• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 23
  • 14
  • 12
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 214
  • 214
  • 80
  • 48
  • 42
  • 36
  • 32
  • 30
  • 26
  • 26
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Investigating Trophic Interactions of Deep-sea Animals (Sharks, Teleosts, and Mobile scavengers) in the Gulf of Mexico Using Stable Isotope Analysis

Churchill, Diana A 02 July 2015 (has links)
The deep-sea is the largest habitat on earth, containing over 90 percent of the world’s oceans and home to over 20,000 species. Deep-sea ecosystems are increasingly impacted by human activities including fishing and oil extraction. To understand potential impacts on deep-sea food webs, it is crucial to gather baseline data in these systems. I quantified the trophic interactions of three groups of deep-water animals across a range of trophic levels living in the northern and eastern Gulf of Mexico using stable isotope analysis. First, I propose methods for correcting δ15N values for the presence of nitrogenous metabolic waste products (e.g., urea) in muscle tissue using chemical extractions and/or species-specific mathematical normalizations. Significant differences in δ15N, %N, and C:N values as a result of extractions were observed in eight of ten shark and all three hagfish species. The δ15N values increased, but shifts in %N and C:N values were not unidirectional. Mathematical normalizations for δ15N values were successfully created for four shark and two hagfish species. I then describe the trophic interactions of three consumer assemblages. Carbon isotopic values indicate a heavy reliance on allochthonous nutrient inputs from surface waters. Nitrogen isotopic values reveal somewhat atypical taxa as top predators in the deep sea. Shark, teleost, and invertebrate species across a wide range of body sizes are feeding at a similar trophic level. This apparent lack of size structuring could be the result of a high degree of opportunistic scavenging or perhaps feeding at many trophic levels simultaneously in an oligotrophic system. There was a high degree of isotopic niche overlap among species within each consumer assemblage, perhaps the result of limited nutrient resources in the deep-sea. In general, individuals from the northern sampling stations displayed higher δ13C and δ15N values than those from the eastern sites. With the exception of a few species, there were no strong relationships between body size and isotopic values. The present study is among the first characterizations of the trophic structure of deep-sea organisms in the Gulf of Mexico and establishes system baselines for future studies describing deep-water systems and investigating anthropogenic impacts.
122

The Influence of Body Size on the Ecology of Coastal Fish Predators in The Bahamas

Hammerschlag-Peyer, Caroline M 02 November 2011 (has links)
Body size is a fundamental structural characteristic of organisms, determining critical life history and physiological traits, and influencing population dynamics, community structure, and ecosystem function. For my dissertation, I focused on effects of body size on habitat use and diet of important coastal fish predators, as well as their influence on faunal communities in Bahamian wetlands. First, using acoustic telemetry and stable isotope analysis, I identified high variability in movement patterns and habitat use among individuals within a gray snapper (Lutjanus griseus) and schoolmaster snapper (L. apodus) population. This intrapopulation variation was not explained by body size, but by individual behavior in habitat use. Isotope values differed between individuals that moved further distances and individuals that stayed close to their home sites, suggesting movement differences were related to specific patterns of foraging behavior. Subsequently, while investigating diet of schoolmaster snapper over a two-year period using stomach content and stable isotope analyses, I also found intrapopulation diet variation, mostly explained by differences in size class, individual behavior and temporal variability. I then developed a hypothesis-testing framework examining intrapopulation niche variation between size classes using stable isotopes. This framework can serve as baseline to categorize taxonomic or functional groupings into specific niche shift scenarios, as well as to help elucidate underlying mechanisms causing niche shifts in certain size classes. Finally, I examined the effect of different-sized fish predators on epifaunal community structure in shallow seagrass beds using exclusion experiments at two spatial scales. Overall, I found that predator effects were rather weak, with predator size and spatial scale having no impact on the community. Yet, I also found some evidence of strong interactions on particular common snapper prey. As Bahamian wetlands are increasingly threatened by human activities (e.g., overexploitation, habitat degradation), an enhanced knowledge of the ecology of organisms inhabiting these systems is crucial for developing appropriate conservation and management strategies. My dissertation research contributed to this effort by providing critical information about the resource use of important Bahamian fish predators, as well as their effect on faunal seagrass communities.
123

Addressing Secondary Student Misconceptions in Ecology

Short, Melissa L. 26 May 2011 (has links)
No description available.
124

Allochthony of detritivorous fish in Ohio reservoirs, as determined using stable hydrogen isotopes

Babler, Allison L. 17 August 2009 (has links)
No description available.
125

Comparing hypotheses proposed by two conceptual models for stream ecology

Collins, Sean E. 27 October 2014 (has links)
No description available.
126

Assessment of heavy metal contamination and restoration of soil food web structural complexity in urban vacant lots in two post-industrial cities

Sharma, Kuhuk 04 November 2014 (has links)
No description available.
127

Functional Responses of Stream Communities to Acid Mine Drainage Remediation

Drerup, Samuel A. 08 July 2016 (has links)
No description available.
128

Relationships among basal energy availability, nonnative predator success, and native fish declines in the upper Gila River Basin, NM, USA.

Whitney, James January 1900 (has links)
Master of Science / Department of Biology / Keith B. Gido / Nonnative species represent a major threat to the continued persistence of native fishes globally, especially in the Colorado River Basin of western North America, where there are now more nonnative than native fishes. In the upper Gila River, a tributary of the Colorado, numerous nonnative fishes have established populations, and predation by these nonnatives has been linked to extirpation of native fishes under low-flow conditions at some locations. Historically, the upper Gila lacked a top piscivore, and it is unclear what mechanisms have allowed the establishment of nonnative piscivores and resultant extension in food chain length. To investigate the phenomenon of increased food chain length through nonnative introductions we explored the influence of autochthonous energy availability on nonnative predator abundance, food chain length, and abundance of other trophic levels. Predictions were that increased basal energy availability would lead to increased nonnative predator abundance and thus increased food chain length, based upon predictions from food web theory. Annual production and biomass of four trophic levels measured across six longitudinally-positioned sites were calculated between June 2008 and June 2009 to test these predictions. In addition, energy demand of trophic levels relative to energy supply was compared across sites using a quantitative food web approach, to evaluate energy limitation across trophic levels. Primary production was found to vary considerably across the upper Gila (1,677-16,276 kcal m-2 yr-1), but production and biomass of other trophic levels was not related to this gradient as predicted. In addition, food chain length demonstrated a marginally-significant negative relationship with primary production (R[superscript]2=0.42, d.f.=5, p=0.16), which was in contrast with predicted responses. These results suggest that energy availability does not appear to be a limiting factor to the production or biomass of consumers. The influence of other mechanisms on food chain length in the upper Gila River, in particular disturbance frequency and intensity, deserve further investigation.
129

Fishing for sustainability : Towards transformation of seagrass-associated small-scale fisheries

Wallner-Hahn, Sieglind January 2017 (has links)
Small-scale fisheries employ many millions of people around the world, and are particularly important in developing countries, where the dependency on marine resources is high and livelihood diversification options are scarce. In many areas of the world however, small-scale fisheries are at risk which threatens the food security and wellbeing of coastal people. Small-scale fisheries management has in many cases been insufficient and new comprehensive approaches are recommended to achieve social-ecological sustainability in the long-term. The aim of this thesis is to analyze empirically how social-ecological elements of seagrass-associated small-scale fisheries in the Western Indian Ocean region can be addressed for a transformation from the current mostly degraded state to more sustainable social-ecological systems and secure future livelihoods. The main method used was semi-structured interviews with local fishers. The main findings show the crucial contributions seagrass-associated small-scale fisheries make to food security and income generation and highlight the need to acknowledge the social-ecological importance of seagrasses in the seascape (Paper I). A discrepancy between low societal gains of the fishing of sea urchin predator fish species and their crucial importance in the food web (in controlling sea urchin populations and the associated grazing pressure on seagrasses) was identified (Paper II). These results suggest catch-and-release practice of sea urchin predator fish species, which could contribute to more balanced predator – sea urchin – seagrass food webs in the long run. The use of illegal dragnets was identified as a major threat to local seagrass meadows (Paper IV). Institutional elements influencing the use of such destructive dragnet were identified to be normative, cultural-cognitive and economic, which constitutes an institutional misfit to the current emphasis on regulative elements in a hierarchical manner (Paper III). Concerning future co-management initiatives, gear restrictions and education were the favoured management measures among all fishers (Paper IV). A majority of fishers were willing to participate in monitoring and controls, and most fishers thought they themselves and their communities would benefit most from seagrass-specific management. These findings highlight the need for actions on multiple scales, being the local-, management-, policy- and governance levels. The suggested actions include: education and exchange of ecological and scientific knowledge, gear management including the cessation of dragnet fishing, strengthening of local institutions, an active participation of fishers in enforcement of existing rules and regulations and an introduction of adequate alternative livelihood options. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 4: Manuscript.</p>
130

The soil food web of temperate deciduous forests: litter and root resources as driving factors, and soil fauna effects on ecosystem processes

Grubert, Diana 04 April 2016 (has links)
No description available.

Page generated in 0.0613 seconds