• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 444
  • 192
  • 69
  • 35
  • 18
  • 14
  • 14
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 6
  • 5
  • Tagged with
  • 1109
  • 234
  • 201
  • 167
  • 165
  • 157
  • 140
  • 120
  • 104
  • 103
  • 100
  • 98
  • 89
  • 88
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Evaluating the feasibility of converting crude tall oil and tall oil fatty acids into biofuel

Ngcobo, Nkosinathi Cedrick January 2011 (has links)
Submitted in the fulfillment of the requirements for the degree of Master of Technology, Durban University of Technology, Durban, South Africa, 2011. / The main objective of this study was to evaluate the feasibility of conversion of crude tall oil and tall oil fatty acids into biodiesel. During the Kraft pulping process, Crude Tall Oil originates as tall oil soap, which is separated from recovered black liquor. The soap is then converted to Crude Tall Oil by acidulation with sulphuric acid. The Crude Tall Oil is then fractionated by distillation to produce tall oil fatty acids (TOFA), rosin and pitch. There were a number of conversional methods that were considered but proved to be inappropriate. A base-catalyzed method was inappropriate with due to the high free fatty acid content on the feedstock, and the acid-base catalyzed method was inappropriate due to the long reaction times and large excess of methanol required. An enzyme based conversion method was also found to be inappropriate because of the high price attached to the purchasing of the enzymes and the stability of the enzyme. A procedure of choice was the supercritical methanol treatment, due to the fact that it requires no separate catalyst. A procedure was developed for both the feedstocks (i.e. crude tall oil and tall oil fatty acids) using the supercritical methanol treatment. In supercritical methanol treatment, feedstock and methanol were charged to a reactor and were subjected to temperatures and pressures beyond the critical point of methanol (Tc = 240 °C, Pc = 35 bar). The maximum biodiesel yield obtained from Crude tall oil was 66% and was 81% for the tall oil fatty acids that was produced in a single stage process. The temperature and methanol to feedstock ratio effects was also found to yield a maximum biodiesel yield at 325°C and 40:1 respectively. A 20 minutes reaction time was found to be appropriate for the maximum yield of biodiesel. The final biodiesel produced was also evaluated against a commercial biodiesel product and its parameters measured. The biodiesel resulting from the tall oil fatty acid yielded parameters that were acceptable according to ASTM D6751 specifications for biodiesel. The biodiesel produced from the crude tall oil did not meet the ASTM D6751 specification, and this was mostly attributed to the presence of unsaponifiables which hindered the conversion of oil into biodiesel. / M
482

“The Living Cow” : A frame analysis of support for and opposition to hydraulic fracturing in Argentina

Planting Mollaoglu, Emil January 2015 (has links)
No description available.
483

Transesterification of animal fat to biodiesel over solid hydroxy sodalite catalyst in a batch reactor

Makgaba, Chabisha Precious January 2017 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering September 2017 / Owing to the ongoing advancement in technology, escalating population sizes and urbanization rate, fossil fuels (coal, petroleum oil and natural gas) remain attractive as an energy source to run most of the daily operations. Consequent to heavy consumption of fossil fuels, the world faces detrimental challenges such as future energy security and environmental concerns. Combustion of fossil fuels results in emission of greenhouse gases such as CO2 and SO2 thereby contributing to global warming and acid rain problems. These alarming challenges drive the need for exploration of alternative energy sources to reduce dependence on fossil fuels. Presented in this dissertation is a study of biodiesel, a biodegradable, non-toxic and environmentally benign energy source as an alternative to petroleum-based fuels. Chemically known as fatty acid alkyl ester (FAAE), biodiesel is commonly produced from vegetable oils or animal fats in addition to methanol by a catalysed transesterification reaction. Currently, biodiesel is more expensive than petroleum diesel due to high operation costs incurred during the production process. Despite the high prices, biodiesel production continues to grow on an industrial scale across the world as supported by policy measures and biofuel targets. Researchers have identified two main factors that contribute to high costs of biodiesel production; 1) type of feedstock and 2) type of catalyst used in the production process. Conventional methods of production use edible oils as feedstock. This becomes unjustified due to the potential price hikes in the food market owing to the prospective competition between fuel and food industries. As a result, numerous researchers reported on the use of cheap and non- edible feedstock oils such as waste cooking oil and animal fat. However, the challenge with the use of non-edible oils is their high content of free fatty acids (FFA) which is unattractive for a smooth transesterification process, more especially when homogeneous base catalysts are used. Homogeneous base catalysts are widely used in current industrial biodiesel production methods because they yield faster transesterification processes due to increased reaction rates. However, these types of catalysts are much sensitive to FFA, so when high FFA content feedstock is used, a saponification reaction occurs which consequently reduces the yield of biodiesel. An additional process unit is required to reduce the FFA content via esterification process prior to the main transesterification reaction. Furthermore, since the reaction mixture is homogeneously combined with the product, an additional process unit for product separation is required to recover the resulting biodiesel from the mixture, translating into additional production costs. Researchers are currently exploring the use of heterogeneous catalysts, which tend to avoid the saponification reaction and reduce the need for an esterification reaction used as oil pre-treatment step to reduce FFA content. This dissertation is therefore dedicated to attaining a economic and environmentally attractive process for biodiesel production using cheap non-edible beef tallow oil (BTO) and a heterogeneous hydroxy sodalite (H-SOD) catalyst. Some industrial operations such as zeolite manufacturing processes produce a low grade H-SOD as by products, which is in turn disposed as chemical waste and therefore induces ground water contamination concerns. Exploration on the use of H-SOD as catalyst can largely contribute to the environmental protective measures as a waste management process among other benefits. The use of H-SOD is extensively reported in current research development on membrane separation; limited research reports on the use of H-SOD material to catalyse chemical processes are present in literature. For the first time in open literature, H-SOD is reported as the solid catalyst for biodiesel production in this dissertation. The investigative study commenced with a preliminary study to gauge the feasibility of using H-SOD as a catalyst where a batch transesterification of waste cooking oil (WCO) was studied. The reaction was conducted at 60 ᵒC for 12 h at a methanol-to-WCO ratio of 7.5:1 using 3 wt. % H-SOD catalyst with a particle size of just below 300 Å, the stirring intensity was kept at 1000 rpm to ensure uniform mixing throughout the reaction. The product obtained after the reaction was analysed using a pre-calibrated Chromatography-Mass Spectrometer (GC-MS) described in Chapter 5, and the results demonstrated the possibility of catalysing a transesterification reaction using solid H-SOD. Under the same reaction conditions, the study was then extended to an investigation on the use of H-SOD to catalyze transesterification of BTO (4.53 % FFA) to FAME. The results showed that FAME was produced, at a yield of 39.6% and a conversion of 68.4%. Seeing that the yield and conversion obtained is relatively small compared to literature findings, the effect of some process conditions on the conversion and biodiesel yield were studied. The transesterification reaction was conducted with variations in the mixing intensity (700 – 1250 rpm), catalyst particle size (200 – 300 Å), reaction time (6 – 24 h) and reaction temperature (40-60 °C). The maximum performance of H-SOD catalyst for a transesterification of BTO was achieved with a conversion of 78.3% and biodiesel yield of 62.9% obtained at optimum conditions: a stirrer speed of 1000 rpm, with the smallest catalyst particle size of 200 Å at maximum temperature of 60 °C and 24 h reaction time. The values of activation energy, reaction constants and frequency factor obtained from the kinetic study were 0.0011 min-1, 5.52 x108 min-1 and 79.20 kJ/mol, respectively, and are within the range of the results reported in literature. As a result, solid H-SOD is recommended as a catalyst for the batch transesterification of BTO in a biodiesel production process. / MT2018
484

Modelling the production of biodiesel from non-edible oils (Jatropha curcas oil and Tobacco seed oil (TSO): a kinetic study

Mthembu, Feziwe Celile January 2017 (has links)
Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Engineering at the School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand Johannesburg, South Africa October, 2017 / The significant increase in the primary energy demand and the effort to reduce harmful emissions related to the greenhouse gases enhanced the search for alternative energy. Production and modelling processes of biofuel from non-edible oil sources assist in the process development of an environmentally friendly fuel such as biodiesel. This work focused on the kinetic modelling of biodiesel synthesised from non-edible oils. Two types of non-edible oils (Jatropha curcas seed oil and Tobacco seed oil) were used in this study including the development of the kinetic behaviour of the transesterification reaction. A linear polynomial model was generated from experimental data found in literature in order to study the influence of operating parameters during biodiesel production. It was found that the temperature improves the yield of biodiesel; this is attributed to the fact that temperature affects the reaction rate constants; and the higher the reaction rate, the lower the activation energy required for a reaction to occur. The optimum conditions for the transesterification of Jatropha curcas seed oil are a temperature of 55 0C, methanol to oil ratio of 6:1, catalyst concentration of 1.2% KOH (by volume of oil), and agitation speed range of 0-250 rpm. Results from both the homogeneous and heterogeneous reactions of Jatropha curcas oil and tobacco seed oil were used to verify the theoretical kinetic and empirical models. It was found that both models describe the kinetic behaviour of transesterification with minor deviations in the estimated parameters. However, the use of empirical model in determining the reaction order, as opposed to the theoretical assumption, gave a second order with respect to oil triglycerides at a temperature of 60 0C. The theoretical kinetic model gave a first order with respect to oil triglycerides. In this case, the activation energy was found to be 71.83 kJ/mol and pre-exponential factor was found to be 2.48 x1010. More investigation should be done to describe the kinetic behaviour of biodiesel production from non-edible oil in order to confirm the correct reaction order and why there is change in reaction order when the temperature increases above 60°C. / MT2018
485

Desenvolvimento de um dispositivo para avaliação do transporte de combustíveis no meio subterrâneo. / Development of a device for evaluating fuel transport in the underground soil.

Toledo, Manoel Paulo de 13 November 2012 (has links)
O presente trabalho teve o intuito de desenvolver um novo dispositivo para melhor conhecer a movimentação de combustíveis no meio subterrâneo, fundamental à definição de tecnologias para remediação de áreas contaminadas. Paralelamente, procurou-se verificar a viabilidade da utilização do dispositivo proposto como método simples, rápido e de baixo custo para investigação do fluxo do óleo diesel, da gasolina e do biodiesel no solo. Fabricou-se um microcanal em poli(dimetil)siloxano que reproduziu fielmente as dimensões e geometrias dos poros e canais do solo. Inicialmente, o microcanal foi saturado com ar; em seguida, injetou-se o combustível e sequencialmente, a água de tal forma a simular um derramamento de combustível no solo sucedido por uma precipitação. Cada operação foi gravada em vídeo ou fotografada, o que permitiu a visualização dos fenômenos que ocorriam no interior do canal. Os resultados obtidos mostraram a viabilidade do dispositivo proposto para o estudo da movimentação dos combustíveis no meio subterrâneo. Verificou-se que tanto a gasolina quanto o óleo diesel evaporam, sendo a primeira mais rapidamente do que o segundo. O experimento permitiu calcular a taxa de evaporação de gasolina no solo. O óleo diesel e o biodiesel ficaram retidos nos poros fechados e a eventual água da chuva que escoava pelo mesmo caminho que a fase gasosa (ar e no caso do óleo diesel, vapores) removia parcialmente esses combustíveis. / The present work had the aim of developing a new device for better understanding fuel motion in the underground soil a key issue for the definition of contaminated area remediation technologies. As a side goal one tried to verify the feasibility of using the proposed device as a simple, fast and inexpensive tool for the investigation of underground fuel flow in porous soil by means of laboratory experiments with it. A poly(dimethyl)siloxane microchannel reproducing exactly the dimensions and geometries of soil pores and channels has been fabricated. Initially the microchannel was saturated with air; then firstly fuel was injected and sequentially water in order to mimic soil contamination by fuel leakage followed by a rain fall. Each and every operation was video recorded or photographed what allowed the visualization of the phenomena occurring inside the microchannel. Results showed the viability of the proposed device for studying the transport of fuels in the underground soil. It has been verified that gasoline vaporizes as does diesel oil as well, the former quicker than the last. The experiment allowed calculating the evaporation rate of gasoline in the soil. It has been seen that diesel oil and biodiesel remained trapped in closed pores and the eventual rain water flowed through the gaseous phase way (air and in the case of diesel oil, vapor) partially removing them.
486

Melhoramento da fermentação alcoólica em Saccharomyces cerevisiae por engenharia evolutiva. / Improvement of alcoholic fermentation in Saccharomyces cerevisiae by evolutionary engineering.

Basso, Thiago Olitta 20 June 2011 (has links)
Durante o crescimento da levedura Saccharomyces cerevisiae em meios contendo sacarose, a enzima invertase hidrolisa a sacarose no ambiente extracelular em glicose e frutose, as quais são posteriormente captadas pelas células por difusão facilitada. Num trabalho prévio, a localização da enzima invertase foi modificada nesta levedura, eliminando-se a forma extracelular e superexpressando-se a forma intracelular da enzima (Stambuk et al., 2009). Como resultado, a captação de sacarose por esta linhagem modificada (iSUC2) é realizada pelo co-transporte ativo com íons H+, implicando no gasto de 1 mol de ATP para cada mol de H+ extrudado pelas células para manutenção do pH intracelular. Como forma de compensar este gasto energético, espera-se que a linhagem iSUC2 desvie uma maior parte do fluxo de carbono para a geração de energia e, consequentemente, para a formação de etanol, em relação a uma linhagem selvagem. No presente trabalho, uma avaliação fisiológica quantitativa de uma linhagem com esta modificação genética foi realizada tanto em quimiostatos limitados por sacarose, como em cultivos descontínuos com sacarose como única fonte de carbono. Os dados obtidos em quimiostatos anaeróbios demonstram que na linhagem iSUC2 a enzima invertase ficou retida no ambiente intracelular e apresentou atividade absoluta total cerca de duas vezes maior que na linhagem-referência (SUC2). Além disto, verificou-se um aumento de 4% no fator de conversão de sacarose a etanol (Y ETH/S), em relação à linhagem SUC2. No entanto, como foi observado que cerca de 8 % da sacarose não foi consumida pelas células da linhagem iSUC2 durante o estado-estacionário dos quimiostatos anaeróbios, decidiu-se melhorar a capacidade do transporte ativo deste dissacarídeo nesta linhagem através de uma estratégia de engenharia evolutiva caracterizada pelo cultivo destas células em quimiostatos longos limitados por sacarose, em anaerobiose. Obteve-se assim, após cerca de 60 gerações, uma linhagem mutante (iSUC2 evoluída) com atividade de transporte de sacarose 20 vezes superior à linhagem iSUC2, sendo capaz de consumir toda a sacarose do meio de cultivo. Esta linhagem apresentou um aumento de 11% no YETH/S e uma diminuição de 27% no fator de conversão de sacarose a células (YX/S), quando comparada à linhagem-referência. A análise do transcriptoma revelou o aumento da expressão de vários genes codificadores de transportadores de hexoses, bem como genes relacionados ao metabolismo de maltose, incluindo o gene do transportador de alta-afinidade para alfa-glicosídeos AGT1, quando a linhagem iSUC2 evoluída foi comparada à linhagem iSUC2. Detectou-se que a evolução em quimiostato resultou na duplicação do gene AGT1, sem que houvesse mutação neste gene. Através da superexpressão do gene AGT1 na linhagem iSUC2, conseguiu-se gerar uma linhagem que apresentou YETH/S muito próximo ao da linhagem iSUC2 evoluída. No entanto, outros parâmetros fisiológicos, foram diferentes nestas duas linhagens, indicando que a duplicação do gene AGT1 não foi a única mutação que ocorreu durante o processo de evolução em quimiostato. Este trabalho ilustra o potencial da combinação entre engenharia metabólica e engenharia evolutiva para a obtenção de linhagens de levedura melhoradas, para aplicação na produção industrial de etanol combustível a partir de meios contendo sacarose. / When growing on sucrose-containing substrates, Saccharomyces cerevisiae secretes invertase that hydrolyses sucrose into glucose and fructose, which are subsequently assimilated by facilitated diffusion. In a previous work, the cellular location of invertase in yeast was modified, by eliminating the extracellular form of the enzyme and over-expressing the intracellular one (Stambuk et al., 2009). As a result, sucrose uptake by this modified strain (iSUC2) occurs by an active H+-sucrose symport system, in which 1 ATP needs to be used by the cells to extrude the proton co-transported. In order to compensate for this, it is expected that these cells will deviate a higher proportion of the carbon flow towards energy generation, and consequently to ethanol formation, in comparison with the wild-type phenotype (SUC2). In the present work, a quantitative physiological evaluation of the iSUC2 strain was performed in both batch and chemostat cultures. Cells from the iSUC2 strain harvested from steady-state anaerobic sucrose-limited chemostats retained all invertase intracellularly and showed a 2-fold higher total invertase activity, when compared to the SUC2 strain grown under identical conditions. Besides this, the ethanol yield on sucrose in the former cells was 4% higher than in the latter case. However, due to the high levels of residual sucrose during these cultivations with the iSUC2 strain, we attempted to improve the transport capacity in the iSUC2 strain by evolutionary engineering. After 60 generations of cultivation in an anaerobic sucrose-limited chemostat, an evolved strain was selected, which presented a 20-fold increase in the sucrose transport capacity, when compared with the parental strain (iSUC2), leading to almost no residual sucrose. During growth of this evolved strain in anaerobic sucrose-limited chemostats, the ethanol yield on sucrose was 11% higher and the biomass yield on sucrose was 27% lower, when compared with the SUC2 strain. Transcriptome analysis revealed an increase in the expression level of several hexose transporters, as well as many MAL-related genes, including the gene for the high-affinity permease AGT1. Indeed, it was verified that this gene was duplicated during the evolution experiment, but no point mutation was detected. By over-expressing the AGT1 gene in the iSUC2 strain, it was possible to attain a similar ethanol yield on sucrose, when compared to the evolved iSUC2 strain. However, several other physiological parameters were different in both strains, indicating that the AGT1 gene duplication was not the only mutation that occurred during evolution in the chemostat. To conclude, this work illustrates that the combination of metabolic and evolutionary engineering is a powerful strategy to obtain improved sucrose-fermenting yeast strains.
487

Biodiesel: análise e dimensionamento da rede logística no Brasil usando programação linear. / Biodiesel: supply chain analyses and facilities location using mixed integer linear programming.

Carvalho, Éden de Rezende 18 September 2008 (has links)
Neste trabalho foi desenvolvido um modelo de programação linear inteira mista para localização das instalações da rede logística do biodiesel no Brasil, de forma a que se possa, com sua aplicação, avaliar o potencial de produção de oleaginosas no país, assim como identificar as zonas mais promissoras para a localização dos diversos elos da cadeia do biodiesel, a partir da demanda gerada pela mistura de um percentual de biodiesel ao diesel fóssil. O modelo incorpora quatro elos da cadeia produtiva (fase agrícola, extração de óleo, produção de biodiesel e pontos de demanda). Os parâmetros do modelo foram estimados com base em informações reais de mercado disponíveis (base de dezembro/2007). Obteve-se com a aplicação do modelo a diversos cenários, os municípios mais indicados para produção das oleaginosas, as oleaginosas utilizadas, o volume de produção em cada local e, por fim, a localização e porte das fábricas de óleo e das usinas de biodiesel. Análises de sensibilidade de alguns parâmetros foram executadas para verificação do comportamento do modelo face a incertezas. O trabalho incorpora sugestões e recomendações para aprimoramento do modelo. / In this research a mixed integer linear programming model was developed to locate facilities related to the biodiesel supply chain in Brazil, making possible to evaluate the oleaginous production potential, as well as the most promising regions to became the location of the several levels of the biodiesel chain, in accordance to the biodiesel future demand. The model incorporates four levels of the productive chain (agricultural phase, extraction of oil, biodiesel production and demand points). The model parameters were estimated based on market information available (base of december/2007). The application of the model to several sceneries led to the indication of the most promising regions for production of the oleaginous, the used oleaginous ones, the volume of production in each place and, finally, the location and scale of oil and biodiesel factories. Sensibility analyses were conducted to verify the results related to parameters uncertainty. The research contains suggestion and recommendations for improvement of the model.
488

Treatment of biodiesel wastewater in a hybrid anaerobic baffled reactor microbial fuel cell (ABR-MFC) system

Grobbelaar, Loreen January 2019 (has links)
Thesis (Master of Engineering in Chemical Engineering)--Cape Peninsula University of Technology, 2019. / The biodiesel industry produces large volumes of biodiesel wastewater (BDWW) during the purification of crude biodiesel. This wastewater is characterised by high concentrations of chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), and fats, oils and greases (FOG) which in turn defines BDWW as a highly polluted effluent. The low nitrogen and phosphorous content of BDWW creates an unfavourable environment for the growth of microorganisms, thereby making it difficult to degrade naturally. Biodiesel companies discharge untreated non-compliant wastewater directly to the municipal sewer system. Treatment prior to discharge is a necessity since the disposal of untreated BDWW may raise serious environmental concerns (i.e. disturbance of biological ecosystems) resulting in penalties liable by non-compliant companies due to the implementation of the waste discharge charge system (WDCS) which is regulated by the industrial waste discharge standard limits in South Africa (SA). This study aimed to combine the advantages of the conventional anaerobic baffled reactor (ABR) system with microbial fuel cell (MFC) technology resulting in an innovative technology used to treat high strength industrial BDWW at ambient conditions. Many studies have reported effective treatment of BDWW, however to date literature implementing an ABR equipped with MFC technology has not been reported. The main objectives of the study were to determine which parameters do not meet the industrial wastewater discharge standard limits, whether pH and carbon:nitrogen:phosphorous (C:N:P) ratio adjustments will suffice prior to treatment with the ABR-MFC, the maximum power density (PD) as well as to determine the treatment efficiency of the ABR-MFC.
489

SOURCES OF HEAT REJECTION IN A HDDI DIESEL ENGINE AND METHODS TO IMPROVE THERMAL EFFICIENCY

Kyle Michael Palmer (6643880) 10 June 2019 (has links)
In the realm of class 8 trucking, fuel economy and emissions compliance are becoming the driving force for development of new heavy-duty direct injected (HDDI) diesel engine technologies. Current production engines in this class convert around 40% of the fuels energy into usable work while the unused potential transfers to the environment as excess heat energy. Current OEMs are working toward decreasing this heat loss and improve engine efficiency and emissions. Quantifying the energy lost by component and system highlights the areas that demand the most attention. By studying test cell data of heat rejection on a production Cummins ISX engine and using the data to calibrate an engine model for the simulation software GT-Suite, heat rejection values and the components which transfer the energy are exposed. The simulation software provides energy transfer by both system and component type. The results reveal that 10% of engine total heat rejection (THR) is transferred through the cylinder wall to the engine coolant system. When the heat imparted on the cylinder wall is broken up by component, the piston rings contribute nearly as much heat into the liner as the combustion gas.
490

MODELING THE ENVIRONMENTAL AND THERMAL EFFICIENCY COST OF CYLINDER-TO-CYLINDER VARIATION

Phillip Lee Roach (6650363) 10 June 2019 (has links)
Analytical modeling of the root cause of cylinder-to-cylinder variation and the impact on CO2 emission caused by the reduction in engine efficiency <br>

Page generated in 0.0237 seconds