• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 61
  • 19
  • 18
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

From Excitons to Excimers: Understanding the Steady-State Absorption and Photoluminescence Features of Perylene Diimide Dyes

Bialas, April Lynn, 0000-0002-4210-3820 January 2022 (has links)
There is currently a great interest to develop and market organic electronic devices, and theoretical models are needed to provide physical insight and quality predictions when designing these materials. Many organic molecules absorb in the UV-vis region of light, and therefore, UV-vis spectroscopy is a relatively simple tool that can help experimentalists "see" the packing arrangements of the molecules within each material, as long as there is a solid theoretical understanding of the photophysics that links the interactions between molecules to changes in optical features. For example, the Kasha spectral shifts have been used for decades to identify J-aggregate and H-aggregate packing arrangements from red- and blue- spectral shifts, respectively. The innate presence of vibronic coupling in organic molecules gives rise to a unique set of additional spectral signatures that are far more reliable than the Kasha spectral shifts for inferring packing arrangements. Moreover, the Kasha shifts are based entirely on Coulomb coupling between molecules, which leads to the creation of delocalized Frenkel excitons. For many π-conjugated organic molecules, however, dispersion forces in π-conjugated chromophores encourage close packing distances of about 3.5-4 Å between organic monomers, which further introduces intermolecular couplings beyond the Coulomb coupling, due to intermolecular charge transfer (CT). Therefore, much theoretical research has focused on incorporating all these effects through a Frenkel-CT-Holstein Hamiltonian, in order to better understand how different packing arrangements within a given material can be identified through specific changes in steady-state absorption and photoluminescence features. In this thesis, the Frenkel-CT-Holstein model is specifically applied to study the absorption and photoluminescent spectra of various derivatives of perylene diimide (PDI), which are of great interest as non-fullerene acceptors in organic photovoltaic design. PDIs display a plethora of packing arrangements and corresponding spectral signatures just by varying the substituents within the PDI core. This thesis first aims to understand the exciton band structure of two different PDI micro-crystals that both experience similar Frenkel-CT interference, but with one system displaying dominant Coulomb interactions while the other undergoes dominant Frenkel-CT coupling. Both are close to what is called a “null”-point, and the work in this thesis explores the photoluminescent signature as a reliable means to track which side of the “null”-point the Frenkel-CT interference lies. While the Frenkel-CT-Holstein model is successful in modeling mostly absorption spectra of aggregates composed of PDI monomers, one challenge has been that aggregates of PDIs often exhibit so-called excimer features in their photoluminescence spectra, which the model cannot account for. Systems that emit broad, structureless and red-shifted excimer peaks typically display inefficient exciton transport in organic semiconductors. The bulk of this thesis has been to expand the model to account for excimer emission, which is made possible by utilizing a Holstein-Peierls (HP) Hamiltonian that incorporates the effects of both local vibronic coupling and nonlocal Frenkel-CT coupling to intermolecular motions within a dimer. The experimental spectra for two different PDI dimer systems that display different excimer features is successfully reproduced with the new theory. This thesis concludes by analyzing how nonlocal coupling, which account for changes in the Frenkel-CT mixing along an intermolecular vibrational mode, can lead to various types of excimers. Different phase relations within the electron and hole nonlocal coupling parameters can combine with different phase relations within the electron and hole Frenkel-CT coupling parameters, leading to a rich array of excimer properties, especially when combined with the additional effects of Coulomb coupling, as well as local intermolecular vibronic coupling, which can either enhance or diminish the excimer photoluminescence. Overall, the Holstein-Peierls approach offers insight into the roles of Frenkel and CT excitons in excimer formation, and highlights the importance of the magnitude and phase of the intermolecular electron and hole transfer integrals in the ground and excited state geometries in producing distinct excimer features. The model provides further insight into the origin of excimers, which lays a foundation for future theoretical and experimental studies in designing organic materials. / Chemistry
22

Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

Hestand, Nicholas James January 2017 (has links)
The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. Analysis of the spatial dependence of the intermolecular interactions reveals that all four aggregate types (HH-, HJ-, JH-, JJ-) can be achieved by enforcing the appropriate crystalline packing arrangement. Such tunability is possible due of the different length scales over which the natures of the two coupling sources interconvert from J-like to H-like; whereas the nature of the Coulombic coupling is known to be sensitive to displacements on the order of half the molecular length, the nature of the charge-transfer mediated exciton coupling is sensitive to geometric displacements of approximately a carbon-carbon bond length. It is proposed that such sensitivity should allow for fine tuning of the total excitonic coupling via modifications in the packing structure, as determined, for example, by the side chains. Several examples of the different aggregate types are provided throughout this dissertation as the model is used to probe the excited state character of several relevant conjugated organic systems. Such examples include pentacene and 7,8,15,16-tetraazaterrylene (TAT) along with several derivatives from the perylene family. / Chemistry
23

Absorption and emission spectra of donor-acceptor-donor copolymers and aggregated chromophores: A Frenkel-Holstein approach

Chang, Xin 04 1900 (has links)
Currently, there is a great interest towards developing organic semiconductors for use in solar cells and lighting displays. Derivatives of one of the most important chromophores, diketopyrrolopyrrole (DPP), are commonly employed as the active material in field-effect transistors, as they exhibit high hole mobilities. The intramolecular structure of 2T-DPP-2T with four thiophene units(T) is classified as a donor-acceptor-donor (DAD) chromophore, where the bithiophene units are donors and the DPP unit is the acceptor. The absorption spectrum of the aggregated form of a polymer based on the 2T-DPP-2T repeat units in 1,1,2,2-tetrachloroethane solution (TCE) was measured by Janssen et. al. The spectrum is red-shifted relative to a unaggregated polymer, which is an identifying feature of a J-aggregate. In addition, the ratio of the first two vibronic peaks decreases substantially in going from the unaggregated phase to the aggregate, which is an identifying feature of an H-aggregate. These contradicting behaviors were also observed by Punzi et. al. for an aggregate of the 2T-DPP-2T chromophore. Such behavior cannot be explained by the classical Frenkel-Holstein model. One challenge has been that the intermolecular charge transfer (ICT) plays an important role in the absorption and emission spectrum in the molecular aggregates of DPP. The bulk of this thesis has been to expand the Frenkel-CT-Hosltein model to include intramolecular and intermolecular charge transfer. The model accounts unusual red-shifted H-aggregates observed in the experiments. The experimental spectra of two different DPP-based chromophores are successfully reproduced with our theoretical model. Furthermore, based on perturbative expression for ICT coupling, an effective Frenkel Holstein (EFH) model is proposed and employed to successfully simulate the absorption and emission spectrum of DPP4T aggregates, as long as charge-transfer coupling is smaller than the energy gap between the Frenkel- and ICT excitations. The emission spectrum of DPP4T is also successfully reproduced by this new model, including the temperature dependence. / Chemistry
24

Electronic excited states in quasi- one- dimensional organic solids with strong coupling of Frenkel and charge-transfer excitons / Anregte elektronische Zustände in quasi-eindimensionalen organischen Festkörpern mit starker Kopplung zwischen Frenkel und Charge-Transfer Exzitonen

Schmidt, Karin 26 February 2003 (has links) (PDF)
This work offers a concept to predict and comprehend the electronic excited states in regular aggregates formed of quasi-one-dimensional organic materials. The tight face-to-face stacking of the molecules justifies the idealization of the crystals and clusters as weakly interacting stacks with leading effects taking place within the columnar sub-structures. Thus, the concept of the small radius exciton theory in linear molecular chains was adopted to examine the excitonic states. The excited states are composed of molecular excitations and nearest neighbor charge transfer (CT) excitations. We analyzed the structure and properties of the excited states which result from the coupling of Frenkel and CT excitons of arbitrary strength in finite chains with idealized free ends. With the help of a partially analytical approach to determine the excitonic states of mixed Frenkel CT character by introducing a complex wave vector, two main types of states can be distinguished. The majority of states are bulk states with purely imaginary wavevector. The dispersion relation of these state matches exactly the dispersion relation known from the infinite chain. The internal structure of the excitons in infinite chains is directly transferred to the bulk states in finite chains. TAMM-like surface states belong to the second class of states. Owing to the damping mediated by a a non-vanishing real part of the wavevector, the wave function of the surface states is localized at the outermost molecules. The corresponding decay length is exclusively determined by the parameterization of the coupling and is independent of the system size. It can therefore be assigned as a characteristic quantum length which plays a vital role for the understanding of system-dependent behavior of the states. The number and type of surface states occurring is predicted for any arbitrary coupling situation. The different nature of bulk and surface states leads to distinct quantum confinement effects. Two regimes are distinguished. The first regime, the case of weak confinement, is realized if the chain length is larger than the intrinsic length. Both kinds of states arrange with the system size according to their nature. Derived from the excitonic states of the infinite chain, the bulk states preserve their quasi-particle character in these large systems. Considered as a quasi-particle confined in box, they change their energy with the system size according to the particle-in-a-box picture. The surface states do not react to a change of the chain length at all, since effectively only the outermost molecules contribute to the wavefunction. The second regime holds if the states are strongly confined, i.e., the system is smaller than the intrinsic length. Both types of states give up their typical behavior and adopt similar properties. / Diese Arbeit unterbreitet ein Konzept, um elektronische Anregungszustände in Aggregaten quasi-eindimensionaler organischer Materialien vorherzusagen und zu verstehen. Die dichte Packung der Moleküle rechtfertigt die Idealisierung der Kristalle bzw. Cluster als schwach wechselwirkende Stapel, wobei die führenden Effekte innerhalb der Molekülstapel zu erwarten sind. Zur Beschreibung der exzitonischen Zustände wurde das Konzept der 'small radius'-Exzitonen in linearen Molekülketten angewandt. Die elektronischen Zustände sind dabei aus molekularen (Frenkel) und nächsten Nachbarn 'charge-transfer' (CT) Anregungen zusammengesetzt. Die Struktur und Eigenschaften der Zustände wurden für beliebige Kopplungsstärken zwischen Frenkel- und CT Anregungen in Ketten mit idealisierten freien Enden für beliebiger Längen analysiert. Der entwickelte, überwiegend analytische Zugang, welcher auf der Einführung eines komplexen Wellenvektors beruht, ermöglicht die Unterscheidung zweier grundsätzlicher Zustandstypen. Die Mehrheit der Zustände sind Volumenzustände mit rein imaginärem Wellenvektor. Die zugehörige Dispersionsrelation entspricht exakt der Dispersionsrelation der unendlichen Kette mit äquivalenten Kopplungsverhältnissen. Die interne Struktur der Exzitonen der unendlichen Kette wird auf die Volumenzustände der endlichen Kette direkt übertragen. Der zweite grundlegende Zustandstyp umfaßt Tamm-artige Oberflächenzustände. Aufgrund der durch einen nichtverschwindenden reellen Anteil des Wellenvektors hervorgerufenen Dämpfung sind die Wellenfunktionen der Oberflächenzustände an den Randmolekülen lokalisiert. Die entsprechende Dämpfungslänge ist ausschließlich durch die Parametrisierung der Kopplungen bestimmt und ist somit unabhängig von der Kettenlänge. Sie kann daher als intrinische Quantenlänge interpretiert werden, welche von essentieller Bedeutung für das Verständnis systemgrößenabhängigen Verhaltens ist. Sowohl die Anzahl als auch die Art der Oberflächenzustände kann für jede Kopplungssituation vorhergesagt werden. Die unterschiedliche Natur der Volumen- und Oberflächenzustände führt auf ausgeprägte 'Quantum confinement' Effekte. Zwei Regime sind zu unterscheiden. Im Falle des ersten Regimes, dem schwachen 'Confinement', ist die Kettenlänge größer als die intrinsische Länge. Beide Zustandarten reagieren auf eine Veränderung der Kettenlänge gemäß ihrer Natur. Aufgrund ihrer Verwandschaft mit den Bandzuständen der unendlichen Kette bewahren die Volumenzustände ihren Quasiteilchen-Charakter. Aufgefaßt als Quasiteilchen, erfahren sie in endlichen Systemen eine energetische Verschiebung gemäß dem Potentialtopf-Modell. Oberflächenzustände zeigen keine Reaktion auf veränderte Kettenlängen, da effektiv nur die Randmoleküle zur Wellenfunktion beitragen. Es findet ein Übergang zum zweiten Regime (starkes 'Confinement') statt, sobald die Kettenlänge kleiner als intrinsische Quantenlänge wird. Beide Zustandsarten geben ihr typisches Verhalten auf und werden mit abnehmender Kettenlänge zunehmend ähnlicher.
25

Estudo das propriedades elétro-óptica de dispositivos eletroluminescentes confeccionados com um compósito híbrido

Stefanelo, Josiani Cristina [UNESP] 05 October 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-10-05Bitstream added on 2014-06-13T18:53:36Z : No. of bitstreams: 1 stefanelo_jc_me_rcla.pdf: 1971755 bytes, checksum: f2545c6a190dc7a872bf14f2c2b4fce6 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho foi desenvolvido um dispositivo eletroluminescente (EL) constituído de um compósito híbrido (CH), formado por uma blenda polimérica e um material EL inorgânico. A blenda é composta por um polímero condutor, a poli(o-metoxianilina) (POMA) dopada com ácido tolueno sulfônico (TSA), e um polímero isolante, o poli(fluoreto de vinilideno-co-trifluoretileno) (P(VDF-TrFE)). A esta blenda é acrescentado um material EL inorgânico, o silicato de zinco dopado com Manganês (Zn2SiO4:Mn), formando assim, o compósito híbrido. O dispositivo foi construído depositando o compósito por drop casting sobre um substrato de óxido de estanho dopado com flúor (FTO) e após cristalização em uma estufa foi depositado um eletrodo de metal por evaporação à vácuo formando uma estrutura tipo “sanduíche”. Neste trabalho foram construídos dispositivos com eletrodo superior de Alumínio (Al) e Ouro (Au), denominados: FTO/CH/Al e FTO/CH/Au. O comportamento elétrico dos dispositivos de FTO/CH/Al foram analisados aplicando-se as teorias de Emissão Termoiônica, Emissão Schottky e Emissão Poole-Frenkel, o que tornou possível encontrar alguns parâmetros como: altura da barreira para a junção metal/CH, condutividade do CH e fator de retificação. O dispositivo de FTO/CH/Au foi caracterizado pela técnica de espectroscopia de impedância, sendo obtido também a altura da barreira para a junção metal/CH, a condutividade do CH, além da constante dielétrica do compósito e como variam esses dois últimos parâmetros com a temperatura. A aplicação das teorias de Emissão Termoiônica, Emissão Schottky e Emissão Poole-Frenkel produziram resultados semelhantes aos obtidos pela técnica de espectroscopia de impedância. Os espectros de luminescência apresentaram um pico em l = 528 nm com estabilidade temporal de emissão comparável a dos dispositivos inorgânicos puros. / In this work was developed an electroluminescent (EL) device made up with a hybrid composite (CH), that is formed by a polymeric blend and an inorganic EL material. The conductive polymer, poly(o-methoxyaniline) (POMA) doped with p-Toluene sulphonic acid (TSA), and an isolating polymer, the poly(vinylidenefluoride-co-trifluoroethylene) (P(VDFTrFE)), was used to make the polymer blend. An inorganic EL material, the zinc silicate manganese-doped (Zn2SiO4:Mn), was added to the blend, forming the hybrid composite. The composite was deposited by drop-casting over a Fluoride Tin Oxide substrate (FTO) and after the crystallization in an oven a metal electrode was deposited by vacuum evaporation, forming a type “sandwich” structure. In this work were constructed different devices. Aluminum (Al) and Gold (Au) were used as upper electrodes, therefore the device structures were: FTO/CH/Al and FTO/CH/Au. To analyze the electrical behavior of the FTO/CH/Al device was applied the theories of Thermionic Emission, Schottky Emission and Poole- Frenkel Emission. Using these theories was possible to obtain parameters such as; the barrier height from the metal/CH junction, CH conductivity and diode rectifier factor. The FTO/CH/Au device was characterized using the impedance spectroscopy technique. For this device was also possible to obtain the barrier height from the metal/CH junction, CH conductivity and CH dielectric constant. For the last two parameters the dependence with the temperature were also observed. The application of the theories of Thermionic Emission, Schottky Emission and Poole-Frenkel Emission produced similar results to that obtained by the impedance spectroscopy technique. The luminescence spectra, for the devices, showed a peak at l = 528 nm with emission stability in time that it is comparable of pure inorganic devices.
26

Construction de solutions particulières de types ondes progressives pour le modèle de Frenkel-Kontorova et pour l’équation des ondes régularisée / Construction of particular solution of travelling wave types for the Frenkel-Kontorova model and the regularized wave equation

Walha, Sonda 03 December 2018 (has links)
Cette thèse porte sur la construction de solutions particulières de type ondes progressives ou ondes planes pour différentes équations aux dérivées partielles (EDP) et en particulier le modèle de Frenkel-Kontorova et une équation des ondes régularisée. Ce mémoire s’articule comme suit. Le chapitre 1 est destiné à une introduction générale dans laquelle je présente une motivation physique et un résumé de mon travail. Le chapitre 2 est destiné à l’étude d’existence et d’unicité des ondes progressives avec le terme d’accélération. Ce modèle consiste d’un système d’ODE qui décrit le mouvement de particules en interaction. Les applications les plus importantes que nous avons à l’esprit est le mouvement des défauts cristallins appelés dislocations. Pour ce modèle, nous montrons l’existence des ondes progressives sous des hypothèses très faibles. L’unicité de la vitesse a été étudiée ainsi que l’unicité du profil en utilisant les différents types du principe de maximum fort. Comme ce que nous savons, c’est le premier résultat concernant les ondes progressives pour un système accéléré, spatialement discret. Ce chapitre est un article publié à la revue Journal of Dynamic and Differential Equation : Existence and uniqueness of traveling wave for accelerated Frenkel-Kontorova model, Journal of Dynamic and Differential Equation : Volume 26, Issue 24 (2014), page 1133-1169. Le chapitre 3 est réservé à l’homogénéisation numérique du modèle Frenkel-Kontrova dans le cas amortie. Je présente deux méthodes pour calculer l’hamiltonien effectif: la méthode grand temps et la méthode de Newton. Quelques simulations de l’hamiltonien effectif sont fournies. Le chapitre 4 est destiné à l’étude d’équation d’onde dans un domaine périodique. Selon certaines hypothèses, je construis une solution d’onde plane pour le problème approché et je montre que cette solution satisfait certaines propriétés. Je définis un opérateur non local et un terme correcteur afin de contrôler les oscillations de la solution dans l’espace et dans le temps. Je prouve la construction d’une solution d’onde plane pour un problème approché en utilisant la notion de solution de viscosité. / This thesis deals with the construction of particular solutions of traveling wave or plane wave for different equations partial derivative (EDP) and in particular the Frenkel-Kontorova model and a regularized wave equation. This memory is structured as follows. The chapter 1 is preserved for a general introduction in which i present a physical motivation and a abstract of my work. In chapter 2, I interested to the study the existence and uniqueness of traveling wave solution for the accelerated Frenkel-Kontorova model. This model consist in a system of ODE that describe the motion particles in interaction. The most important applications ihave inmind in the motion of cristal defects called dislocations. For this model, i prove the exxistence of traveling wave solutions under very weak assumptions. The uniqueness of the velocity is also studied as well the uniqueness of the profile which used ddifferent types of strpng maximum principle. As far as we know, this is the first result concerning traveling waves for accelerated, spatially discrete system. This chapter is an article published in the Journal Dynamic and Differential Equation:Existence and uniqueness of traveling wave for accelerated Frenkel-Kontorova model, Journal of dynamic and Differential Equation : Volume 26, Issue 24 (2014), page 1133-1169. In chapter 3, i interested in the numerical homogenization of fully overdomped frenkel-Kontorova model. I present two methods for computing the effective hamiltonian : large time method and Newton-like method. Some simulations of the effective hamiltonian are provided. Le chapter 4 is preserved to the study a wave equation in a periodic medium. Under certain assumption, i construct a plane wave like solution, and show that this solution satisfy some properties. I define a non- local operator and a term corrector in order to control the oscillations of the solution in space and in time. We prove the construction of a plane wave like solution for the approched problem using the notion of viscosity solution.
27

Méthodes variationnelles : Applications à l'analyse d'image et au modèle de Frenkel-Kontorova

Issa, Samar 19 December 2011 (has links) (PDF)
Cette thèse est décomposée en deux parties. La première est consacrée à l'étude de la restauration d'image et la seconde partie est consacrée à l'étude d'un modèle de Frenkel-Kontorova par des méthodes issues du calcul variationnel et des équations aux dérivées partielles. Au chapitre 1, nous présentons les questions essentielles que nous traiterons dans cette thèse, puis on fait des rappels sur les définitions et quelques propriétés d'espace des fonctions à variations bornées BV , l'espace d'Orlicz et le modèle de Frenkel-Kontorova. Au chapitre 2, nous montrons que les problèmes de minimisation non convexe (restauration d'image) contenant des termes de régularisation sous-linéaires sont mal posés. Au chapitre 3, nous étudions un modèle de restauration avec un terme de régularisation à croissance non standard, proposé par Blomgren et al. : le module du gradient est élevé a une puissance qui dépend elle même du gradient. On montre qu'elle est semi-continue inférieurement pour la topologie faible d'un certain espace d'Orlicz-Sobolev qui lui est associé, ce qui permet un résultat d'existence de la solution. Au chapitre 4, nous étudions un modèle de Frenkel-Kontorova, dont on montre l'existence d'au moins une solution de type travelling wave, u.
28

Crystals and nanoparticles of a BODIPY derivative : spectroscopy and microfluidic precipitation

Liao, Yuanyuan 12 November 2013 (has links) (PDF)
During this work, we have addressed two aspects of the properties of the fluorescent organic nanoparticles made of Adambodipy: their spectroscopy and their production with controlled sizes. We have produced micro-crystals (100x10x1µm3) by precipitation in solutions of low supersaturation. We have measured their spectroscopy under microscope in the range 380nm to 900nm. The microcrystals are birefringent and dichroic. By adding polarizers on a microscope we have measured their refraction index along the two neutral axes according to the method of Swanepoel. We have measured the two absorption spectra along the neutral axis. We have calculated these absorption spectra using the model of the dipolar coupling for Frenkel excitons. The amplitude of this coupling has been estimated according to the classic model. But for two particular pairs of the cell, we have compared this estimation with the value that can be deduced from the quantum calculation of a dimer by TDDFT. The calculated spectra reproduce the dichroism, the spectral broadening of the absorption spectra but not the experimental peak shape probably because our micro-spectrophotometer levels up at high absorbance. The calculated fluorescence spectra predict a polarized transition along the b direction of the cell. The experiment shows two other red shifted bands. The study of their polarization, as well as their fluorescence lifetime allows us to attribute them to defects in the crystal. The spectra of the nanoparticles produced in the second part of this work are not those of crystals. We have been able to reproduce them theoretically by introducing an orientation disorder inside the periodic structure. The 3D hydrodynamic focusing enables us to produce nanoparticles with controlled size without precipitation of Adambodipy on the wall. We have used the PDMS technology and we moved to a glass tube approach, in order to avoid the diffusion of fluorescence into the PDMS. By adjusting the flow ratio between the inner organic solution of the dye and outer aqueous solution, we can control the size of the nanoparticle between 100nm and 300nm. The stability of the colloidal suspension is maintained by the surfactant CTACl below the CMC. Indeed above the CMC, the nanoparticles exist together with dyes dispersed in micelles. We have simulated using COMSOL the precipitation of the nanoparticles. We have introduced in the calculation the hydrodynamic and mutual diffusion of water and ethanol, as well as the diffusion of the Adambodipy. From our studies of the solubility of Adambodipy in water/ethanol mixtures, we have obtained the saturation curve and we have built the supersaturation maps in the micro-device. We have used Fluorescence lifetime imaging microscopy to follow in situ the precipitation process. From the decay collected in different positions can be attributed to the coexistence of three species : the monomers, the nanoparticles and an intermediate species supposed to be the nuclei. The FLIM shows a precipitation in the diffusion area of the two solvents as well as a massive precipitation after a few hundred of millisecond. The FLIM images are very close to the COMSOL predictions.
29

The deposition of silica on titanium dioxide surfaces

Furlong, Donald Neil January 1975 (has links)
The deposition of amorphous silica from aqueous solution on to rutile particles has been studied with the aim of elucidating the nature of the silica-titania interactions occurring and of following the progressive build up of the silica coating. The coating process, which involves the addition of an aqueous sodium silicate solution to an aqueous dispersion of titanium dioxide, has been investigated by performing a series of controlled preparations and using the technique of microelectrophoresis. Prepared silica-coated rutile samples ranging from partial to full silica coatings have been characterized using transmission electron microscopy, microelectrophoresis and nitrogen, argon and water sorption. Nitrogen and argon adsorption isotherms have been analysed using the equation of Brunauer, Emmett and Teller (BET). Differential energies of adsorption of nitrogen and argon have been determined calorimetrically. Water sorption isotherms have been analysed using the BET equation and the Frenkel - Halsey - Hill (FHH) equation. It has been shown that uniform silica coatings can be produced if adsorption of monomeric silica is followed by polymerization of silica at the solid/liquid interface. Surface cations on rutile may be hydroxylated or co-ordinately bound to water molecules and it appears that monomeric silica adsorbs preferentially by replacing ligand water molecules. Rutile particles with silica coatings thicker than approximately 2.5nm exhibit characteristics typical of silica and not of the base rutile. Silica coatings deposited at pH 10 contain narrow channels which are accessible to water molecules but not to nitrogen or argon. Neutralization to pH 7 reduces the volume in the coating accessible to water molecules.
30

Electrical Transport In Metal-oxide-semiconductor Capacitors

Arikan, Mustafa 01 October 2004 (has links) (PDF)
The current transport mechanisms in metal-oxide-semiconductor (MOS) capacitors have been studied. The devices used in this study have characterized by current-voltage analyses. Physical parameter extractions and computer generated fit methods have been applied to experimental data. Two devices have been investigated: A relatively thick oxide (125 nm) and an ultra-thin oxide (3 nm) MOS structures. The voltage and temperature dependence of these devices have been explained by using present current transport models.

Page generated in 0.0543 seconds