• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 104
  • 60
  • 25
  • 19
  • 14
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 415
  • 415
  • 241
  • 157
  • 94
  • 93
  • 79
  • 71
  • 71
  • 68
  • 66
  • 59
  • 58
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Volumes finis et solutions renormalisées, applications à des systèmes couplés. / Finite volumes and renormalized solutions : applications to coupled systems

Leclavier, Sarah 12 December 2017 (has links)
On s’intéresse dans cette thèse à montrer que la solution approchée, par la méthode des volumes finis, converge vers la solution renormalisée de problèmes elliptiques ou paraboliques à donnée L1. Dans la première partie nous étudions une équation de convection-diffusion ellliptique à donnée L1. En adaptant la stratégie développée pour les solutions renormaliséesà la méthode des volumes finis, nous montrons que la solution approchée converge vers l’unique solution renormalisée.Dans la deuxième partie nous nous intéressons à un problème parabolique nonlinéaire à donnée L1. En utilisant une version discrète de résultats de compacité classiques, nous montrons que les résultats obtenues dans le cas elliptique restentvrais dans le cas parabolique. Dans la troisième partie nous montrons des résultats similaires pour une équationparabolique doublement non-linéaire à donnée L1. Le caractère doublement nonlinéaire de l’équation crée des difficultés supplémentaires par rapport à la partie précédente, notamment car la règle de dérivation en chaîne ne s’applique pas dansle cas discret. Enfin, dans la quatrième partie, nous utilisons les résultats établis précédemment pour étudier un système de type thermoviscoélasticité. Nous montrons que la solution approchée, obtenue par un schéma éléments finis-volumes finis, converge vers une solution faible-renormalisée du système. / In this thesis we are interested in proving that the approximate solution, obtained by the finite volume method, converges to the unique renormalized solution of elliptic and parabolic equations with L1 data. In the first part we study an elliptic convection-diffusion equation with L1 data. Mixing the strategy developed for renormalized solution and the finite volume method,we prove that the approximate solution converges to the unique renormalized solution. In the second part we investigate a nonlinear parabolic equation with L1 data. Using a discrete version of classical compactness results, we show that the results obtaines previously in the elliptic case hold true in the parabolic case. In the third part we prove similar results for a doubly nonlinear parabolic equation with L1 data. The doubly nonlinear character of the equation makes new difficulties with respect to the previous part, especially since the chain rule formula does not apply in the discrete case. Finaly, in the fourth part we use the results established previously to investigate a system of thermoviscoelasticity kind. We show that the approximate solution,obtaines by finite element-finite volume scheme, converges to a weak-renormalized solution of the system.
292

Développement d'une méthode numérique multi-échelle et multi-approche appliquée à l'atomisation / Development of a multi-approach and multi-scale numerical method applied to atomization

Dabonneville, Felix 20 June 2018 (has links)
L’objet de cette thèse a été de développer une méthode numérique multi-approche et multiéchelle appliquée à la simulation d’écoulements diphasiques de fluides non miscibles, incompressibles et isothermiques et plus particulièrement à l’atomisation primaire. Cette méthode repose sur une approche couplée entre un maillage local raffiné et un maillage global plus large. Le couplage est explicite avec raffinement en temps, c’est-à-dire que chaque domaine évolue selon son propre pas de temps. Afin de prendre en compte les différentes échelles en temps et en espace dans le processus d’atomisation, cette méthode numérique couple deux méthodes numériques diphasiques différentes : une méthode de capture de l’interface dans le domaine local raffiné près de l’injecteur et une méthode de sous-maille dans le domaine global grossier et la région du spray dispersé. Le code développé et parallélisé dans le logiciel OpenFOAMR s’avère capable de réduire de manière significative le temps de calcul d’une simulation aux grandes échelles de l’atomisation dans un injecteur coaxial, tout en prédisant de manière fiable les données expérimentales. / The purpose of this work has been to develop a multi-approach and multi-scale numerical method applied to the simulation of two-phase flows involving non miscible, incompressible and isothermal fluids, and more specifically primary atomization. This method is based on a coupled approach between a refined local mesh and a coarser global mesh. The coupling is explicit with refinement in time, i.e. each domain evolves following its own time-step. In order to account for the different scales in space and time of the atomization process, this numerical method couples two different two-phase numerical methods: an interface capturing method in the refined local domain near the injector and a sub-grid method in the coarser global domain in the dispersed spray region. The code has been developed and parallelized in the OpenFOAMR software. It is able to reduce significantly the computational cost of a large eddy simulation of a coaxial atomization, while predicting with accuracy the experimental data.
293

Schémas volumes finis à mailles décalées pour la dynamique des gaz / Finite volume schemes on staggered grids for gas dynamics

Llobell, Julie 24 October 2018 (has links)
L'objectif de cette thèse est de développer un nouveau schéma numérique du type volumes finis pour la dynamique des gaz. Dans deux articles, F.Berthelin, T.Goudon et S.Minjeaud proposent de résoudre le système des équations d'Euler barotrope en dimension 1 d'espace, avec un schéma d'ordre 1 fonctionnant sur grilles décalées et dont la conception des flux est inspirée des schémas cinétiques. Nous proposons d'enrichir ce schéma afin qu'il puisse résoudre le système des équations d'Euler barotrope ou complet, en dimension 2 d'espace sur maillage cartésien ou non structuré, possiblement à l'ordre 2 et le cas échéant à bas nombres de Mach. Nous commencerons par développer une version 2D du schéma sur grilles cartésiennes (ou MAC) à l’ordre 2 via une méthode de type MUSCL, d'abord pour les équations barotropes puis pour les équations complètes. Ces dernières demandent de traiter une équation d’énergie supplémentaire et l’un des problèmes -résolu- est de trouver une définition discrète convenable de l’énergie totale telle qu'elle satisfasse une équation conservative locale. Dans un troisième chapitre nous étudierons le passage à la limite du compressible vers l'incompressible et nous verrons comment utiliser les atouts de notre schéma afin de le modifier et d'en faire un schéma Asymptotic Preserving pour des écoulements à bas nombres de Mach. Dans un quatrième temps nous proposerons une adaptation du schéma sur des maillages non structurés. Notre approche sera fortement inspirée des méthodes DDFV et pourra présenter des avantages dans les régimes à faibles nombres de Mach. Cette thèse se termine par un cinquième chapitre issu d’une collaboration lors du CEMRACS 2017, où le point de vue considéré n’est plus macroscopique mais microscopique. Nous commencerons par étudier un modèle micro/macro idéalisé auquel un processus stochastique a été ajouté puis nous tenterons d'en déduire un modèle à grande échelle pour un système fortement couplé, qui soit consistant avec la description micro/macro sous-jacente du problème physique. / The objective of this thesis is to develop a new numerical scheme of finite volume type for gas dynamics. In two articles, F.Berthelin, T.Goudon and S.Minjeaud propose to solve the barotropic Euler system in dimension 1 of space, with a first order scheme that works on staggered grids and of which fluxes are inspired by kinetic schemes. We propose to enhance this scheme so that it can solve the barotropic or complete Euler systems, in dimension 2 of space on Cartesian or unstructured grids, possibly at order 2 and at Low Mach numbers where appropriate. We begin with the development of a 2D version of the scheme on Cartesian (or MAC) grids, at order 2 via a MUSCL type method, for the barotropic equations at first and then for the complete equations. The latter require to handle with an additional energy equation and one of the -solved- problems is to find a suitable discrete definition of the total energy such that it satisfies a local conservative equation. In a third chapter we study the transition from the compressible case to the incompressible limit and we shall see how to use the advantages of our initial scheme in order to make it an Asymptotic Preserving scheme at low Mach numbers. In a fourth chapter we propose an adaptation of the scheme on unstructured meshes. Our approach is strongly inspired by the DDFV methods and may have advantages in low-Mach regimes.This thesis ends with a fifth chapter issued from a collaboration during CEMRACS 2017, where the considered point of view is no longer macroscopic but microscopic. We begin by studying a simplified micro/macro model with an added stochastic process and then we attempt to deduce a large-scale model for a strongly coupled system which has to be consistent with the underlying micro / macro description of the physical problem.
294

Okrajové podmínky pro stratifikované proudění / Boundary conditions for stratified flows

Řezníček, Hynek January 2014 (has links)
In this thesis is presented mathematical model of stratified 2D flow of viscous incopressible fluid and its program realization. Basic equations of fluid flow in Boussinesq approximation were solved by finite volume method on structured nonortogonal grid. Discretization was done by the principle of semi-discretisation. The space derivative was solved by AUSM me- thod with MUSCL velocity reconstruction. The viscid terms were solved through auxiliary grids. During time discretization artificial compressibility method was used in dual time. The resulting system of ODEs is integrated in time by a suitable Runge-Kutta multistage scheme. Numerical experiments were calculated for flow with Reynolds number equals 1000. Further 3 numerical experiments are presented with different boundary conditions. 1
295

Méthodes numériques pour les plasmas sur architectures multicoeurs / Numerical methods for plasmas on massively parallel architectures

Massaro, Michel 16 December 2016 (has links)
Cette thèse traite de la résolution du système de la Magnéto-Hydro-Dynamique (MHD) sur architectures massivement parallèles. Ce système est un système hyperbolique de lois de conservation. Pour des raisons de coût en termes de temps et d'espace, nous utilisons la méthode des volumes finis. Ces critères sont particulièrement importants dans le cas de la MHD, car les solutions obtenues peuvent présenter de nombreuses ondes de choc et être très turbulentes. L'approche d'un phénomène physique nécessite par conséquent de travailler sur un maillage fin entrainant une grande quantité de calcul. Afin de réduire les temps d'exécution des algorithmes proposés, nous proposons des méthodes d'optimisations pour l'exécution sur CPU telles que l'utilisation d'OpenMP pour une parallélisation automatique ou le parcours optimisé afin de bénéficier des effets de cache. Une implémentation sur architecture GPU à l'aide de la librairie OpenCL est également proposée. Dans le but de conserver une coalescence maximale des données en mémoire, nous proposons une méthode utilisant un splitting directionnel associé à une méthode de transposition optimisée pour les implémentations parallèle. Dans la dernière partie, nous présentons la librairie SCHNAPS. Ce solveur utilisant la méthode Galerkin Discontinu (GD) utilise des implémentations OpenCL et StarPU afin de profiter au maximum des avantages de la programmation hybride. / This thesis deals with the resolution of the Magneto-Hydro-Dynamic (MHD) system on massively parallel architectures. This problem is an hyperbolic system of conservation laws. For cost reasons in terms of time and space, we use the finite volume method. These criteria are particularly important in the case of MHD because the solutions obtained may have many shock waves and be very turbulent. The approach of a physical phenomenon requires working on a fine mesh which involves a large quantity of computations. In order to reduce the execution time of the proposed algorithms, we present several optimization methods for CPU execution such as the use of OpenMP for an automatic parallelization or an optimized way to browse a grid in order to benefit from cache effects. An implementation on GPU architecture using the OpenCL library is also available. To maintain a maximal coalescence of the data in memory, we propose a method using a directional splitting associated with an optimized transposition method for parallel implementations. In the last part, we present the SCHNAPS library. This solver using the Galerkin Disontinu (GD) method uses OpenCL and StarPU implementations in order to maximize the benefits of hybrid programming.
296

Methode zur Online-Diagnose der Verschmutzungen von Dampferzeugermembranwänden

Graube-Kühne, Franziska 23 February 2021 (has links)
An den Membranwänden von Dampferzeugern treten häufig Beläge auf. Da moderne Energiepolitik unter anderem zu flexiblem Einsatz der Kraftwerke in Teil- und Volllast oder dem Einsatz von Brennstoffmischungen führt, ändern sich diese Beläge in ihrer Menge und Beschaffenheit ständig. Es gibt eine Vielzahl an Reinigungsmethoden, um die Beläge zu entfernen. Für deren optimalen Einsatz sind tiefer gehende Kenntnisse über die Ablagerungen notwendig. Deswegen gibt es verschiedene Modelle zur Bilanzierung des Verdampfers und Sensoren, mit denen die Belagssituation erfasst werden kann. Diese sitzen allerdings meist so, dass sie einen lokal begrenzten Bereich erfassen. Die Bilanzmodelle sind in der Regel auf den gesamten Verdampfer ausgerichtet, sodass man nur Aussagen über dessen Gesamteffizienz erhält und kein Urteil über die Belagsbeschaffenheit fällen kann. Mit den Sensoren lässt sich zwar gut erkennen, wo sich Ablagerungen befinden, aber nur bei wenigen ist eine verlässliche Bewertung über den vorherrschenden Typ der Ablagerung möglich. Ursache ist, dass sie nur auf die Messung eines Effektes ausgerichtet sind. Um diesem Problem entgegenzuwirken, ist die Kopplung einer Bilanzierung mit einem oder mehreren Sensoren als Stützstellen zweckmäßig. Die vorliegende Arbeit nutzt eine weit verbreitete Messmethode, die Messung der Temperatur an Rohrscheitel und Steg der Membranwandaußenseite, um zunächst lokale Bilanzmodelle aufzustellen, welche den Verdampfer nicht nur als Gesamtsystem, sondern in Ebenen aufgeteilt beschreiben. Die Bilanzmodelle umfassen sowohl den Wasser-Dampf-Kreislauf als auch den Feuerraum je eines unterkritischen und eines überkritischen Dampferzeugers. Sie geben Aufschluss über Temperaturverteilungen und die örtlich dem Wasser-Dampf-Kreislauf zugeführte Wärme. Zusätzlich liefern sie eine Prognose für die Belagsverteilung über der Verdampferhöhe. Beide Modelle werden in realen Kraftwerken angewendet. Das Bilanzmodell für den unterkritischen Dampferzeuger findet in einem Müllheizkraftwerk (MHKW) und das überkritische Bilanzmodell in einem Braunkohlekraftwerk Anwendung. Zur Validierung werden die Bilanzmodelle im Rahmen der Arbeit je mit bereits im Einsatz befindlichen globalen Bilanzmodellen und im Fall des überkritischen Dampferzeugers zusätzlich mit einer weiteren ebenenweisen Bilanzierung verglichen. Um weitere Informationen zu erhalten, sind diese Bilanzmodelle mit den Rohrscheitel- und Stegtemperatursignalen gekoppelt, sodass sie Informationen für einen Ablagerungssensor liefern. Dieser berechnet den lokal auftretenden Belagswiderstand. Der Sensor basiert auf der Fourier’schen Wärmeleitungsgleichung und berechnet auftretende Wärmeströme mit der Methode der finiten Volumen (FVM). Die Verwendung des Sensors ist nicht nur auf ebene Wänden beschränkt, sondern auch für die Rohr-Steg-Geometrie von Membranwänden möglich. Um mit dem Sensor realitätsnahe Ergebnisse zu erhalten, werden Effekte wie Verschattung durch die Geometrie sowie Strahlung im Spalt hinterlüfteter Platten berücksichtigt. Die Validierung des Sensors erfolgt durch eine präparierte Feuerfestplatte, in welche Thermoelemente eingelassen sind. Dieser Aufbau wird mittels Sensor simuliert und das berechnete Temperaturfeld mit den Messdaten verglichen. Um Informationen über den Belagswiderstand erhalten zu können, ist der Ablagerungssensor mit Reglern ausgerüstet, welche über das Temperatursignal am Steg oder das Temperaturdifferenzsignal zwischen Rohrscheitel und Steg als Sollwert den Istwert der Belagsdicke, der Temperaturleitfähigkeit oder andere Werte regeln können. Mithilfe des Sensors kann so der Aufbau des Belags über der Reisezeit des MHKWs bestimmt werden. Zusätzlich wird der Ablagerungssensor eingesetzt, um mögliche Umbaumaßnahmen zu bewerten. Auch für den überkritischen Dampferzeuger lassen sich verschiedene Belagssituationen nachbilden. Im Rahmen der Arbeit sind dafür verschiedene Fälle gezeigt. Im Abschluss wird vorgestellt, wie der Ablagerungssensor in den Betrieb einer Realanlage integriert werden könnte.:Abkürzungs- und Symbolverzeichnis VII 1 Einleitung, Problem- und Zielstellung der Arbeit 1 2 Einordnung von Dampferzeugern 3 3 Erfassung der Belagssituation, ihrer Ursachen und ihrer Auswirkungen 9 3.1 Diskontinuierliche Sensormesssysteme zur Erfassung der Belagssituation 12 3.2 Kontinuierliche Messsysteme zur Erfassung der Belagssituation 14 3.3 Thermodynamische Bilanzierung 19 3.3.1 Thermodynamische Betrachtung des Dampferzeugerwirkungsgrades 20 3.3.2 Unterkritische Kesselanlagen 22 3.3.3 Überkritische Kesselanlagen 23 3.4 Kombinierte Systeme 25 4 Bilanzierung des Wasser-Dampf-Kreislaufes und des Feuerraumes zur Bestimmung der Wärmeauskopplung 29 4.1 Bilanzierung vom Feuerraum zum Wasser-Dampf-Kreislauf 30 4.1.1 Bilanzierung des Feuerraumes 30 4.1.2 Bilanzierung des Wasser-Dampf-Kreislaufes 34 4.2 Bilanzierung vom Wasser-Dampf-Kreislauf zum Feuerraum 37 4.2.1 Bilanzierung des Wasser-Dampf-Kreislaufes 37 4.2.2 Bilanzierung des Feuerraums 39 5 Entwicklung eines Ablagerungssensors für zugestellte und nicht-zugestellte Membranwände 43 5.1 Zielstellung 43 5.2 Modellansätze 44 5.2.1 Rahmenbedingungen und Zielstellung für einen Ablagerungssensor eines unterkritischen Dampferzeugers 47 5.2.2 Rahmenbedingungen und Zielstellung für einen Ablagerungssensor eines überkritischen Dampferzeugers 48 5.3 Einordnung des Programms im Kraftwerk 51 5.4 Programm-Aufbau 51 V Inhaltsverzeichnis 5.5 Notwendige Rand- und Anfangsbedingungen sowie Eingangsparameter 53 6 Einsatz der Bilanzmodelle und des Ablagerungssensors 55 6.1 Bilanzierung unterkritischer Kesselanlagen am Beispiel eines Müllheizkraftwerks 55 6.1.1 Belagssituation und Schutzmaßnahmen 55 6.1.2 Vorhandene Messtechnik 56 6.1.3 Bilanzmodell von Feuerraum und Wasser-Dampf-Kreislauf 57 6.1.4 Anwendung des Ablagerungssensors auf hinterlüftete Platten 63 6.1.5 Auswertung und Handlungsempfehlung für den Naturumlaufkessel 75 6.2 Bilanzierung überkritischer Kesselanlagen am Beispiel eines Braunkohle-befeuerten Kraftwerks 77 6.2.1 Das Kraftwerk 77 6.2.2 Vorhandene Messtechnik 79 6.2.3 Bilanzierungen mit Realdaten 80 6.2.4 Bewertung der Ergebnisse 85 6.2.5 Validierung der Ergebnisse 87 6.2.6 Bilanzierung der Verdampferwand mit dem Ablagerungssensor 89 6.2.7 Simulation mit realen Messwerten 95 6.2.8 Auswertung und Handlungsempfehlung für den überkritischen Dampferzeuger 101 7 Zusammenfassung und Ausblick 103 Literatur 105 Abbildungsverzeichnis 113 Tabellenverzeichnis 117 Anhang 118 A Berechnungsmethoden für die Bilanzmodelle 119 A.1 Vergasungsrechnung 119 A.2 Wärmeauskopplung nach Doležal 122 A.3 Berechnung von Wärmeübergangskoeffizienten 122 A.4 Berechnung der Umlaufzahl 124 A.5 Wärmeübergang wasserseitig 125 A.6 Widerstandsberechnung 129 B Ergebnisse aus der Bilanzierung des überkritischen Dampferzeugers 131 B.1 22.01.2020 3:46 Uhr 131 B.2 22.01.2020 7:30 Uhr 132 B.3 29.01.2020 17:20 Uhr 134 B.4 02.02.2020 15:38 Uhr 135 B.5 07.02.2020 12:11 Uhr 136 C Befehlsreferenzen für den Ablagerungssensor 139 / Deposits stick to the surface of evaporators in steam generators. Modern energy politics force power plants to operate flexible, under full and partial load or to use fuel mixtures. These necessities influence the deposits in amount and structure. Thus, numerous cleaning methods exist to remove them. For optimal use of these cleaning methods, a deeper knowledge about the deposits is necessary. Hence, different models were developed to balance the evaporator, whereas sensors trace the deposit situation, though these sensors are mostly limited to local spots. Normally, the models balance the whole evaporator as one boundary system making assessment of the overall efficiency possible, while local deposit structures cannot be detected. In contrast, the sensors serve for detecting the deposits locally. Yet, the classification of the deposit type is not possible for most sensor types, nonetheless. Reason is the limitation to one specific effect. A coupling of both the balancing model and one or more sensors may help in counteracting that problem. The present work uses a widely established measurement method: the measurement of temperature both at tube crown and bridge via thermo couples. They serve for setting up balancing models that split the evaporator in several segments. These models incorporate combustion chamber as well as water-steam-cycle of each an undercritical and a supercritical steam generator. They shed light on temperature distribution throughout the evaporator height and the heat supplied to the water-steam-cycle. Additionally, they provide a height-dependent prediction of the deposit distribution. Both the model for an undercritical and the one for a supercritical steam generator are applied to existing power plants. The undercritical model is used to analyze a municipal waste incinerator, whereas the supercritical model assesses a lignite-fired power plant. They are validated with already established global balancing models. Furthermore, an existing levelwise online balancing tool was applied to the supercritical steam generator and was compared for validation. For further information, a coupling of the balancing models with the temperature measurement signal was realized, which provides additional information used by a deposit sensor. This sensor calculates the locally occurring deposit resistance. It is based on Fourier’s heat equation and calculates by use of a finite volume method. The sensor is not limited to even walls, but can be applied to membrane walls as well. Effects like shadowing of the 2D-geometry or gap radiation are implemented to gain realistic results. Validation is realized with a primed tile, having ingrained thermo couples. The tile is reproduced geometrically with the deposit sensor and calculated. The resulting temperature field may be compared to the measured values. For further information about the deposit, the deposit sensor also includes controllers, adjusting deposit thickness, thermal diffusivity or other parameters. Reference values are the temperature signal at crown and bridge. By use of the sensor, the deposit growth inside the incinerator is evaluated during its travel time. Additionally, the sensor helps in judging over potential changes in reconstruction works. Within the supercritical steam generator, an assessment of the deposit situation is likewise possible. In the current thesis, different deposit setups are implemented. Finally, a possible integration of the sensor into the process control is presented.:Abkürzungs- und Symbolverzeichnis VII 1 Einleitung, Problem- und Zielstellung der Arbeit 1 2 Einordnung von Dampferzeugern 3 3 Erfassung der Belagssituation, ihrer Ursachen und ihrer Auswirkungen 9 3.1 Diskontinuierliche Sensormesssysteme zur Erfassung der Belagssituation 12 3.2 Kontinuierliche Messsysteme zur Erfassung der Belagssituation 14 3.3 Thermodynamische Bilanzierung 19 3.3.1 Thermodynamische Betrachtung des Dampferzeugerwirkungsgrades 20 3.3.2 Unterkritische Kesselanlagen 22 3.3.3 Überkritische Kesselanlagen 23 3.4 Kombinierte Systeme 25 4 Bilanzierung des Wasser-Dampf-Kreislaufes und des Feuerraumes zur Bestimmung der Wärmeauskopplung 29 4.1 Bilanzierung vom Feuerraum zum Wasser-Dampf-Kreislauf 30 4.1.1 Bilanzierung des Feuerraumes 30 4.1.2 Bilanzierung des Wasser-Dampf-Kreislaufes 34 4.2 Bilanzierung vom Wasser-Dampf-Kreislauf zum Feuerraum 37 4.2.1 Bilanzierung des Wasser-Dampf-Kreislaufes 37 4.2.2 Bilanzierung des Feuerraums 39 5 Entwicklung eines Ablagerungssensors für zugestellte und nicht-zugestellte Membranwände 43 5.1 Zielstellung 43 5.2 Modellansätze 44 5.2.1 Rahmenbedingungen und Zielstellung für einen Ablagerungssensor eines unterkritischen Dampferzeugers 47 5.2.2 Rahmenbedingungen und Zielstellung für einen Ablagerungssensor eines überkritischen Dampferzeugers 48 5.3 Einordnung des Programms im Kraftwerk 51 5.4 Programm-Aufbau 51 V Inhaltsverzeichnis 5.5 Notwendige Rand- und Anfangsbedingungen sowie Eingangsparameter 53 6 Einsatz der Bilanzmodelle und des Ablagerungssensors 55 6.1 Bilanzierung unterkritischer Kesselanlagen am Beispiel eines Müllheizkraftwerks 55 6.1.1 Belagssituation und Schutzmaßnahmen 55 6.1.2 Vorhandene Messtechnik 56 6.1.3 Bilanzmodell von Feuerraum und Wasser-Dampf-Kreislauf 57 6.1.4 Anwendung des Ablagerungssensors auf hinterlüftete Platten 63 6.1.5 Auswertung und Handlungsempfehlung für den Naturumlaufkessel 75 6.2 Bilanzierung überkritischer Kesselanlagen am Beispiel eines Braunkohle-befeuerten Kraftwerks 77 6.2.1 Das Kraftwerk 77 6.2.2 Vorhandene Messtechnik 79 6.2.3 Bilanzierungen mit Realdaten 80 6.2.4 Bewertung der Ergebnisse 85 6.2.5 Validierung der Ergebnisse 87 6.2.6 Bilanzierung der Verdampferwand mit dem Ablagerungssensor 89 6.2.7 Simulation mit realen Messwerten 95 6.2.8 Auswertung und Handlungsempfehlung für den überkritischen Dampferzeuger 101 7 Zusammenfassung und Ausblick 103 Literatur 105 Abbildungsverzeichnis 113 Tabellenverzeichnis 117 Anhang 118 A Berechnungsmethoden für die Bilanzmodelle 119 A.1 Vergasungsrechnung 119 A.2 Wärmeauskopplung nach Doležal 122 A.3 Berechnung von Wärmeübergangskoeffizienten 122 A.4 Berechnung der Umlaufzahl 124 A.5 Wärmeübergang wasserseitig 125 A.6 Widerstandsberechnung 129 B Ergebnisse aus der Bilanzierung des überkritischen Dampferzeugers 131 B.1 22.01.2020 3:46 Uhr 131 B.2 22.01.2020 7:30 Uhr 132 B.3 29.01.2020 17:20 Uhr 134 B.4 02.02.2020 15:38 Uhr 135 B.5 07.02.2020 12:11 Uhr 136 C Befehlsreferenzen für den Ablagerungssensor 139
297

Simulation of blood flows in a stenosed and bifurcating artery using finite volume methods and OpenFOAM

Nagarathnam, Sunitha 30 August 2022 (has links) (PDF)
Numerical simulations of the complex flows of complex (viscoelastic) fluids are investigated. The primary fluid investigated in this thesis is human blood, a complex fluid which can be modelled via viscoelastic constitutive models. The most commonly used constitutive models for viscoelastic fluids include the OldroydB, Giesekus, Johnson-Segalman, Finitely Extensible Non-Linear Elastic (FENE), Phan-Thein-Tanner (PTT) models etc. Our Numerical approach is based on the finite volume methods implemented on the OpenFOAM platform. We employ the Giesekus, Oldroyd-B, and Generalized Oldroyd-B viscoelastic constitutive models in this thesis, depending on the underlying context. Numerical validation of our results is conducted via the most used benchmark flow problems for viscoelastic fluid flow. The robust and efficient numerical methodologies are then deployed to investigate the flow characteristics, and hence illustrate various novel behavior, for blood flow in stenosed and bifurcated arteries. The present work took advantage of the availability of a reasonable set of viscoelastic constitutive model solvers within OpenFOAM, specifically the viscoelasticFluidFoam solver which we modified and developed to suit our focused needs for blood flow computations. The modified computational algorithms were successfully validated against well-known benchmark flow problems in the literature. Noting that the Giesekus viscoelastic constitutive model is a generalization of both the Oldroyd-B and Generalized Oldroyd-B models, the validation of results is carried out via the Giesekus model enabling us to develop a general-purpose code capable of simulating several viscoelastic constitutive models. The main results were otherwise presented for the Oldroyd-B and Generalized Oldroyd-B models as these are the most applicable to blood flow modelling. The results demonstrate that the velocity spurt through the stenosis is directly proportional to the constriction caused by the stenosis. The higher the blockage from the constriction, the higher the corresponding velocity spurt through the constriction. This velocity behavior, as the constriction blockage increases, correspondingly increase the wall shear stresses. High wall shear stresses significantly increase the possibility of rupture of the stenosis/blockage. This can lead to catastrophic consequences in the usual case where the stenosis is caused by tumor growth.
298

Construction and Evaluation of a Numerical Model for Heat Transfer in a Ladle During Pre-heating : A Finite Volume Approach to the Diffusion Equation using Julia

Bjurstam, Gustaf January 2023 (has links)
Heat transfer is key to understanding many processes in engineering. At a steel mill heat transfer is absolutely crucial to understanding most of the processes. One such a process is the pre-heating of a freshly relined ladle. The goal of this project was to develop code which could solve the diffusion equation, in an arbitrary three-dimensional geometry, subject to Dirichlet, Robin, Neumann, and certain kinds of non-linear boundary conditions. In order to approximate the solution the code uses a cell centred finite volume methodology. In order to verify the computational correctness of the code it was used on three simple cases where analytic solutions are known, a rarity for three-dimensional boundary value problems. A mathematical model for the heat conduction inside a ladle at Ovako’s site in Hofors was developed. The model was evaluated based on measurements on the outside of the ladle as well as from a temperature probe inside the bottom of the ladle. The model was found to adequately agree with the measured temperature. The code can thus be used to find a more optimal heating regiment of the ladle, possibly reducing emissions. / Värmeöverföring är nyckeln till att förstå många processer inom teknik. På ett stålverk är värmeöverföring helt avgörande för att förstå de flesta av processerna. En sådan process är förvärmning av en nymurad skänk. Målet med detta projekt var att utveckla en kod som kunde lösa diffusionsekvationen i en godtycklig tredimensionell geometri under Dirichlet-, Robin-, Neumann- och vissa typer av icke-linjära randvillkor. För att approximera lösningen använder koden en cellcentrerad finita volymmetodik. För att verifiera kodens beräkningsmässiga korrekthet användes den i tre enkla fall där analytiska lösningar är kända, vilket är en sällsynthet för tredimensionella randvärdesproblem. En matematisk modell för värmeledningen i en skänk vid Ovakos anläggning i Hofors utvecklades. Modellen utvärderades utifrån mätningar på utsidan av skänken samt från ett termoelement inuti botten av skänken. Modellen visade sig stämma väl överens med den uppmätta temperaturen. Koden kan därför användas för att hitta ett mer optimalt uppvärmningsschema för skänken, vilket eventuellt kan minska utsläppen från processen.
299

Modeling the Dynamics of Liquid Metal in Fusion Liquid Walls Using Maxwell-Navier-Stokes Equations

Murugaiyan, Suresh 23 February 2024 (has links)
The dissertation explores a framework for numerically simulating the deformation of the liquid metal wall's free surface in Z-pinch fusion devices. This research is conducted in the context of utilizing liquid metals as plasma-facing components in fusion reactors. In the Z-pinch fusion process, electric current travels through a plasma column and enters into a pool of liquid metal. The current flowing through the liquid metal generates Lorentz force, which deforms the free surface of the liquid metal. Modeling this phenomenon is essential as it offers insights into the feasibility of using liquid metal as an electrode wall in such fusion devices. The conventional magneto-hydrodynamic (MHD) formulation aims at modeling the situation where an external magnetic field is applied to flows involving electrically conducting liquids, with the initial magnetic field is known and then evolved over time through magnetic induction equation. However, in Z-pinch fusion devices, the electric current is directly injected into a conducting liquid. In these situations, an analytical expression for the magnetic field generated by the applied current is not readily available, necessitating numerical calculations. Moreover, the deformation of the liquid metal surface changes the geometry of the current path over time and the resulting magnetic field. By directly solving the Maxwell equations in combination with Navier-Stokes equations, it becomes possible to predict the magnetic field even when the fluid is in motion. In this dissertation, a numerical framework utilizing the Maxwell-Navier-Stokes system is explored to successfully capture the deformation of the liquid metal's free surface due to applied electric current. / Doctor of Philosophy / In this dissertation, a method is described that uses a computer to simulate how the initially stable, flat surface of liquid metal deforms when subjected to electrical currents in Z-pinch fusion devices, a specific type of nuclear fusion technology. Z-pinch fusion devices generate plasma, a hot fluid-like substance, through the nuclear fusion process, triggered and maintained by strong pulsated current. There's a growing interest in using liquid metal as the first layer of material to isolate the hot plasma from the rest of the nuclear fusion reactor body, rather than solid materials, due to its unique benefits. However, the Z-pinch fusion process, by introducing electric currents through the liquid metal layer, induces a Lorentz force that consequently deforms the surface of the liquid metal. Developing a tool to predict this deformation is vital as it aids in evaluating the potential of using liquid metal as a plasma-facing layer over solid materials in these fusion devices. The simulation tools presented in this dissertation are able to successfully captures the dynamics of how the liquid metal surface deforms under the impact of electrical currents.
300

Phase field modeling of flaw-induced hydride precipitation kinetics in metals

Nigro, Claudio F. January 2017 (has links)
Hydrogen embrittlement can manifest itself as hydride formation in structures when in contact with hydrogen-rich environments, e.g. in space and nuclear power applications. To supplant experimentation, modeling of such phenomena is beneficial to make life prediction reduce cost and increase the understanding. In the present work, two different approaches based on phase field theory are employed to study the precipitation kinetics of a second phase in a metal, with a special focus on the application of hydride formation in hexagonal close-packed metals. For both presented models, a single component of the non-conserved order parameter is utilized to represent the microstructural evolution. Throughout the modelling the total free energy of the system is minimized through the time-dependent Ginzburg-Landau equation, which includes a sixth order Landau potential in the first model, whereas one of fourth order is used for the second model. The first model implicitly incorporates the stress field emanating from a sharp crack through the usage of linear elastic fracture mechanics and the governing equation is solved numerically for both isotropic and anisotropic bodies by usage of the finite volume method. The second model is applied to plate and notched cantilever geometries, and it includes an anisotropic expansion of the hydrides that is caused by the hydride precipitation. For this approach, the mechanical and phase transformation aspects are coupled and solved simultaneously for an isotropic material using the finite element method. Depending on the Landau potential coefficients and the crack-induced hydrostatic stress, for the first model the second-phase is found to form in a confined region around the crack tip or in the whole material depending on the material properties. From the pilot results obtained with the second model, it is shown that the applied stress and considered anisotropic swelling induces hydride formation in preferential directions and it is localized in high stress concentration areas. The results successfully demonstrate the ability of both approaches to model second-phase formation kinetics that is triggered by flaw-induced stresses and their capability to reproduce experimentally observed hydride characteristics such as precipitation location, shape and direction. / <p>Note: The papers are not included in the fulltext online.</p><p>Paper I and II in thesis as manuscripts.</p>

Page generated in 0.0544 seconds