• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 21
  • 16
  • 6
  • 3
  • Tagged with
  • 189
  • 58
  • 57
  • 33
  • 33
  • 33
  • 33
  • 33
  • 32
  • 31
  • 29
  • 26
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Estructuras de identificación basadas en funciones canónicas lineales a tramos

Álvarez, Marcela P. 20 December 2011 (has links)
Las técnicas de identificación permiten construir modelos matemáticos para sistemas dinámicos a partir de datos registrados de un experimento o del normal funcionamiento del sistema a modelar. El diseño de un modelo implica un compromiso entre su simplicidad y la necesidad de capturar los aspectos esenciales del sistema en estudio. Los modelos caja negra se diseñan enteramente a partir de los datos entrada/salida disponibles del sistema, sin tener en cuenta la interpretación de los parámetros que lo definen. Existen dife-rentes clases de modelos caja negra; considerando su mayor simplicidad, los primeros en desarrollarse fueron los modelos lineales. Posteriormente, dada la necesidad de modelar con mayor precisión, surgieron los modelos no lineales. Una de las principales clases de modelos no lineales de caja negra son los modelos tipo Wiener. Las estructuras que proponemos en esta tesis están dentro de esta familia de modelos. Presentamos, en primer lugar, una estructura de modelo basada en funcio-nes Canónicas Lineales a Tramos de Alto Nivel (CLATAN) y un algoritmo de identificación NOE (por sus siglas en inglés, Non-linear Output Error). Exploramos además la capacidad de apro-ximación, de generalización así como también la estabilidad de este modelo. El algoritmo propuesto permite comenzar con una aproximación OE y aumentar fácilmente el orden hasta al-canzar la aproximación deseada, conservando la aproximación lograda hasta el orden inmediato anterior. Por otra parte, el algoritmo de aprendizaje para determinar los parámetros ga-rantiza la BIBO estabilidad del modelo. Luego, proponemos dos esquemas de aproximación para los cuales probamos que per-miten aproximar cualquier sistema dinámico discreto, no lineal, causal, invariante en el tiempo y con memoria evanescente. Estos modelos están compuestos por un conjunto finito de sistemas discretos de Laguerre o de Kautz, relacionados de manera no lineal mediante funciones CLATAN, cuyos paráme-tros ajustamos utilizando teoría de estimación con conjuntos de membresía (teoría SM). Con esta metodología, estimamos dichos parámetros asumiendo sólo que el ruido es desconocido pero acotado en alguna norma dada (ruido UBB), lo que cons-tituye una hipótesis débil para el mismo. Por otra parte, me-diante la teoría SM hallamos un conjunto que contiene todas las posibles soluciones del problema, lo que nos permite es-timar las cotas de incertidumbre asociadas al problema de es-timación. La metodología resultante es robusta, en el sentido que el conjunto de datos utilizado para la identificación del sistema en estudio puede ser reproducido por al menos uno de los modelos en el conjunto de parámetros identificados. / System identification deals with mathematical models for dynamical systems built from gathered data from experi-ments. The design of such models implies a trade of between simplicity and the need to capture the essential features of the system under study. Black box models are based entirely upon the available input/output data, regar-dless of any interpretation of the parameters involved. Due to its simplicity, linear black box models were first developed. Later, on the urge for more accurate models led to the development of non-linear ones. Wiener like-models constitute one of the most relevant classes of non-linear models. The models proposed in this Thesis belong to this class.We first propose a model structure based on High Level Canonical Piecewise Linear(HLCPWL) functions and a Nonlinear Output Error (NOE) identification algorithm. We explore the approximation capabilities of this structure together with its generalization and stability properties. Starting from a linear Output Error (OE) approximation, this model family yields an identification algorithm such that the order of the model can be easily increased during the identification process, retaining the previously achie-ved approximation. The parameters of the HLCPWL functions arlearned using a simple algorithm that guarantees BIBO stability of the model. Next, we consider two approxima-tion schemes for non linear, discrete, causal, timeinva-riant dynamical systems with fading memory. In these mo-dels, the dynamic linear part is represented by a finite set of Laguerre or Kautz basis functions, while the non-linear static part is realized by High Level Canonical Piecewise Linear basis functions. We estimate the parame-ters of the HLCPWL functions using set membership estima-tion theory. This theory allows to estimate the models parameters under mild conditions for the noise; in fact we only assume that the noise is unknown but bounded (UBB). We also provide a methodology for estimating the uncer-tainty bounds for the models and prove that this structure allows to uniformly approximate any nonlinear discrete, causal, time-invariant systems with fading memory. The proposed methodology is robust, in the sense that the data set used for the identication of the system under study can be reproduced by at least one of the models within the set of all identified parameters.
72

Soluciones explícitas de ecuaciones diferenciales matriciales con coeficientes variables

Company Rossi, Rafael 25 March 2009 (has links)
La resolución de sistemas de ecuaciones diferenciales de orden superior suele apoyarse en la consideración de un sistema ampliado de primer orden. Este enfoque clásico presenta dos inconvenientes. El primero de ellos es el aumento del volumen computacional debido al correspondiente aumento de la dimensión del problema transformado. El segundo inconveniente es la pérdida de explicitez de las soluciones obtenidas en términos de los datos. En la línea de trabajo de nuestro grupo de invest igación nos proponemos aquí, progresar en el empeño de obtener soluciones de sistemas de ecuaciones de orden superior, con la calidad de respuesta del caso escalar. ~ecuérdese que el método de Frobenius es un método directo que trata en el caso escalar las ecuaciones de segundo orden sin considerar el problema equivalente ampliado de primer orden. Nos proponemos obtener soluciones explícitas de sistemas de ecuaciones diferenciales de segundo orden con coeficientes analíticos sin aumentar la dimensión del problema. Como consecuencia de este estudio surgirán funciones especiales matriciales de Bessel y polinomios ortogonales matriciales de tipo Gegenbauer que gozan de propiedades análogas a los correspondientes del caso escalar y que esperamos constituyan el punto de partida para la obtención de métodos analítico-num&ricos de resoluci6n de otros tipos de problemas como la integración numérico-matricial o la resolución de sistemas de ecuaciones en derivadas parciales, tal como se ha conseguido en 1211, 1271 y 1281 para el caso de sistemas de ecuaciones en derivadas parciales con coeficientes constantes. En el capítulo 1, además de recordar algunos hechos fundamentales que se utilizarán en capítulos posteriores, presentaremos resultados de tipo Frobenius matricial para ecuaciones de la forma Los capítulos 11 y 111 están dedicados a sistemas de tipo Bessel matricial donde A es una matriz cuadrada (posiblemente singular), que introducir las funciones de Bessel matriciales y propiedades. La memoria concluye con la necesaria lista de referencias. La clasificación temática de este trabajo de acuerdo con la 1991 AMS Subject Classification es la siguiente: 33C10, 34A30, 47A60, 15A24. Comenzaremos este primer capítulo presentando diversos resultados del cálculo funcional matricial así como la resolución de ciertas ecuaciones algebraicas matriciales de utilidad para los capítulos posteriores. Trataremos también del concepto de con junto fundamental de soluciones de ecuaciones diferenciales matriciales de segundo orden de la forma: Y"(t) + P(t)Y1(t) + Q(t)Y(t) = O, donde P(t) y Q(t) son funciones contínuas con valores en cnXn. Finalmente, pese a que el objetivo de esta tesis se centra en el estudio de dos ecuaciones diferenciales particulares, hemos creído conveniente comentar, a modo de introducción, algunos resultados generales sobre ecuaciones diferenciales matriciales con coeficientes analíticos de segundo orden: donde A(t) y B(t) son funciones analíticas matriciales. En todo lo relativo a demostrar la convergencia absoluta de soluciones matriciales en serie utilizaremos el concepto de norma-2 o norma espectral de una matriz. Si B es una matriz de cmXny B~ es la transpuesta conjugada de B, la norma espectral de B viene definida por: / Company Rossi, R. (1993). Soluciones explícitas de ecuaciones diferenciales matriciales con coeficientes variables [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4282
73

Funciones especiales y ecuaciones diferenciales matriciales

Cortés López, Juan Carlos 23 June 2009 (has links)
Este proyecto de tesis trata dos tipos de problema relacionados con ciertas clases de ecuaciones diferenciales matriarcales, como son la ecuación hipergeométrica matriarcal y la ecuación de Ricati con coeficientes matriarcales variables. El elemento unificador de la memoria es el método de Fröbenius matriarcal, que ya ha sido utilizado en las tesis doctorales de M.Legua, R Company y M.V.Ferrer. La aportación más novedosa de esta memoria radica en l acotación del error de trncación de las soluciones en serie obtenidas, lo que permite obtener dos consecuencias de enorme interés en las aplicaciones, como son: - La obtención de soluciones computables en forma finita. - La construcción de soluciones aproximadas con una precisión prefijada. Cabe decir que, por la información que tenemos, el análisis del error de truncación en términos de una presicisión fijada de antemano, no está disponible en la literatura existente. En relación con la ecuación hipergeométrica matriarcal se trata en primer lugar de obtener un par de soluciones que permitan describir la solución general de (1.1) en terminos de las mismas, sin considerar el problema ampliado equivalente. Se estudia también el error de truncación, cuando se obtiene la solución en serie de un problema de valores iniciales para (1.1), así como una representación integral de la función hipergeométrica matriarcal en términos de la función Gamma matriarcal. El interes de la ecuación hipergeométrica es por una parte continuación de la mergente teoría de polinomios otogonales matriarcales, ya que en la evaluación de los coeficientes de los desarrollos en serie de polinomios ortogonales, aquéllos aparecen expresados en términos de la función hipergeométrica. La ecuación de Riccati es una de las más estudiadas por su aparición en problemas clásicos y modernos de teoría de control, así como en la solución de problemas de contorno para sistemas lineales (vease las referencias citadas en el capitulo dedicado a la ecuación de Riccati). / Cortés López, JC. (1997). Funciones especiales y ecuaciones diferenciales matriciales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5645
74

Algunas contribuciones a la programación semi-infinita convexa

Fajardo Gómez, María Dolores 03 April 2007 (has links)
No description available.
75

Cálculos con funcionales de energía de correlación aplicados a funciones multideterminantales

Pastor Abia, Luis 15 December 2006 (has links)
No description available.
76

Un concepto generalizado de conjugación : aplicación a las funciones quasiconvexas

Martínez Legaz, Juan Enrique 29 October 1981 (has links)
En este trabajo se definen y estudian los conceptos de H-convexidad y H-conjugación, siendo H una familia de funciones reales de variable real cerrada para el supremo puntual de tal manera que coinciden con los clásicos al considerar la familia H de las traslaciones de R. Mediante ellos se construye una teoría de la dualidad en programación matemática y se estudian los Lagrangieros que se derivan. Entre las aplicaciones de estas nociones figura la interpretación de algunas teorías previas sobre conjugación quasi-convexa que se obtienen al considerar ciertas familias H de funciones crecientes. También se aborda la conjugación de multiaplicaciones en conjuntos abstractos, generalizando así las ya conocidas en los que se requieren estructuras algebraicas y de orden.
77

Dinámica de las funciones racionales de una variable compleja

Sueros Zarate, Jonathan Abrahan 03 July 2015 (has links)
El objetivo principal de la presente tesis es presentar una aplicación de los teoremas de Montel sobre familia normales en los sistemas dinámicos, para así poder caracterizar los conjuntos de Julia, denotados por JR, definidos a través de una aplicación R meromorfa sobre C. Primero haremos un estudio de las propiedades de las funciones meromorfas sobre el plano complejo C y el plano complejo extendido C, además estableceremos algunas métricas para poder estudiar la convergencia de las aplicaciones meromorfas. Lo anterior nos permite introducirnos a las familias normales para funciones holomorfas y para funciones meromorfas la cual posee muchas propiedades que son usadas en la caracterización del conjunto de Julia. Para facilitar algunos resultados es preciso usar la conjugada de funciones meromorfas sobre C a través de las transformaciones de Möbius definidas en el plano complejo extendido. También es necesario el estudio de los puntos periódicos de las funciones meromorfas sobre C obteniéndose una serie de propiedades que serán importantes en el estudio del conjunto Julia. Finalmente es vital el estudio del conjunto de puntos excepcionales la cual nos dan una serie de propiedades, para así poder dar una caracterización al conjunto de Julia. Dichas caracterizaciones son tales como, la invariancia del conjunto de Julia, JR, por la aplicación R y por su respectiva inversa; que el conjunto JR es igual a su conjunto de puntos de acumulación; que el conjunto JR coincide con C, siempre que JR posea algún punto interior; que JR coincide con la frontera de la cuenca atractora generada por un punto atractor α ; y el más importante que el conjunto de julia JR, coincide con el cierre de los puntos repulsores fijos de todos los órdenes . / Tesis
78

Caracterización diferenciable y holomorfa de superficies topológicamente planas

Llanos Valencia, Héctor Aquiles 16 January 2020 (has links)
Las superficies (2 - variedad conexa) homeomorfas a un abierto de la esfera S2, son llamadas superficies topológicamente planas. En esta tesis, caracterizamos a estas superficies y estudiamos la conexión entre estas características. Es claro que el plano y la esfera son planas. Notemos que una característica que presentan estas dos superficies, es que ambas satisfacen el famoso Teorema de la Curva de Jordan, i.e., el complemento de cualquier curva cerrada simple en el plano o la esfera, tiene exactamente dos componentes conexas. Otra cualidad que se exhibe en estas dos superficies, es que toda 1-forma diferencial de clase C1 cerrada con soporte compacto necesariamente es exacta. Finalmente, describimos la relación que mantienen estas características, además, obtenemos un resultado de rigidez. A saber, una superficie de Riemann homeomorfa a un abierto de S2 es biholomorfa a una abierto de la esfera de Riemann. / Tesis
79

Teoría de distribución de valores de funciones meromorfas y sus aplicaciones

Achahuanco Gamarra, Garry 13 February 2017 (has links)
Rolf Nevanlinna, matemático finlandés (1895-1980), fue reconocido por sus trabajos en el campo de las funciones de variable compleja. Su trabajo más significativo estuvo relacionado con la teoría de la distribución de los valores de las funciones meromorfas, donde probó los dos teoremas que llevan su nombre, con importantes consecuencias en dicha teoría. Es conocido que la resolución de ciertos problemas teóricos y prácticos dependen a veces del comportamiento de las raíces de la ecuación f(z) = a; donde f(z) es una función entera o meromorfa y a es un valor complejo. Por ende es de vital importancia investigar el número n(r; f = a) de las raíces de la ecuación anterior y su distribución en el disco DR, cada raíz será contada de acuerdo a su multiplicidad. En el último siglo, el famoso matemático E. Picard obtuvo un resultado importante: toda función entera no constante f(z) toma cada valor complejo infinitas veces, con la posible excepción de un valor. Después, E. Borel introdujo el concepto de orden de una función entera y otros matemáticos profundizaron el teorema de Picard, como el teorema grande de Picard y el teorema de Picard-Borel. Estos resultados tenían limitaciones importantes, por ejemplo trataban solamente el caso de funciones enteras, es decir no consideraban funciones meromorfas y por otro lado se imponía la restricción de que fueran funciones de orden finito. La teoría de distribución de valores tiene significativas aplicaciones, por ejemplo a las ecuaciones diferenciales complejas. Finalmente indicamos que a lo largo del tiempo se han desarrollado métodos diferentes para demostrar los resultados de Nevanlinna, pero en este trabajo se ha seguido los resultados originales en muchos casos de esta teoría. / Tesis
80

Construcción de tablas dinámicas de mortalidad mediante el método de lee carter y su aplicación en el análisis actuarial

Montesinos Ruiz, Luis Felipe January 2014 (has links)
El objetivo central de esta tesis es presentar el método de Lee Carter para la construcción de tablas dinámicas de mortalidad. Si bien es cierto que estas tablas se pueden utilizar en cualquier campo cuyo interés sea estudiar la evolución de la mortalidad en una población, en este trabajo, el desarrollo está orientado al campo actuarial. Por esta razón, en todos los capítulos, siempre que sea posible, se hace mención a conceptos actuariales. Esta tesis está organizada de la siguiente manera, en el primer capítulo se definen las funciones biométricas, las tablas de mortalidad y se realizan describen algunas aplicaciones en el sector actuarial, utilizando la notación correspondiente. Luego, en el segundo capítulo se definen las tablas dinámicas de mortalidad y se describe el método de Lee Carter. Finalmente, en el tercer capítulo, se construyen tablas de mortalidad dinámicas mediante el método de Lee Carter, se calcula la esperanza de vida al nacer y se presentan algunas aplicaciones en el análisis actuarial. Cabe indicar que, para la construcción de las tablas de mortalidad dinámicas mediante el método de Lee Carter se utiliza el paquete demography del lenguaje R.

Page generated in 0.0411 seconds