) methods. The proposed iterative methods for solving elliptic boundary value problems approximately are based on two approaches: The fictitious space method, i.e. the reduction of the original problem to a problem in an auxiliary (fictitious) space, and the multilevel decomposition method, i.e. the construction of preconditioners by decomposing functions on hierarchical grids. The convergence rate of the corresponding iterative process with the preconditioner obtained is independent of the mesh size. The construction of the grid and the preconditioning operator for the three dimensional problem can be done in the same way.
|
Page generated in 0.0912 seconds